34,102 research outputs found

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Real root finding for equivariant semi-algebraic systems

    Get PDF
    Let RR be a real closed field. We consider basic semi-algebraic sets defined by nn-variate equations/inequalities of ss symmetric polynomials and an equivariant family of polynomials, all of them of degree bounded by 2d<n2d < n. Such a semi-algebraic set is invariant by the action of the symmetric group. We show that such a set is either empty or it contains a point with at most 2d12d-1 distinct coordinates. Combining this geometric result with efficient algorithms for real root finding (based on the critical point method), one can decide the emptiness of basic semi-algebraic sets defined by ss polynomials of degree dd in time (sn)O(d)(sn)^{O(d)}. This improves the state-of-the-art which is exponential in nn. When the variables x1,,xnx_1, \ldots, x_n are quantified and the coefficients of the input system depend on parameters y1,,yty_1, \ldots, y_t, one also demonstrates that the corresponding one-block quantifier elimination problem can be solved in time (sn)O(dt)(sn)^{O(dt)}

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure
    corecore