665,404 research outputs found

    Considerations about quality in model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11219-016-9350-6The virtue of quality is not itself a subject; it depends on a subject. In the software engineering field, quality means good software products that meet customer expectations, constraints, and requirements. Despite the numerous approaches, methods, descriptive models, and tools, that have been developed, a level of consensus has been reached by software practitioners. However, in the model-driven engineering (MDE) field, which has emerged from software engineering paradigms, quality continues to be a great challenge since the subject is not fully defined. The use of models alone is not enough to manage all of the quality issues at the modeling language level. In this work, we present the current state and some relevant considerations regarding quality in MDE, by identifying current categories in quality conception and by highlighting quality issues in real applications of the model-driven initiatives. We identified 16 categories in the definition of quality in MDE. From this identification, by applying an adaptive sampling approach, we discovered the five most influential authors for the works that propose definitions of quality. These include (in order): the OMG standards (e.g., MDA, UML, MOF, OCL, SysML), the ISO standards for software quality models (e.g., 9126 and 25,000), Krogstie, Lindland, and Moody. We also discovered families of works about quality, i.e., works that belong to the same author or topic. Seventy-three works were found with evidence of the mismatch between the academic/research field of quality evaluation of modeling languages and actual MDE practice in industry. We demonstrate that this field does not currently solve quality issues reported in industrial scenarios. The evidence of the mismatch was grouped in eight categories, four for academic/research evidence and four for industrial reports. These categories were detected based on the scope proposed in each one of the academic/research works and from the questions and issues raised by real practitioners. We then proposed a scenario to illustrate quality issues in a real information system project in which multiple modeling languages were used. For the evaluation of the quality of this MDE scenario, we chose one of the most cited and influential quality frameworks; it was detected from the information obtained in the identification of the categories about quality definition for MDE. We demonstrated that the selected framework falls short in addressing the quality issues. Finally, based on the findings, we derive eight challenges for quality evaluation in MDE projects that current quality initiatives do not address sufficiently.F.G, would like to thank COLCIENCIAS (Colombia) for funding this work through the Colciencias Grant call 512-2010. This work has been supported by the Gene-ralitat Valenciana Project IDEO (PROMETEOII/2014/039), the European Commission FP7 Project CaaS (611351), and ERDF structural funds.Giraldo-VelĂĄsquez, FD.; España Cubillo, S.; Pastor LĂłpez, O.; Giraldo, WJ. (2016). Considerations about quality in model-driven engineering. Software Quality Journal. 1-66. https://doi.org/10.1007/s11219-016-9350-6S166(1985). Iso information processing—documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts. ISO 5807:1985(E) (pp. 1–25).(2011). Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (pp. 1–46).Abran, A., Moore, J.W., Bourque, P., Dupuis, R., & Tripp, L.L. (2013). Guide to the Software Engineering Body of Knowledge (SWEBOK) version 3 public review. IEEE. ISO Technical Report ISO/IEC TR 19759.Agner, L.T.W., Soares, I.W., Stadzisz, P.C., & SimĂŁo, J.M. (2013). A brazilian survey on {UML} and model-driven practices for embedded software development. Journal of Systems and Software, 86(4), 997–1005. {SI} : Software Engineering in Brazil: Retrospective and Prospective Views.Amstel, M.F.V. (2010). The right tool for the right job: assessing model transformation quality. pages 69–74. Affiliation: Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands. Cited By (since 1996):1.Aranda, J., Damian, D., & Borici, A. (2012). Transition to model-driven engineering: what is revolutionary, what remains the same?. In Proceedings of the 15th international conference on model driven engineering languages and systems, MODELS’12 (pp. 692–708). Berlin, Heidelberg: Springer.Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the eclipse modeling framework. Automated Software Engineering, 20(2), 141–184.Atkinson, C., Bunse, C., & WĂŒst, J. (2003). Driving component-based software development through quality modelling, volume 2693. Cited By (since 1996):3.Baker, P., Loh, S., & Weil, F. (2005). Model-driven engineering in a large industrial context—motorola case study. In Briand, L., & Williams, C. (Eds.) Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science (pp. 476–491). Berlin, Heidelberg: Springer.BariĆĄić, A., Amaral, V., GoulĂŁo, M., & Barroca, B. (2011). Quality in use of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages and tools, PLATEAU ’11 (pp. 65–72). New York: ACM.Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of domain specific modeling languages using the bunge-wand-weber ontology. In 2010 43rd Hawaii international conference on system sciences (HICSS) (pp. 1–10).Bertrand Portier, L.A. (2009). Model driven development misperceptions and challenges.BĂ©zivin, J., & Kurtev, I. (2005). Model-based technology integration with the technical space concept. In Proceedings of the Metainformatics Symposium: Springer.Brambilla, M. (2016). How mature is of model-driven engineering as an engineering discipline @ONLINE.Brambilla, M., & Fraternali, P. (2014). Large-scale model-driven engineering of web user interaction: The webml and webratio experience. Science of Computer Programming, 89 Part B(0), 71 – 87. Special issue on Success Stories in Model Driven Engineering.Brown, A. (2009). Simple and practical model driven architecture (mda) @ONLINE.Bruel, J.-M., Combemale, B., Ober, I., & Raynal, H. (2015). Mde in practice for computational science. Procedia Computer Science, 51, 660–669.Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., & Pretorius, R. (2011). Empirical evidence about the uml: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and contrasting model-driven engineering at three large companies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’14 (pp. 14:1–14:10). New York: ACM.Cabot, J. Has mda been abandoned (by the omg)?Cabot, J. (2009). Modeling will be commonplace in three years time @ONLINE.Cachero, C., Poels, G., Calero, C., & Marhuenda, Y. (2007). Towards a Quality-Aware Engineering Process for the Development of Web Applications. Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/462, Ghent University, Faculty of Economics and Business Administration.Challenger, M., Kardas, G., & Tekinerdogan, B. (2015). A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Software Quality Journal, 1–41.Chaudron, M.V., Heijstek, W., & Nugroho, A. (2012). How effective is uml modeling? Software & Systems Modeling, 11(4), 571–580. J2: Softw Syst Model.Chenouard, R., Granvilliers, L., & Soto, R. (2008). Model-driven constraint programming. pages 236–246. Affiliation: CNRS, LINA, Universit de Nantes, France; Affiliation: Pontificia Universidad Catlica de, Valparaiso, Chile. Cited By (since 1996):8.Clark, T., & Muller, P.-A. (2012). Exploiting model driven technology: a tale of two startups. Software and Systems Modeling, 11(4), 481–493.Corneliussen, L. (2008). What do you think of model-driven software development?Costal, D., GĂłmez, C., & Guizzardi, G. (2011). Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in uml. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6998 LNCS:189–203. cited By (since 1996)3.Cruz-Lemus, J.A., Maes, A., GĂ©nero, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Sciences, 180(11), 2209–2220. Cited By (since 1996):14.Cuadrado, J.S., Izquierdo, J.L.C., & Molina, J.G. (2014). Applying model-driven engineering in small software enterprises. Science of Computer Programming, 89 Part B(0), 176 – 198. Special issue on Success Stories in Model Driven Engineering.Da Silva, A.R. (2015). Model-driven engineering: a survey supported by the unified conceptual model. Computer Languages Systems and Structures, 43, 139–155.Da Silva Teixeira, D.G.M., Quirino, G.K., Gailly, F., De Almeida Falbo, R., Guizzardi, G., & Perini Barcellos, M. (2016). PoN-S: a Systematic Approach for Applying the Physics of Notation (PoN), (pp. 432–447). Cham: Springer International Publishing.Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data and Knowledge Engineering, 58(3), 358 – 380. Including the special issue : {ER} 2004ER 2004.Davies, J., Milward, D., Wang, C.-W., & Welch, J. (2015). Formal model-driven engineering of critical information systems. Science of Computer Programming, 103(0), 88 – 113. Selected papers from the First International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2012).De Oca, I.M.-M., Snoeck, M., Reijers, H.A., & RodrĂ­guez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information and Software Technology, 58, 187–205.DenHaan, J. (2009). 8 reasons why model driven development is dangerous @ONLINE.DenHaan, J. (2010). Model driven engineering vs the commando pattern @ONLINE.DenHaan, J. (2011a). Why aren’t we all doing model driven development yet @ONLINE.DenHaan, J. (2011b). Why there is no future model driven development @ONLINE.Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing the coupled evolution of metamodels and textual concrete syntax specifications. cited By (since 1996)0.Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in {BPMN}. Information and Software Technology, 50(12), 1281–1294.DomĂ­nguez-Mayo, F.J., Escalona, M.J., MejĂ­as, M., Ramos, I., & FernĂĄndez, L. (2011). A framework for the quality evaluation of mdwe methodologies and information technology infrastructures. International Journal of Human Capital and Information Technology Professionals, 2(4), 11–22.DomĂ­nguez-Mayo, F.J., Escalona, M.J., MejĂ­as, M., & Torres, A.H. (2010). A quality model in a quality evaluation framework for mdwe methodologies. pages 495–506. Affiliation: Departamento de Lenguajes y Sistemas InformĂ­ticos, University of Seville, Seville, Spain., Cited By (since 1996):1.Dubray, J.-J. (2011). Why did mde miss the boat?.Escalona, M.J., GutiĂ©rrez, J.J., PĂ©rez-PĂ©rez, M., Molina, A., DomĂ­nguez-Mayo, E., & DomĂ­nguez-Mayo, F.J. (2011). Measuring the Quality of Model-Driven Projects with NDT-Quality, (pp. 307–317). New York: Springer.Espinilla, M., DomĂ­nguez-Mayo, F.J., Escalona, M.J., MejĂ­as, M., Ross, M., & Staples, G. (2011). A Method Based on AHP to Define the Quality Model of QuEF (Vol. 123, pp. 685–694). Berlin, Heidelberg: Springer.Fabra, J., Castro, V.D., Álvarez, P., & Marcos, E. (2012). Automatic execution of business process models: exploiting the benefits of model-driven engineering approaches. Journal of Systems and Software, 85(3), 607–625. Novel approaches in the design and implementation of systems/software architecture.Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.L.H., Rolland, C., Stamper, R.K., Assche, F.J.M.V., Verrijn-Stuart, A.A., & Voss, K. (1996). Frisco: a framework of information system concepts. Technical report, The IFIP WG 8. 1 Task Group FRISCO.Fettke, P., Houy, C., Vella, A.-L., & Loos, P. (2012). Towards the Reconstruction and Evaluation of Conceptual Model Quality Discourses – Methodical Framework and Application in the Context of Model Understandability, volume 113 of Lecture Notes in Business Information Processing, chapter 28, pages 406–421, Springer, Berlin, Heidelberg.Finnie, S. (2015). Modeling community: Are we missing something?Fournier, C. (2008). Is uml [email protected], R., & Rumpe, B. (2007). Model-driven development of complex software: a research roadmap. In Future of Software Engineering, 2007, FOSE ’07 (pp. 37–54).Gallego, M., Giraldo, F.D., & Hitpass, B. (2015). Adapting the pbec-otss software selection approach for bpm suites: an application case. In 2015 34th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–10).GalvĂŁo, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. cited By (since 1996)22.Giraldo, F., España, S., Giraldo, W., & Pastor, O. (2015). Modelling language quality evaluation in model-driven information systems engineering: a roadmap. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 64–69).Giraldo, F., España, S., & Pastor, O. (2014). Analysing the concept of quality in model-driven engineering literature: a systematic review. In 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (pp. 1–12).Giraldo, F.D., España, S., & Pastor, O. (2016). Evidences of the mismatch between industry and academy on modelling language quality evaluation. arXiv: 1606.02025 .GonzĂĄlez, C., & Cabot, J. (2014). Formal verification of static software models in mde: a systematic review. Information and Software Technology, 56(8), 821–838. cited By (since 1996)0.GonzĂĄlez, C.A., BĂŒttner, F., ClarisĂł, R., & Cabot, J. (2012). Emftocsp: a tool for the lightweight verification of emf models. pages 44–50. Affiliation: cole des Mines de Nantes, INRIA, LINA, Nantes, France; Affiliation: Universitat Oberta de Catalunya, Barcelona, Spain. Cited By (since 1996):1.Gorschek, T., Tempero, E., & Angelis, L. (2014). On the use of software design models in software development practice: an empirical investigation. Journal of Systems and Software, 95(0), 176– 193.GoulĂŁo, M., Amaral, V., & Mernik, M. (2016). Quality in model-driven engineering: a tertiary study. Software Quality Journal, 1–33.Grobshtein, Y., & Dori, D. (2011). Generating sysml views from an opm model: design and evaluation. Systems Engineering, 14(3), 327–340.Haan, J.d. (2008). 8 reasons why model-driven approaches (will) fail.Harel, D., & Rumpe, B. (2000). Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff, Israel. Technical report Jerusalem Israel.Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of semantics? Computer, 37(10), 64–72.Hebig, R., & Bendraou, R. (2014). On the need to study the impact of model driven engineering on software processes. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP 2014 (pp. 164–168). New York: ACM.Heidari, F., & Loucopoulos, P. (2014). Quality evaluation framework (qef): modeling and evaluating quality of business processes. International Journal of Accounting Information Systems, 15(3), 193–223. Business Process Modeling.Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., & Classen, A. (2008). Evaluating formal properties of feature diagram languages. Software, IET, 2(3), 281–302. ID 2.Hindawi, M., Morel, L., Aubry, R., & Sourrouille, J.-L. (2009). Description and Implementation of a UML Style Guide (Vol. 5421, pp. 291–302). Berlin: Springer.Hoang, D. (2012). Current limitations of mdd and its implications @ONLINE.Hodges, W. (2013). Model theory Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Fall 2013 edition.Hutchinson, J., Rouncefield, M., & Whittle, J. (2011a). Model-driven engineering practices in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 633–642). New York: ACM.Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: social, organizational and managerial factors that lead to success or failure. Science of Computer Programming, 89 Part B(0), 144–161. Special issue on Success Stories in Model Driven Engineering.Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen, S. (2011b). Empirical assessment of mde in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 471–480). New York: ACM.Igarza, I.M.H., Boada, D.H.G., & ValdĂ©s, A.P. (2012). Una introducciĂłn al desarrollo de software dirigido por modelos. Serie CientĂ­fica, 5(3).ISO/IEC (2001). ISO/IEC 9126. Software engineering—Product quality. ISO/IEC.Izurieta, C., Rojas, G., & Griffith, I. (2015). Preemptive management of model driven technical debt for improving software quality. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA’15 (pp. 31–36). New York: ACM.Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12 (pp. 29–38). New York: ACM.Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages. Software & Systems Modeling, 1–22.Kessentini, M., Langer, P., & Wimmer, M. (2013). Searching models, modeling search: On the synergies of sbse and mde (pp. 51–54).Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klinke, M. (2008). Do you use mda/mdd/mdsd, any kind of model-driven approach? Will it be the future?Köhnlein, J. (2013). Eclipse diagram editors from a user’s perspective.Kolovos, D.S., Paige, R.F., & Polack, F.A. (2008). The grand challenge of scalability for model driven engineering. In Models in Software Engineering (pp. 48–53): Springer.Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., RĂĄth, I., VarrĂł, D., Tisi, M., & Cabot, J. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE’13 (pp. 2:1–2:10). New York: ACM.Krill, P. (2016). Uml to be ejected from microsoft visual studio (infoworld).Krogstie, J. (2012a). Model-based development and evolution of information systems: a quality approach, Springer Publishing Company, Incorporated.Krogstie, J. (2012b). Quality of modelling languages, (pp. 249–280). London: Springer.Krogstie, J. (2012c). Quality of models, (pp. 205–247). London: Springer.Krogstie, J. (2012d). Specialisations of SEQUAL, (pp. 281–326). London: Springer.Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining quality aspects for conceptual models. In Proceedings of the IFIP International Working Conference on Information System Concepts: Towards a Consolidation of Views (pp. 216–231). London: Chapman & Hall, Ltd.Kruchten, P. (2000). The rational unified process: an introduction, 2nd edn. Boston: Addison-Wesley Longman Publishing Co., Inc.Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. Software, IEEE, 29(6), 18–21.Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering – experience and lessons learnt. In Petriu, D., Rouquette, N., & Haugen, y. (Eds.) Model Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in Computer Science (pp. 331–345). Berlin, Heidelberg: Springer.Laguna, M.A., & MarquĂ©s, J.M. (2010). Uml support for designing software product lines: the package merge mechanism, 16(17), 2313–2332.Lange, C. (2007a). Model size matters. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4364 LNCS:211–216. cited By (since 1996)1.Lange, C., & Chaudron, M. (2005). Managing Model Quality in UML-Based Software Development. In 13th IEEE International Workshop on Technology and Engineering Practice, 2005 (pp. 7–16).Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., & Dortmans, H.M. (2003). An empirical investigation in quantifying inconsistency and incompleteness of uml designs. In Incompleteness of UML Designs, Proceedings Workshop on Consistency Problems in UML-based Software Development, 6th International Conference on Unified Modeling Language, UML, 2003.Lange, C., DuBois, B., Chaudron, M., & Demeyer, S. (2006). An experimental investigation of uml modeling conventions. In Nierstrasz, O., Whittle, J., Harel, D., & Reggio, G. (Eds.) Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in Computer Science (pp. 27–41). Berlin, Heidelberg: Springer.Lange, C.F.J., & Chaudron, M.R.V. (2006). Effe

    Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches

    Full text link
    [EN] A classical hydraulic jump with Froude number (Fr1=6) and Reynolds number (Re1=210,000) was characterized using the computational fluid dynamics (CFD) codes OpenFOAM and FLOW-3D, whose performance was assessed. The results were compared with experimental data from a physical model designed for this purpose. The most relevant hydraulic jump characteristics were investigated, including hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, and fluctuating variables. The model outcome was also compared with previous results from the literature. Both CFD codes were found to represent with high accuracy the hydraulic jump surface profile, roller length, efficiency, and sequent depths ratio, consistently with previous research. Some significant differences were found between both CFD codes regarding velocity distributions and pressure fluctuations, although in general the results agree well with experimental and bibliographical observations. This finding makes models with these characteristics suitable for engineering applications involving the design and optimization of energy dissipation devices.The research presented herein was possible thanks to the Generalitat Valenciana predoctoral grants [Ref. (2015/7521)], in collaboration with the European Social Funds and to the research project La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.MaciĂĄn PĂ©rez, JF.; BayĂłn, A.; GarcĂ­a-Bartual, R.; LĂłpez JimĂ©nez, PA.; VallĂ©s-MorĂĄn, FJ. (2020). Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. Journal of Hydraulic Engineering. 146(12):1-13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001820S11314612Abdul Khader, M. H., & Elango, K. (1974). TURBULENT PRESSURE FIELD BENEATH A HYDRAULIC JUMP. Journal of Hydraulic Research, 12(4), 469-489. doi:10.1080/00221687409499725Bakhmeteff B. A. and A. E. Matzke. 1936. “The hydraulic jump in terms of dynamic similarity.” In Vol. 101 of Proc. American Society of Civil Engineers 630–647. Reston VA: ASCE.Bayon A. 2017. “Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD).” Ph.D. thesis Research Institute of Water and Environmental Engineering Universitat PolitĂšcnica de ValĂšncia.Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Bayon A. J. F. MaciĂĄn-PĂ©rez F. J. VallĂ©s-MorĂĄn and P. A. LĂłpez-JimĂ©nez. 2019. “Effect of RANS turbulence model in hydraulic jump CFD simulations.” In E-proc. 38th IAHR World Congress. Panama City Panama: Spanish Ministry of Economy.Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & LĂłpez-JimĂ©nez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002Bayon, A., Valero, D., GarcĂ­a-Bartual, R., VallĂ©s-MorĂĄn, F. ​JosĂ©, & LĂłpez-JimĂ©nez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., 
 Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Bradshaw, P. (1997). Understanding and prediction of turbulent flow—1996. International Journal of Heat and Fluid Flow, 18(1), 45-54. doi:10.1016/s0142-727x(96)00134-8Caishui, H. (2012). Three-dimensional Numerical Analysis of Flow Pattern in Pressure Forebay of Hydropower Station. Procedia Engineering, 28, 128-135. doi:10.1016/j.proeng.2012.01.694Castillo L. G. J. M. Carrillo J. T. GarcĂ­a and A. Vigueras-RodrĂ­guez. 2014. “Numerical simulations and laboratory measurements in hydraulic jumps.” In Proc. 11th Int. Conf. of Hydroinformatics. New York: Spanish Ministry of Economy.Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: basic flow features. Journal of Hydraulic Research, 47(6), 744-754. doi:10.3826/jhr.2009.3610Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Chanson, H. (2009). Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics - B/Fluids, 28(2), 191-210. doi:10.1016/j.euromechflu.2008.06.004Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Chanson, H., & Montes, J. S. (1995). Characteristics of Undular Hydraulic Jumps: Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering, 121(2), 129-144. doi:10.1061/(asce)0733-9429(1995)121:2(129)Cheng, C.-K., Tai, Y.-C., & Jin, Y.-C. (2017). Particle Image Velocity Measurement and Mesh-Free Method Modeling Study of Forced Hydraulic Jumps. Journal of Hydraulic Engineering, 143(9), 04017028. doi:10.1061/(asce)hy.1943-7900.0001325Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Fuentes-PĂ©rez, J. F., Silva, A. T., Tuhtan, J. A., GarcĂ­a-Vega, A., Carbonell-Baeza, R., Musall, M., & Kruusmaa, M. (2018). 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software, 99, 156-169. doi:10.1016/j.envsoft.2017.09.011Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Hager, W. H. (1992). Energy Dissipators and Hydraulic Jump. Water Science and Technology Library. doi:10.1007/978-94-015-8048-9Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Jesudhas, V., Balachandar, R., Roussinova, V., & Barron, R. (2018). Turbulence Characteristics of Classical Hydraulic Jump Using DES. Journal of Hydraulic Engineering, 144(6), 04018022. doi:10.1061/(asce)hy.1943-7900.0001427Jesudhas, V., Roussinova, V., Balachandar, R., & Barron, R. (2017). Submerged Hydraulic Jump Study Using DES. Journal of Hydraulic Engineering, 143(3), 04016091. doi:10.1061/(asce)hy.1943-7900.0001231KIM, J. (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k?? turbulence model. Atmospheric Environment, 38(19), 3039-3048. doi:10.1016/j.atmosenv.2004.02.047Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099)Langhi, M., & Hosoda, T. (2018). Three-dimensional unsteady RANS model for hydraulic jumps. ISH Journal of Hydraulic Engineering, 1-8. doi:10.1080/09715010.2018.1555775Liu, M., Rajaratnam, N., & Zhu, D. Z. (2004). Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. Journal of Hydraulic Engineering, 130(6), 511-520. doi:10.1061/(asce)0733-9429(2004)130:6(511)Liu, T., Song, L., Fu, W., Wang, G., Lin, Q., Zhao, D., & Yi, B. (2018). Experimental Study on Single-Hole Injection of Kerosene into Pressurized Quiescent Environments. Journal of Energy Engineering, 144(3), 04018014. doi:10.1061/(asce)ey.1943-7897.0000536Ma, J., Oberai, A. A., Lahey, R. T., & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911-919. doi:10.1007/s00231-011-0867-8McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)McDonald P. W. 1971. “The computation of transonic flow through two-dimensional gas turbine cascades.” In Proc. ASME 1971 Int. Gas Turbine Conf. and Products Show. Houston: International Gas Turbine Institute.Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Resch, F. J., & Leutheusser, H. J. (1972). Le ressaut hydraulique : mesures de turbulence dans la rĂ©gion diphasique. La Houille Blanche, 58(4), 279-293. doi:10.1051/lhb/1972021Sarfaraz M. and J. Attari. 2011. “Numerical simulation of uniform flow region over a steeply sloping stepped spillway.” In Proc. 6th National Congress on Civil Engineering. Semnan Iran: Iran Water and Power Development Company.Spalart, P. . (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3), 252-263. doi:10.1016/s0142-727x(00)00007-2Speziale, C. G., & Thangam, S. (1992). Analysis of an RNG based turbulence model for separated flows. International Journal of Engineering Science, 30(10), 1379-IN4. doi:10.1016/0020-7225(92)90148-aSpoljaric A. 1984. “Dynamic characteristics of the load on the bottom plate under hydraulic jump.” In Proc. Int. Conf. Hydrosoft’84: Hydraulic Engineering Software. New York: Elsevier.Teuber, K., Broecker, T., BayĂłn, A., NĂŒtzmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Valero D. and D. B. Bung. 2015. “Hybrid investigations of air transport processes in moderately sloped stepped spillway flows.” In Vol. 28 of E-proc. 36th IAHR World Congress 1–10. The Hague Netherlands: IHE Delft.Valero, D., & Bung, D. B. (2016). Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow. Environmental Modelling & Software, 82, 218-228. doi:10.1016/j.envsoft.2016.04.030Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028von KĂĄrmĂĄn T. 1930. “Mechanische Ähnlichkeit und Turbulenz.” In Proc. 3rd Int. Congress on Applied Mechanics. New York: Springer.Wang H. 2014. “Turbulence and air entrainment in hydraulic jumps.” Ph.D. thesis Dept. of Civil Engineering Univ. of Queensland.Wang, H., & Chanson, H. (2013). Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal, 12(6), 502-518. doi:10.1080/1573062x.2013.847464Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Witt, A., Gulliver, J., & Shen, L. (2015). Simulating air entrainment and vortex dynamics in a hydraulic jump. International Journal of Multiphase Flow, 72, 165-180. doi:10.1016/j.ijmultiphaseflow.2015.02.012Wu, J., Zhou, Y., & Ma, F. (2018). Air entrainment of hydraulic jump aeration basin. Journal of Hydrodynamics, 30(5), 962-965. doi:10.1007/s42241-018-0088-4Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-

    Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach

    Full text link
    [EN] Adaptation of stilling basins to higher discharges than those considered for their design implies deep knowledge of the flow developed in these structures. To this end, the hydraulic jump occurring in a typified United States Bureau of Reclamation Type II (USBR II) stilling basin was analyzed using a numerical and experimental modeling approach. A reduced-scale physical model to conduct an experimental campaign was built and a numerical computational fluid dynamics (CFD) model was prepared to carry out the corresponding simulations. Both models were able to successfully reproduce the case study in terms of hydraulic jump shape, velocity profiles, and pressure distributions. The analysis revealed not only similarities to the flow in classical hydraulic jumps but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographical information, despite some slight differences. Furthermore, the void fraction distribution was analyzed, showing satisfactory performance of the physical model, although the numerical approach presented some limitations to adequately represent the flow aeration mechanisms, which are discussed herein. Overall, the presented modeling approach can be considered as a useful tool to address the analysis of free surface flows occurring in stilling basins.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.MaciĂĄn PĂ©rez, JF.; GarcĂ­a-Bartual, R.; Huber, B.; BayĂłn, A.; VallĂ©s-MorĂĄn, FJ. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water. 12(1):1-20. https://doi.org/10.3390/w12010227S120121Bayon, A., Valero, D., GarcĂ­a-Bartual, R., VallĂ©s-MorĂĄn, F. ​JosĂ©, & LĂłpez-JimĂ©nez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Chanson, H. (2008). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125-142. doi:10.1007/s10652-008-9078-3Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Teuber, K., Broecker, T., BayĂłn, A., NĂŒtzmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1), 141-154. doi:10.1016/j.ijmultiphaseflow.2004.09.004Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Houichi, L., Ibrahim, G., & Achour, B. (2006). Experiments for the Discharge Capacity of the Siphon Spillway Having the Creager-Ofitserov Profile. International Journal of Fluid Mechanics Research, 33(5), 395-406. doi:10.1615/interjfluidmechres.v33.i5.10Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Pope, S. B. (2001). Turbulent Flows. Measurement Science and Technology, 12(11), 2020-2021. doi:10.1088/0957-0233/12/11/705Harlow, F. H. (1967). Turbulence Transport Equations. Physics of Fluids, 10(11), 2323. doi:10.1063/1.1762039Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Li, S., & Zhang, J. (2018). Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water, 10(10), 1478. doi:10.3390/w10101478Zhang, W., Wang, J., Zhou, C., Dong, Z., & Zhou, Z. (2018). Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft. Water, 10(10), 1393. doi:10.3390/w10101393Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Cartellier, A., & Achard, J. L. (1991). Local phase detection probes in fluid/fluid two‐phase flows. Review of Scientific Instruments, 62(2), 279-303. doi:10.1063/1.1142117Cartellier, A., & Barrau, E. (1998). Monofiber optical probes for gas detection and gas velocity measurements: conical probes. International Journal of Multiphase Flow, 24(8), 1265-1294. doi:10.1016/s0301-9322(98)00032-9Boyer, C., Duquenne, A.-M., & Wild, G. (2002). Measuring techniques in gas–liquid and gas–liquid–solid reactors. Chemical Engineering Science, 57(16), 3185-3215. doi:10.1016/s0009-2509(02)00193-8Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., 
 Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. VĂĄzquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., VĂĄzquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).VĂĄzquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.ViganĂČ, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines

