20 research outputs found

    Justification of Logarithmic Loss via the Benefit of Side Information

    Full text link
    We consider a natural measure of relevance: the reduction in optimal prediction risk in the presence of side information. For any given loss function, this relevance measure captures the benefit of side information for performing inference on a random variable under this loss function. When such a measure satisfies a natural data processing property, and the random variable of interest has alphabet size greater than two, we show that it is uniquely characterized by the mutual information, and the corresponding loss function coincides with logarithmic loss. In doing so, our work provides a new characterization of mutual information, and justifies its use as a measure of relevance. When the alphabet is binary, we characterize the only admissible forms the measure of relevance can assume while obeying the specified data processing property. Our results naturally extend to measuring causal influence between stochastic processes, where we unify different causal-inference measures in the literature as instantiations of directed information

    Information-Distilling Quantizers

    Full text link
    Let XX and YY be dependent random variables. This paper considers the problem of designing a scalar quantizer for YY to maximize the mutual information between the quantizer's output and XX, and develops fundamental properties and bounds for this form of quantization, which is connected to the log-loss distortion criterion. The main focus is the regime of low I(X;Y)I(X;Y), where it is shown that, if XX is binary, a constant fraction of the mutual information can always be preserved using O(log(1/I(X;Y)))\mathcal{O}(\log(1/I(X;Y))) quantization levels, and there exist distributions for which this many quantization levels are necessary. Furthermore, for larger finite alphabets 2<X<2 < |\mathcal{X}| < \infty, it is established that an η\eta-fraction of the mutual information can be preserved using roughly (log(X/I(X;Y)))η(X1)(\log(| \mathcal{X} | /I(X;Y)))^{\eta\cdot(|\mathcal{X}| - 1)} quantization levels

    Bregman Divergence Bounds and the Universality of the Logarithmic Loss

    Full text link
    A loss function measures the discrepancy between the true values and their estimated fits, for a given instance of data. In classification problems, a loss function is said to be proper if the minimizer of the expected loss is the true underlying probability. In this work we show that for binary classification, the divergence associated with smooth, proper and convex loss functions is bounded from above by the Kullback-Leibler (KL) divergence, up to a normalization constant. It implies that by minimizing the log-loss (associated with the KL divergence), we minimize an upper bound to any choice of loss from this set. This property suggests that the log-loss is universal in the sense that it provides performance guarantees to a broad class of accuracy measures. Importantly, our notion of universality is not restricted to a specific problem. This allows us to apply our results to many applications, including predictive modeling, data clustering and sample complexity analysis. Further, we show that the KL divergence bounds from above any separable Bregman divergence that is convex in its second argument (up to a normalization constant). This result introduces a new set of divergence inequalities, similar to Pinsker inequality, and extends well-known ff-divergence inequality results.Comment: arXiv admin note: substantial text overlap with arXiv:1805.0380

    Application of an Artificial Neural Network as a Third-Party Database Auditing System

    Get PDF
    Data auditing is a fundamental challenge for organizations who deal with large databases. Databases are frequently targeted by attacks that grow in quantity and sophistication every day, and one-third of which are coming from users inside the organizations. Database auditing plays a vital role in protecting against these attacks. Native features in data base auditing systems monitor and capture activities and incidents that occur within a database and notify the database administrator. However, the cost of administration and performance overhead in the software must be considered. As opposed to using native auditing tools, the better solution for having a more secure database is to utilize third-party products. The primary goal of this thesis is to utilize an efficient and optimized deep learning approach to detect suspicious behaviors within a database by calculating the amount of risk that each user poses for the system. This will be accomplished by using an Artificial Neural Network as an enhanced feature of analyzer component of a database auditing system. This ANN will work as a third-party product for the database auditing system. The model has been validated in order to have a low bias and low variance. Moreover, parameter tuning technique has been utilized to find the best parameters that would result in the highest accuracy for the model
    corecore