    Full text link
    [EN] Over the past few decades, the aerodynamic improvements of turbocharger turbines contributed significantly to the overall efficiency augmentation and the advancements in downsizing of internal combustion engines. Due to the compact size of automotive turbochargers, the experimental measurement of the complex internal aerodynamics has been insufficiently studied. Hence, turbine designs mostly rely on the results of numerical simulations and the validation of zero-dimensional parameters as efficiency and reduced mass flow. To push the aerodynamic development even further, a precise validation of three-dimensional flow patterns predicted by applied computational fluid dynamics (CFD) methods is in need. This paper presents the design of an up-scaled volute-stator model, which allows optical experimental measurement techniques. In a preliminary step, numerical results indicate that the enlarged geometry will be representative of the flow patterns and characteristic non-dimensional numbers at defined flow sections of the real size turbine. Limitations due to rotor-stator interactions are highlighted. Measurement sections of interest for available measurement techniques are predefined.The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain". The support given to Ms. N.H.G. by Universitat Politecnica de Valencia through the "FPI-Subprograma 2" (No.FPI-2018-S2-1368) grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)" is gratefully acknowledgedTiseira, A.; Navarro, R.; Inhestern, LB.; Hervås-Gómez, N. (2020). Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines. Energies. 13(11):1-19. https://doi.org/10.3390/en13112930S1191311Praveena, V., & Martin, M. L. J. (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute, 91(5), 704-720. doi:10.1016/j.joei.2017.05.010Sindhu, R., Amba Prasad Rao, G., & Madhu Murthy, K. (2018). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal, 57(3), 1379-1392. doi:10.1016/j.aej.2017.06.009Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949Suhrmann, J. F., Peitsch, D., Gugau, M., & Heuer, T. (2012). On the Effect of Volute Tongue Design on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-69525Roumeas, M., & Cros, S. (2012). Aerodynamic Investigation of a Nozzle Clearance Effect on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-68835Liu, Y., Yang, C., Qi, M., Zhang, H., & Zhao, B. (2014). Shock, Leakage Flow and Wake Interactions in a Radial Turbine With Variable Guide Vanes. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25888Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., & Piscaglia, F. (2013). 1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions. Applied Energy, 111, 1-15. doi:10.1016/j.apenergy.2013.04.016Bohbot, J., Chryssakis, C., & Miche, M. (2006). Simulation of a 4-Cylinder Turbocharged Gasoline Direct Injection Engine Using a Direct Temporal Coupling Between a 1D Simulation Software and a 3D Combustion Code. SAE Technical Paper Series. doi:10.4271/2006-01-3263Inhestern, L. B. (s. f.). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions. doi:10.4995/thesis/10251/119989Tamaki, H., & Unno, M. (2008). Study on Flow Fields in Variable Area Nozzles for Radial Turbines. International Journal of Fluid Machinery and Systems, 1(1), 47-56. doi:10.5293/ijfms.2008.1.1.047Eroglu, H., & Tabakoff, W. (1991). LDV Measurements and Investigation of Flow Field Through Radial Turbine Guide Vanes. Journal of Fluids Engineering, 113(4), 660-667. doi:10.1115/1.2926531Karamanis, N., Martinez-Botas, R. F., & Su, C. C. (2000). Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. doi:10.1115/2000-gt-0470Galindo, J., Tiseira Izaguirre, A. O., García-Cuevas, L. M., & Hervås Gómez, N. (2020). Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine. International Journal of Engine Research, 22(6), 2010-2020. doi:10.1177/1468087420916281Dufour, G., Carbonneau, X., Cazalbou, J.-B., & Chassaing, P. (2006). Practical Use of Similarity and Scaling Laws for Centrifugal Compressor Design. Volume 6: Turbomachinery, Parts A and B. doi:10.1115/gt2006-91227Tancrez, M., Galindo, J., Guardiola, C., Fajardo, P., & Varnier, O. (2011). Turbine adapted maps for turbocharger engine matching. Experimental Thermal and Fluid Science, 35(1), 146-153. doi:10.1016/j.expthermflusci.2010.07.018Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Smirnov, P. E., Hansen, T., & Menter, F. R. (2007). Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps. Volume 6: Turbo Expo 2007, Parts A and B. doi:10.1115/gt2007-27376Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118Serrano, J. R., Gil, A., Navarro, R., & Inhestern, L. B. (2017). Extremely Low Mass Flow at High Blade to Jet Speed Ratio in Variable Geometry Radial Turbines and its Influence on the Flow Pattern: A CFD Analysis. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. doi:10.1115/gt2017-63368Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2019). Contribution to tip leakage loss modeling in radial turbines based on 3D flow analysis and 1D characterization. International Journal of Heat and Fluid Flow, 78, 108423. doi:10.1016/j.ijheatfluidflow.2019.108423Choi, M., Baek, J. H., Chung, H. T., Oh, S. H., & Ko, H. Y. (2008). Effects of the low Reynolds number on the loss characteristics in an axial compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(2), 209-218. doi:10.1243/09576509jpe520Klausner, E., & Gampe, U. (2014). Evaluation and Enhancement of a One-Dimensional Performance Analysis Method for Centrifugal Compressors. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25141Tiainen, J., Jaatinen-VÀrri, A., Grönman, A., Turunen-Saaresti, T., & Backman, J. (2018). Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors. Journal of Turbomachinery, 140(5). doi:10.1115/1.4038872Vinuesa, R., Hosseini, S. M., Hanifi, A., Henningson, D. S., & Schlatter, P. (2017). Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section. Flow, Turbulence and Combustion, 99(3-4), 613-641. doi:10.1007/s10494-017-9840-

    Identifying and classifying attributes of packaging for customer satisfaction-A Kano Model Approach

    Full text link
    [EN] The packaging industry in India is predicted to grow at 18% annually. In recent years Packaging becomes a potential marketing tool. The marketer should design the packaging of high quality from customer perspective.  As the research in the area of packaging is very few, study of quality attributes of Packaging is the need of the hour and inevitable. An empirical research was conducted by applying Kano Model. The researcher is interested to find out the perception of the customers on 22 quality attributes of packaging. 500 respondents which were selected randomly were asked about their experience of packing on everyday commodities through a well-structured questionnaire.  The classification of attribute as must-be quality, one-dimensional quality, attractive quality, indifferent quality and reverse quality was done by three methods. Marketer should make a note of it and prioritise the attributes for customer satisfaction.Dash, SK. (2021). Identifying and classifying attributes of packaging for customer satisfaction-A Kano Model Approach. International Journal of Production Management and Engineering. 9(1):57-64. https://doi.org/10.4995/ijpme.2021.13683OJS576491Bakhitar, A.,Hannan, A., Basit, A., Ahmad, J.(2015). Prioritization of value based services of software by using AHP and fuzzy KANO model. International Conference on Computational and Social Sciences, 8, 25- 27.Basfirinci, C., Mitra, A. (2015). A cross cultural investigation of airlines service quality through integration of Servqual and the Kano model. Journal of Air Transport Management, 42(1), 239-48. https://doi.org/10.1016/j.jairtraman.2014.11.005Berger, C., Blauth, R., Boger, D., Bolster, C., Burchill, G., DuMouchel, W., Pouliot, F., Richter, R., Rubinoff, A., Shen, D., Timko, M., Walden, D. (1993). Kano's methods for understanding customer-defined quality. The Center for Quality of Management Journal, 2(4), 2-36.Brown, G.H. (1950). Measuring consumer attitudes towards products. Journal of Marketing, 14(5), 691-98. https://doi.org/10.1177/002224295001400505Chaudha, A., Jain, R., Singh, A.R., Mishra, P.K. (2011). Integration of Kano's Model into Quality Function Deployment (QFD). Journal Advice Manufacture Technology, 53, 689-698. https://doi.org/10.1007/s00170-010-2867-0Cole, R.E. (2001). From continuous improvement to continuous innovation. Quality Management Journal, 8(4), 7-21. https://doi.org/10.1080/10686967.2001.11918977Dash, S.K. (2019). Application of Kano Model in Identifying Attributes. A Case Study on School Bus Services. International Journal of Management Studies, 6(1), 31-37. https://doi.org/10.18843/ijms/v6i1(3)/03Dziuba, S.T., ƚron, B. (2014). FAM-FMC system as an alternative element of the software used in a grain and flour milling enterprise. Production Engineering Archives, 4(3),29-31. https://doi.org/10.30657/pea.2014.04.08Ernzer, M., Kopp, K.(2003). Application of KANO method to life cycle design. IEEE Proceedings of Eco Design: Third International Symposium on Environmentally Conscious De-sign and Inverse Manufacturing, Tokyo Japan, December 8-11, 383-389. https://doi.org/10.1109/ECODIM.2003.1322697Feigenbaum, A.V. (1991).Total Quality Control. McGraw-Hill. Fundin, A., Nilsson, L. (2003). Using Kano's theory of attractive quality to better understand customer satisfaction with e-services. Asian Journal on Quality, 4(2), 32-49. https://doi.org/10.1108/15982688200300018Friman, M., Edvardsson, B. (2003). A content analysis of complaints and compliments. Managing Service Quality, 13(1), 20-26. https://doi.org/10.1108/09604520310456681Garvin, D.A. (1987). Competing on the eight dimensions of quality. Harvard Business Review, 65(6), 101-109.Hanan, M., Karp, P. (1989). Customer satisfaction, how to maximise, measure and market your company's "ultimate product". AMACOM.Herzberg, F., Bernard, M., Snyderman, B.B. (1959). The Motivation to Work. John Wiley and Sons.Hoch, S.J., Ha, Y.W. (1986). Consumer learning: advertising and the ambiguity of product experience. Journal of Consumer Research, 13, 221-33.https://doi.org/10.1086/209062Johnson, M.D., Nilsson, L. (2003). The Importance of Reliability and Customization from Goods to Services. Quality Management Journal, 10(1), 8-19. https://doi.org/10.1080/10686967.2003.11919049Kano, N., Seraku, N., Takahashi, F., Tsuji, S. (1984). Attractive Quality and Must-Be Quality. Journal of the Japanese Society for Quality Control, 41, 39-48.Kapalle, P.K, Lehmann, D.R. (1995). The effects of advertised and observed quality on expectations about new product quality. Journal of Marketing Research, 32(8), 280-90. https://doi.org/10.1177/002224379503200304Lee, M.C., Newcomb, J.F. (1997). Applying the Kano methodology to meet customer requirements: NASA's microgravity science program. Quality Management Journal, 4(3), 95-110. https://doi.org/10.1080/10686967.1997.11918805Löfgren, M. (2005). Winning at the first and second moments of truth: An exploratory study. Journal of Service Theory and Practice, 15(1), 102-15. https://doi.org/10.1108/09604520510575290Löfgren, M., Witell, L. (2005). Kano's Theory of Attractive Quality and Packaging. Quality Management Journal, 12(3), 7-20. https://doi.org/10.1080/10686967.2005.11919257Matzler, K., Hinterhuber, H.H., Bailom, F., Sauerwein, E. (1996). How to delight your customers. Journal of Product & Brand Management, 5(2), 6-18. https://doi.org/10.1108/10610429610119469Miarka, D., Ć»ukowska, J., Siwek, A., Nowacka,A., Nowak, D. (2015). Microbial hazards reduction during creamy cream cheese production. Production Engineering Archives, 6(1), 39-44. https://doi.org/10.30657/pea.2015.06.10Nelson, P. (1970), Information and consumer behaviour. Journal of Political Economy, 78, 311-29. https://doi.org/10.1086/259630Nilsson-Witell, L, Fundin, A. (2005). Dynamics of service attributes: a test of Kano's theory of attractive quality. International Journal of Service Industry Management, 16(2), 152-168. https://doi.org/10.1108/09564230510592289Parasuraman, A. (1997). Reflections on gaining competitive advantage through customer value. Academy of Marketing Science Journal, 25(2), 154-61. https://doi.org/10.1007/BF02894351Parasuraman, A., Colby, C.L. (2001). Techno-Ready Marketing. Free Press.Qiting, P., Uno, N., Kubota, Y. (2013). Kano Model Analysis of Customer Needs and Satisfaction at the Shanghai Disneyland. In Proceedings of the 5th Intl Congress of the Intl Association of Societies of Design Research, Tokyo, Japan. http://design-cu.jp/iasdr2013/papers/1835-1b.pdf Accessed on January 2021.Sauerwein, E., Bailom, F., Matzler, K., Hinterhuber, H.H. (1996). The Kano Model: How to delight your Customers. Volume I of the IX. International Working Seminar on Production Economics, Innsbruck/Igls/Austria, February 19-23 1996, pp. 313-327. https://is.muni. cz/el/econ/podzim2009/MPH_MAR2/um/9899067/THE_KANO_MODEL_-_HOW_TO_DELIGHT_YOUR_CUSTOMERS.pdfShewhart, W.A. (1931). Economic Control of Quality of Manufactured Product. D. Van Nostrand Company, Inc.Underwood, R.L., Klein, N.M. (2002). Packaging as Brand Communication: Effects of Product Pictures on Consumer Responses to the Package and Brand. Journal of Marketing Theory and Practice, 10(4), 58-68. https://doi.org/10.1080/10696679.2002.11501926Underwood, R.L. Klein, N.M., Burke, R.R. (2001). Packaging communication: attentional effects of product imagery. Journal of Product & Brand Management, 10(7), 403-22. https://doi.org/10.1108/10610420110410531Watson, G.H. (2003), "Customer focus and competitiveness", in Stephens, K.S. (Ed.), Six Sigma and Related Studies in the Quality Disciplines, ASQ Quality Press, Milwaukee, WI.Williams, D. (2020). The future of the packaging industry in India. Packaging Gateway. https://packaging-gateway.com/features/futurepackaging-industry-in-india Accessed on January 2021.Williams,H., Wikström,F., Löfgren.M. (2008). A life cycle perspective on environmental effects of customer focused packaging development." Journal of Cleaner Production, 16(7), 853-859. https://doi.org/10.1016/j.jclepro.2007.05.006Woodruff, R.B. (1997). Customer value: the next source for competitive advantage. Journal of Academy of Marketing Science, 25(2), 139- 53. https://doi.org/10.1007/BF02894350Zeithaml, V.A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of Marketing, 52, 2-22. https://doi.org/10.1177/00222429880520030

    Ahass-crm: Aplikasi Crm Berbasis Web Dalam Upaya Meningkatkan Pelayanan Service Post-purchase Kendaraan Bermotor Roda Dua Pada Bengkel Astra Honda Authorized Service Station (Ahass) 7689 Bam Cirebon

    Full text link
    Internet salah satu media komunikasi memiliki peran penting untuk memberikan informasi yang cepat dan akurat. Selain itu, dapat diakses di mana saja dan kapan saja. Sebagian besar Perusahaan menggunakan hal ini untuk meningkatkan layanan mereka kepada pelanggan. Salah satu metode untuk meningkatkan layanan dengan menerapkan konsep Customer Relationship Management (CRM). Tujuan dari penelitian ini untuk mengembangkan aplikasi CRM berbasis web dan melakukan pengujian pada bengkel AHASS BAM 7689 Cirebon dalam upaya meningkatkan layanan purna jual kepada pelanggan. Metode yang digunakan dalam penelitian ini adalah Web Information System Development Methodology (WISDM) dan menggunakan batasan model post-purchase untuk mengembangkan aplikasi sesuai dengan kebutuhan. Penelitian ini menghasilkan aplikasi CRM berbasis web yang diberi nama AHASS-CRM dalam upaya meningkatkan layanan pelanggan di bengkel AHASS 7689 BAM Cirebon. Pengujian Blackbox dan UAT dilakukan untuk menguji aplikasi berbasis web pada sudut pandang teknis dan strategis. Berdasarkan uji Blackbox, hasilnya menunjukkan bahwa aplikasi bekerja secara keseluruhan sesuai dengan kebutuhan. Hasil skor User Acceptance Test (UAT) menunjukkan skor intrepretation adalah 75% yang berarti bahwa aplikasi dapat diterima dengan ketegori baik. Kata Kunci: Aplikasi berbasis web, CRM (Customer Relationship Management), Post-Purchase, Web Information System Development Methodology (WISDM), Blackbox, User Acceptance Test (UAT) ------------------------------------------------------------- Nowdays, the Internet plays important role for information exchange, so that it can be easily accessed anywhere and anytime. Most companies take this advantages to improve their services to the customers. One of the methods to increase the services is by implementing Customer Relationship Management (CRM). The purpose of this research is to develop a web based CRM application. This research also perform test at AHASS BAM 7689 workshop Cirebon in order to improve after sales services at the customer. The Web Information System Development Methodology (WISDM) is used to develop the application. However, the system is limited by post-purchase model in order to meet the requirements. This research has produce a web based application for improving customer AHASS 7689 BAM workshop in Cirebon. The blackbox test and User Acceptance Test (UAT) have succesfully conducted to test the application based on technical and strategical point of view. Based on Blackbox test, the result shows that the application meets all of the requirements.The UAT score shows the intrepretation score at 75%. This means the application can be accepted by AHASS\u27s customers for improving services. Keyword: Web Based Application, CRM (Customer Relationship Management), Post-Purchase, Web Information System Development Methodology (WISDM), Blackbox, User Acceptance Test (UAT)------------------------------------------------------------------DAFTAR PUSTAKA Afrina, M., & Ibrahim, A. (2014). Rancang Bangun Electronic Costumer Relationship Management (e-crm) Sebagai Sistem Informasi Dalam Peningkatan Layanan Perpustakaan Digital Fakultas Ilmu Komputer Unsri. Jurnal Sistem Informasi, 5(2). Ahmad, I., & Rahman Chowdhury, A. (2008). Electronic Customer Relationship Management (eCRM): Customers\u27 perception of value from eCRM features on airline e-ticketing Websites. Alhaiou, T., Irani, Z., & Ali, M. (2009). The relationship between ecrm implementation and eloyalty at different adoption stages of transaction cycle: A conceptual framework and hypothesis. EMCIS2009: July 13-14 2009, Crowne Plaza Hotel, Izmir Andriansyah, Febri. (2015). Foto Bengkel AHASS BAM 7689 Cirebon. Beccaria, M. (2011). How to Provide Live Library Information via SMS Using Twilio. Code4Lib Journal, (14). Darudianto, S., Puji, Y. D., Angelina, D., & Margaretha, D. (2006). Analisis dan Perancangan Sistem Aplikasi Customer Relationship Management Berbasis WEB. In Seminar nasional aplikasi teknologi informasi. Deacon, Jhon. (2013). Model-View-Controller (MVC) Architecture. http://www.jdl.co.uk/briefings/mvc.html. Diakses 1 April 2015 Eko, K. B., & Faldy, I. (2011). Analisis Fitur Crm Untuk Meningkatkan Kepuasan Pasien-berbasis Pada Framework Of Dynamic Crm Studi Kasus: Departemen Obstetri Dan Ginekologi Fkui-rscm Jakarta. Telematika, (45). Farhan, Mohammad et.al. (2014). Object Query Optimization through Detecting Independent Subqueries. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661 Volume 16 French, A. M. (2011). Web Development Life Cycle: A New Methodology for Developing Web Applications. Journal of Internet Banking and Commerce, 16(2), 2011-08. Ghongade, S.Rutija and Prof.PJ.Pursani. (2014). Comparison of Relational Database and Object Oriented Database. IJMTER e-ISSN: 2349-9745. Hidayat, Arief dan Surarso, Bayu. (2012). Penerapan Arsitektur Model View Controller (MVC) Dalam Rancang Bangun Sistem Kuis Online Adaptif. SENTIKA 2012, Yogyakarta ISSN: 2089-9815. Hidayat, Rachmat. (2014). Sistem Informasi Ekpedisi Barang Dengan Metode E-CRM Untuk Meningkatkan Pelayanan Pelanggan. Jurnal Sisfotek Global ISSN: 2088-1762 Vol.1. Honni. Robertus, Tang Herman. Kurniawan, Iswanto. (2008). Pengembangan Aplikasi E-Crm pada PT Trafoindo Prima Perkasa. Jurnal CommIT, 02 (02). ISSN 1979-2484 Illahi, Kurnia Illahi (2015). Sistem Informasi Usaha Kecil Menengah Pada Dinas Koperasi Dan Ukm Kota Pekanbaru. Skripsi thesis, Universitas Islam Negeri Sultan Syarif Kasim Riau. Imas, P. (2014). Implementasi Sms Gateway Pada Kantor Perpustakaan Dan Arsip Kabupaten Batang. Skripsi, Fakultas Ilmu Komputer. Jovanović, I. (2006). Software Testing Methods and Techniques. The IPSI BgD Transactions on Internet Research, 30. Kamatchi, R., Iyer, J., & Singh, S. (2013, March). Software Engineering: Web Development Life Cycle. In International Journal of Engineering Research and Technology (Vol. 2, No. 3 (March-2013)). ESRSA Publications. Kaswidjanti, Wilis dkk. (2011). Aplikasi e-CRM Berbasis Web Pada Rumah Sakit. Telematika Vol.8, No.1, Juli 2011: 17-24 Kazeem, Olorisade Babatunde, and Ogunride Mutiat Adebukola. (2014). Performance Comparison of Dynamic Web Scripting Language: A Case Study of PHP and ASP.NET. International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN 2229-5518 Kominfo. (2009). Data dan Statistik Kominfo: http://statistik.kominfo.go.id/site/data?idtree=213&iddoc=765&data-data_page=2. Diakses tanggal 15 Maret 2015 Kosasi, Sandy. (2012). Perencanaan Arsitektur Sistem Informasi e-Procurement Menggunakan Metode Value Matrix Pada PT.Cipta Karya Bersatu. Jurnal Ilmiah SISFOTENIKA Vol. 2, No. 2, Juli 2012 Luthfi, Hisyam Wahid. (2013). Sistem Informasi Perawatan Dan Inventaris Laboratorium Pada SMK Negeri 1 Rembang Berbasis Web. Indonesian Jurnal on Computer Science - Speed (IJCSS) 15 Vol 10 No 1. Mawardi, S., Satria, E., & Tresnawati, D. (2013). Perancangan Web Kelas Online Dengan Metodologi Wisdm Berbasis Learning Manajement System Di Man Pameungpeuk. Jurnal Algoritma, 9(01). Mettagarunagul, Mingruedee and Pensiri Pengprakiet. (2011). The Use of eCRM to Enhance Customer Relationship: The Case of Toyota Mahanakkorn. Malardalen University, Sweden. Muliawan, J., Cloudio Arnold Subrata, G. E. O. R. A. N. D. U. S., & Hermawan, R. (2007). Analisa Dan Perancangan E-crm Pada Pt. Graha Star Auto Center (Doctoral Dissertation, Binus). Mohammed A.M, Nabil and Dr.AGovardhan. (2011). Comparison between Traditional Approach and Object-Oriented Approach in Software Engineering Development. IJACSA Vol.2, No.6. Mwambe, O. O., & Lutsaievskyi, O. (2013). Selection and Application of Software Testing Techniques to Specific Conditions of Software Projects. International Journal of Computer Applications, 70(18). Nielsen, Jakob. (1995). 10 Usability Heuristics for User Interface Design. http://www.nngroup.com/articles/ten-USAbility-heuristics/. Diakses tanggal 25 Juli 2015 Novaliendry, Dony. (2011). Multimedia Pembelajaran Bahasa Mandarin dan Website Promosi. Jurnal Teknologi Informasi dan Pendidikan Vol.3 No.1 ISSN: 2086-4981. Oyenike, Bosede. (2012). Comparative Analysis of Some Programming Languages. Transnational Journal of Science and Technology. June 2012 edition vol.2 No.5 Pressman, Roger S. (2010).Software Enginering: A. Practitioner\u27s Approach. Seventh Edition. M cGraw-Hill Comp anies, Inc., New York. PT Astra Honda Motor. (2014). Karir AHM: http://www.astra-honda.com/index.php/karir/. Diakses tanggal 15 November 2014 Qureshi, M.Rizwan Jameel. (2013). A Comparison of Model View Controller and Model View Presenter. ISSN 1013-5316, CODEN: SINTE 8 Restiana, Yayan. (2015), Februari 21. Personal Interview Sarwono, Jonathan. (2014). Teknik Jitu Memilih Prosedur Analisis Dalam Skripsi. Kompas Gramedia. Jakarta Santoso, S. (2003). Mengatasi Berbagai Masalah Statistik Dengan SPSS. Jakarta: PT Elex Media Komputindo. Sawant, A. A., Bari, P. H., & Chawan, P. M. (2012). Software Testing Techniques and Strategies. International Journal of Engineering Research and Applications (IJERA), 2(3), 980-986. Shaffi, A., & Al-Obaidy, M. (2013). Analysis and comparative study of traditional and web information systems development methodology (WISDM) towards Web development applications. International Journal of Emerging Technology and Advanced Engineering, 3(11), 277-282. Siahaan, Hotlan. (2008). Costumer Relationship Management (CRM) sebagai Sarana Meraih Image Positif untuk Perpustakaan. Pustaha: Jurnal Studi Perpustakaan dan Informasi, Vol. 4, No. 2, Desember 2008 Sophonthummapharn, K. (2009). The adoption of techno-relationship innovations A framework for electronic customer relationship management, Marketing Intelligence & Planning. Vol. 27 No. 3, 2009 pp. 380-412 UGM. (2014). Universitas Gadjah Mada: Menkominfo: 270 Juta Pengguna Ponsel di Indonesia: http://ugm.ac.id/id/berita/8776-menkominfo%3A.270.juta.pengguna.ponsel.di.Indonesia. Diakses tanggal 17 Maret 2015. Wijayanti, Teti. Azharim Imam. (2011). Pengembangan Customer Relationship Management Berbasis Web pada Griya Muslim Flora. Jurnal Sistem Informasi. JUSI Vol 1, No. 1. Williams, L. (2006). Testing overview and black-box testing techniques. URL: http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf. Diakses tanggal 20 Juli 2015

    Recognize Geometry Shapes through Computer Learning in Early Math Skills

    Get PDF
    One form of early mathematical recognition is to introduce the concept of geometric shapes. Geometry is an important scientific discipline for present and future life by developing various ways that fit 21st century skills. This study aims to overcome the problem of early mathematical recognition of early childhood on geometry, especially how to recognize geometric forms based on computer learning. A total of 24 children aged 4-5 years in kindergarten has to carrying out 2 research cycles with a total of 5 meetings. Treatment activities in each learning cycle include mentioning, grouping and imitating geometric shapes. There were only 7 children who were able to recognize the geometric shapes in the pre-research cycle (29.2%). An increase in the number of children who are able to do activities well in each research cycle includes: 1) The activities mentioned in the first cycle and 75% in the second cycle; 2) Classifying activities in the first cycle were 37.5% and 75% in the second cycle; 3) Imitation activities in the first cycle 54.2% and 79.2% in the second cycle. The results of data acquisition show that computer learning application can improve the ability to recognize geometric shapes, this is because computer learning provides software that has activities to recognize geometric shapes with the animation and visuals displayed. Keywords: Early Childhood Computer Learning, Geometry Forms, Early Math Skills Reference Alia, T., & Irwansyah. (2018). Pendampingan Orang Tua pada Anak Usia Dini dalam Penggunaan Teknologi Digital. A Journal of Language, Literature, Culture and Education, 14(1), 65– 78. https://doi.org/10.19166/pji.v14i1.639 Ameliola, S., & Nugraha, H. D. (2013). Perkembangan Media Informasi dan Teknologi Terhadap Anak di Era Globalisasi. International Conferences in Indonesian Studies : “Etnicity and Globalization.” Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman. Arikunto, S. (2010). Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Asdi Mahasatya. Arsyad, N., Rahman, A., & Ahmar, A. S. (2017). Developing a self-learning model based on open-ended questions to increase the students’ creativity in calculus. Global Journal of Engineering Education, 19(2), 143–147. https://doi.org/10.26858/gjeev19i2y2017p143147 Asiye, I., Ahmet, E., & Abdullah, A. (2018). Developing a Test for Geometry and Spatial Perceptions of 5-6 Year-Old. Kastamonu Education Journal, 26(1). Aslan, D., & Yasare, A. (2007). Three to Six Years OldChildren’s Recognition of Geometric Shapes. International Journal of Early Years Education, 15 :1, 83–104. Ben-Yehoshua, D., Yaski, O., & Eilam, D. (2011). Spatial behavior: the impact of global and local geometry. Animal Cognition Journal, 13(3), 341–350. https://doi.org/10.1007/s10071- 010-0368-z Charlesworth, R., & Lind, K. K. (2010). Math and Sciend for Young Children. Canada: Wadsworth/Cengage Learning. Chen, J.-Q., & Chang, C. (2006). using computers in early childhood classrooms teachers’ attitudes,skills and practices. Early Childhood Research. Clements, D. H., & Samara. (2003). Strip mining for gold: Research and policy in educational technology—a response to “Fool’s Gold.” Association for the Advancement of Computing in Education (AACE) Journal, 11(1), 7–69. Cohen, L., & Manion, L. (1994). Research Methods in Education (fourth edi). London: Routledge. Conorldi, C., Mammarela, I. C., & Fine, G. G. (2016). Nonverbal Learning Disability (J. P. Guilford, Ed.). New York. Corey, S. M. (1953). Action Research to Improve School Practice. New York: Teachers College, Columbia University. Couse, L. J., & Chen, D. W. (2010). A tablet computer for young children? Exploring its viability for early childhood education. Journal of Research on Technology in Education, 43(1), 75– 98. https://doi.org/10.1080/15391523.2010.10782562 Delima, R., Arianti, N. K., & Pramudyawardani, B. (2015). Identifikasi Kebutuhan Pengguna Untuk Aplikasi Permainan Edukasi Bagi Anak Usia 4 sampai 6 Tahun. Jurnal Teknik Informatika Dan Sistem Informasi, 1(1). Depdiknas. (2007). Permainan Berhitung Permulaan Di Taman Kanak-kanak. In Pedoman Pembelajaran. Jakarta: Depdiknas. Djadir, Minggi, I., Ja’faruddin., Zaki, A., & Sidjara, S. (2017). Sumber Belajar PLPG 2017: Bangun Datar. In Modul PLPG. Jakarta: Kementrian Pendidikan dan Kebudayaan Direktorat Jenderal Guru dan Tenaga Kependidikan.Dooley, T., Dunphy, E., & Shiel, G. (2014). Mathematics in Early Childhood and Primary Education (3-8 years). Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... Japel, C. (2007). School Readiness and Later Achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428 Duncan, G. J., & Magnuson, K. (2011). The nature and impact of early achievement skills, attention skills, and behavior problems. Whither Opportunity?: Rising Inequality, Schools, and Children’s Life Chances, (0322356), 47–69. Edwards, S. (2009). Early Childhood Education and Care: a sociocultural Approach. New South Wales: Pademelon Press. Feliyanah, Norman, S., & Yulidesni. (2014). Meningkatkan Kemampuan Matematika dengan Menggunakan Teknik Mengurutkan dan Membandingkan. Universitas Bengkulu. Gardner, H. (2011). Frame of Mind ; The theory of Multiple Intelegences. New York: Basic Book. Gimbert, B., & Cristol, D. (2004). Teaching Curriculum with Technology: Enhancing Children’s Technological Competence During Early Childhood. Early Childhood Education Journal, 31(1). Gulay, H. (2011a). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252. Gulay, H. (2011b). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252–257. Gunawan, I., & Palupi, A. R. (2012). Taksonomi Bloom-Revisi Ranah Kognitif; Kerangka Landasan untuk Pembelajaran, Pengajaran, dan Penilaian. Jurnal Pendidikan Dasar Dan Pembelajaran, 2 No.2, 100–108. Inan, H. Z., & Dogan-Temur, O. (2010). Understanding kindergarten teachers’ perspectives of teaching basic geometric shapes: A phenomenographic research. ZDM - International Journal on Mathematics Education, 42(5), 457–468. https://doi.org/10.1007/s11858-010- 0241-1 Jackman, H. I., Beaver, N. H., & Wyatt, S. S. (2014). Early Childhood Curriculum: A child’s connection to the world. (sixth edit). Canada: Cengage Learning. Kennedy, L. M., Tipps, S., & Johnson, A. (2008). Guiding Children’s Learning of Mathematic (Eleventh E; Belmot, Ed.). CA: Thomson Wadsworth. Mackintosh, B. B., & McCoy, D. C. (2019). Exploring Social Competence as a Mediator of Head Start’s Impact on Children’s Early Math Skills: Evidence from the Head Start Impact Study. Early Education and Development, 30(5), 655–677. https://doi.org/10.1080/10409289.2019.1576156 Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2011). Results in Science. Mirawati. (2017). Matematika Kreatif; Pembelajaran Matematika bagi Anak Usia Dini Melalui Kegiatan yang Menyenangkan dan Bermakna. Jurnal Anak Usia Dini Dan Pendidikan Anak Usia Dini, 3. Mohammad, M., & Mohammad, H. (2012). Computer integration into the early childhood curriculum. Education, 133(1), 97–116. National Research Council. (2009). Mathematics Learning in Early Chidhood Paths Toward Excellence and Equity (C. T. Cross, T. Woods, & H. Schweingruber, Eds.). Washinton D.C: The National Academies Press. Norton, A., & Nurnberger-Haag, J. (2018). Bridging frameworks for understanding numerical cognition. Journal of Numerical Cognition, 4(1), 1–8. https://doi.org/10.5964/jnc.v4i1.160 Novitasari, D. R. (2010). Pembangunan Media Pembelajaran Bahasa Inggris Untuk Siswa Kelas 1 Pada Sekolah Dasar Negeri 15 Sragen. Sentra Penelitian Engineering Dan Edukas, Volume 2 N. Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2017). Improving Mathematics Teaching in Kindergarten with Realistic Mathematical Education. Early Childhood Education Journal, 45(3), 369–378. https://doi.org/10.1007/s10643-015-0768-4 Papalia, Old, & Feldman. (2009). Human Development (Psikologi Perkembangan (Kesembilan). Jakarta: Kencana. Paquette, K. R., Fello, S. E., & Jalongo, M. R. (2007). The talking drawings strategy: Using primary children’s Illustrations and oral language to improve comprehension of expository text. Early Childhood Education Journal, 35(1), 65–73. https://doi.org/10.1007/s10643- 007-0184-5 Putra, L. D., & Ishartiwi. (2015). Pengembangan Multimedia Pembelajaram Interaktif Mengenal Angka dan Huruf untuk Anak Usia Dini. Jurnal Inovasi Teknologi Pendidikan, 2(2). Rich, B., & Thomas, C. (2009). Geometry: Includes Plane, Analytic, and Transformational Geometries. . (4th Editio). New York: McGraw-Hill. Rochanah, L. (2016). Pemanfaatan Media Berbasis Komputer Untuk Meningkatkan Kemampuan Huruf pada Anak Usia Dini (Urgensi Media Berbasis Komputer pada Peningkatan Kemampuan Mengenal Huruf ). Jurnal Program Studi PGRA, Volume 2 N, 1–8. Runtukahu, T., & Kandou, S. (2014). Pembelajaran matematika dasar bagi anak berkesulitan belajar. Yogyakarta: Ar-ruzz Media. Santrock, J. W. (2016). Children (Thirteenth). New York: McGraw-Hill Education. Sarama, J., & Clements, D. H. (2006). Mathematics, Young Students, and Computers: Software, Teaching Strategies and Professional Development. The Mathematics Educato, 9(2), 112– 134. Schoenfeld, A. H., & Stipek, D. (2011). Math Matters. Barkeley, California.Shilpa, S., & Sunita, M. (2013). A Study About Role of Multimedia in Early Childhood Education. International Journal of Humanities and Social Science Invention, 2(6). Siswono, T. Y. E. (2012). Belajar dan Mengajar Matematika Anak Usia Dini. Universitas Negeri Surabaya.Smaldino, S. E., Russel, J. D., & Lowther, D. L. (2014). Instructional Technology & Media for Learning (9th ed.). Jakarta: Kencana Prenada Media Group. Sudaryanti. (2006). Pengenalan Matematika Anak Usia Dini. Yogyakarta: FIP UNY. Sufa, F. F., & Setiawan, H. Y. (2017). Analisis Kebutuhan Anak Usia 4-6 Tahun Pada Pembelajaran Berbasis Komputer Pada Anak Usia Dini. Research Fair Unisri, 1(1). Suharjana, A. (2008). Pengenalan Bangun Ruang dan Sifat-sifatnya di SD. Yogyakarta: Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan Matematika. Sujiono, Y . N. (2014). Batasan dan Dasar T eori Pengembangan Kognitif. In Hakikat Pengembangan Kognitif (p. 12). Suryana, D. (2013). Pendidikan Anak Usia Dini (teori dan praktik pembelajaran). Padang: UNP Press. Susperreguy, M. I., & Davis-Kean, P. E. (2016). Maternal Math Talk in the Home and Math Skills in Preschool Children. Early Education and Development, 27(6), 841–857. https://doi.org/10.1080/10409289.2016.1148480 Suwarna. (2010). Pengembangan Multimedia Pembelajaran untuk Pembinaan Kreativitas Melukis di Taman Kanak-kanak. Jurnal Universitas Negeri Yogyakarta. Suziedelyte, A. (2012). Can video games affect children’s cognitive and non-cognitive skills? UNSW Australian School of Business Research Paper. https://doi.org/10.2139/ssrn.2140983 Tarigan, D. (2006). Pembelajaran Matematika Realistik. Jakarta: Departeman Pendidikan Nasional, Direktorat Jendral Pendidikan Tunggi, Direktorat Pembinaan Pendidikan Tenaga Kependidikan dan Ketenaga Perguruan Tinggi. Tatang, S. (2012). Ilmu Pendidikan. Bandung: Pustaka Setia.Trawick, M. (2007). Enemy Line ; Warfare, Childhood, and Play in Batticaloa. London: University of California Press. Trifunović, A., Čičević, S., Lazarević, D., Mitrović1, S., & Dragovi, M. (2018). Comparing Tablets (Touchscreen Devices and PCs in Preschool Children Education: Testing Spatial Relationship Using Geometric Syimbols Traffic Signs. IETI Transections on Economics and Safety, 2(1), 35–41. https://doi.org/10.6722/TES.201808_2(1).0004 Vitianingsih, A. V. (2016). Game Edukasi Sebagai Media Pembelajaran Pendidikan Anak Usia Dini. Jurnal INFORM, 1 No. 1. Wang, F., & Kinzie, M. B. (2010). Applying Technology to Inquiry- Based Learning in Early Childhood Education. Early Childhood Education Journal. Weil, M., Calhoun, E., & Joyce, B. (2011). Models of Teaching. New York.: New York. Zack, N. (2014). Philosophy of Science and Race. New York: Routledge. Zare, Sarikhani, Salarii, & Mansouri. (2016). The Impact Of E-learning on University Student’s Academic Achievement and Creativity. Journal of Technical Education and Training (JTET), 8(11)

    A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology

    Full text link
    [EN] The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.This research work has been supported by the Spanish Ministry of Science and Innovation [MICINN, Project CTM2011-28595-C02-01/02] jointly with the European Regional Development Fund (ERDF).Pretel-Jolis, R.; Robles MartĂ­nez, Á.; Ruano GarcĂ­a, MV.; Seco, A.; Ferrer, J. (2016). A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology. Environmental Technology. 37(18):2298-2315. https://doi.org/10.1080/09593330.2016.1148903S229823153718Olsson, G., Carlsson, B., Comas, J., Copp, J., Gernaey, K. V., Ingildsen, P., 
 Åmand, L. (2014). Instrumentation, control and automation in wastewater – from London 1973 to Narbonne 2013. Water Science and Technology, 69(7), 1373-1385. doi:10.2166/wst.2014.057Nicolae, B., & George-Vlad, B. (2015). Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 86, 74-85. doi:10.1016/j.enbuild.2014.10.021Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: State of the art. Water Research, 47(15), 5480-5492. doi:10.1016/j.watres.2013.06.049Bauer, A., Bösch, P., Friedl, A., & Amon, T. (2009). Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. Journal of Biotechnology, 142(1), 50-55. doi:10.1016/j.jbiotec.2009.01.017Venkatesh, G., & Elmi, R. A. (2013). Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway). Energy, 58, 220-235. doi:10.1016/j.energy.2013.05.025EPA (Environmental Protection Agency). Combined Heat and Power Partnership. Agency of the United States federal government; 2015.Descoins, N., Deleris, S., Lestienne, R., TrouvĂ©, E., & MarĂ©chal, F. (2012). Energy efficiency in waste water treatments plants: Optimization of activated sludge process coupled with anaerobic digestion. Energy, 41(1), 153-164. doi:10.1016/j.energy.2011.03.078Gernaey, K. V., van Loosdrecht, M. C. ., Henze, M., Lind, M., & JĂžrgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 19(9), 763-783. doi:10.1016/j.envsoft.2003.03.005Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., 
 Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005Bozkurt, H., Quaglia, A., Gernaey, K. V., & Sin, G. (2015). A mathematical programming framework for early stage design of wastewater treatment plants. Environmental Modelling & Software, 64, 164-176. doi:10.1016/j.envsoft.2014.11.023Jeppsson, U., Rosen, C., Alex, J., Copp, J., Gernaey, K. V., Pons, M.-N., & Vanrolleghem, P. A. (2006). Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. Water Science and Technology, 53(1), 287-295. doi:10.2166/wst.2006.031Gomez, J., de Gracia, M., Ayesa, E., & Garcia-Heras, J. L. (2007). Mathematical modelling of autothermal thermophilic aerobic digesters. Water Research, 41(5), 959-968. doi:10.1016/j.watres.2006.11.042Righi, S., Oliviero, L., Pedrini, M., Buscaroli, A., & Della Casa, C. (2013). Life Cycle Assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. Journal of Cleaner Production, 44, 8-17. doi:10.1016/j.jclepro.2012.12.004Lemos, D., Dias, A. C., Gabarrell, X., & Arroja, L. (2013). Environmental assessment of an urban water system. Journal of Cleaner Production, 54, 157-165. doi:10.1016/j.jclepro.2013.04.029Nowak, O., Enderle, P., & Varbanov, P. (2015). Ways to optimize the energy balance of municipal wastewater systems: lessons learned from Austrian applications. Journal of Cleaner Production, 88, 125-131. doi:10.1016/j.jclepro.2014.08.068Tous M, Ladislav B, HoudkovĂĄ L, Pavlas M, StehlĂ­k P. Waste-to energy (W2E) software – a support tool for decision making process. Brno University of Technology, Institute of Process and Environmental Engineering, Chemical Engineering Transactions, Volume 18; 2009.PijĂĄkovĂĄ, I. (2015). Application of Dynamic Simulations for Assessment of Urban Wastewater Systems Operation. Chemical and Biochemical Engineering Quarterly Journal, 29(1), 55-62. doi:10.15255/cabeq.2014.2127McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264GimĂ©nez, J. B., Robles, A., Carretero, L., DurĂĄn, F., Ruano, M. V., Gatti, M. N., 
 Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014Smith, A. L., Stadler, L. B., Cao, L., Love, N. G., Raskin, L., & Skerlos, S. J. (2014). Navigating Wastewater Energy Recovery Strategies: A Life Cycle Comparison of Anaerobic Membrane Bioreactor and Conventional Treatment Systems with Anaerobic Digestion. Environmental Science & Technology, 48(10), 5972-5981. doi:10.1021/es5006169Barat, R., Serralta, J., Ruano, M. V., JimĂ©nez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004DurĂĄn F. Mathematical modelling of the anaerobic urban wastewater treatment including sulphate-reducing bacteria. Application to an anaerobic membrane bioreactor (ModelaciĂłn matemĂĄtica del tratamiento anaerobio de aguas residuales urbanas incluyendo las bacterias sulfatorreductoras, AplicaciĂłn a un biorreactor anaerobio de membranas), Ph.D. thesis, Dept. of Hydraulic Engineering and Environment, Universitat PolitĂšcnica de ValĂšncia, Spain; 2013.Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532-540. doi:10.1016/j.biortech.2013.09.060Gillot, S., & Vanrolleghem, P. A. (2003). Equilibrium temperature in aerated basins—comparison of two prediction models. Water Research, 37(15), 3742-3748. doi:10.1016/s0043-1354(03)00263-xEPA. Catalog of Biomass Combined Heat and Power Catalog of Technologies; 2007 [cited 2015 May 5] Available from: http://www.epa.gov/chp/documents/biomass_chp_catalog.pdf.PSE Probiogas. Development of sustainable systems of biogas production and use in Spain. Funded by the Ministry of science and innovation. Spanish government, Madrid; 2010 [cited 2012 May 5] http://213.229.136.11/bases/ainia_probiogas.nsf/0/F9F832A77BF0CA25C125753F0058C4B2/$FILE/Cap2.pdf.Serralta, J., Ferrer, J., BorrĂĄs, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009Chanona, J., Ribes, J., Seco, A., & Ferrer, J. (2006). Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production. Water Research, 40(1), 53-60. doi:10.1016/j.watres.2005.10.020Gatti MN. Characterization of wastewaters and calibration of the mathematical model BNRM1 for simulation of the biological removal process of organic matter and nutrients (CaracterizaciĂłn de las aguas residuales y calibraciĂłn del modelo matemĂĄtico BNRM1 para la simulaciĂłn de los procesos de eliminaciĂłn biolĂłgica de materia orgĂĄnica y nutrientes). Ph.D. thesis, Dept. of Hydraulic Engineering and Environment, Universitat de ValĂšncia, Spain; 2009.Ruano, M. V., Serralta, J., Ribes, J., Garcia-Usach, F., Bouzas, A., Barat, R., 
 Ferrer, J. (2012). Application of the general model ‘Biological Nutrient Removal Model No. 1’ to upgrade two full-scale WWTPs. Environmental Technology, 33(9), 1005-1012. doi:10.1080/09593330.2011.604877Ferrer, J., Pretel, R., DurĂĄn, F., GimĂ©nez, J. B., Robles, A., Ruano, M. V., 
 Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018AEMET. State Meteorological Agency (Agencia Estatal de MeteorologĂ­a). Register of hourly and daily average ambient temperature from 2010 to 2014 located in Valencia; 2015

    Myths and Realities about Online Forums in Open Source Software Development: An Empirical Study

    Full text link
    The use of free and open source software (OSS) is gaining momentum due to the ever increasing availability and use of the Internet. Organizations are also now adopting open source software, despite some reservations, in particular regarding the provision and availability of support. Some of the biggest concerns about free and open source software are post release software defects and their rectification, management of dynamic requirements and support to the users. A common belief is that there is no appropriate support available for this class of software. A contradictory argument is that due to the active involvement of Internet users in online forums, there is in fact a large resource available that communicates and manages the provision of support. The research model of this empirical investigation examines the evidence available to assess whether this commonly held belief is based on facts given the current developments in OSS or simply a myth, which has developed around OSS development. We analyzed a dataset consisting of 1880 open source software projects covering a broad range of categories in this investigation. The results show that online forums play a significant role in managing software defects, implementation of new requirements and providing support to the users in open source software and have become a major source of assistance in maintenance of the open source projects
    • 

    corecore