490,210 research outputs found

    On potential cognitive abilities in the machine kingdom

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11023-012-9299-6Animals, including humans, are usually judged on what they could become, rather than what they are. Many physical and cognitive abilities in the ‘animal kingdom’ are only acquired (to a given degree) when the subject reaches a certain stage of development, which can be accelerated or spoilt depending on how the environment, training or education is. The term ‘potential ability’ usually refers to how quick and likely the process of attaining the ability is. In principle, things should not be different for the ‘machine kingdom’. While machines can be characterised by a set of cognitive abilities, and measuring them is already a big challenge, known as ‘universal psychometrics’, a more informative, and yet more challenging, goal would be to also determine the potential cognitive abilities of a machine. In this paper we investigate the notion of potential cognitive ability for machines, focussing especially on universality and intelligence. We consider several machine characterisations (non-interactive and interactive) and give definitions for each case, considering permanent and temporal potentials. From these definitions, we analyse the relation between some potential abilities, we bring out the dependency on the environment distribution and we suggest some ideas about how potential abilities can be measured. Finally, we also analyse the potential of environments at different levels and briefly discuss whether machines should be designed to be intelligent or potentially intelligent.We thank the anonymous reviewers for their comments, which have helped to significantly improve this paper. This work was supported by the MEC-MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT. Finally, we thank three pioneers ahead of their time(s). We thank Ray Solomonoff (1926-2009) and Chris Wallace (1933-2004) for all that they taught us, directly and indirectly. And, in his centenary year, we thank Alan Turing (1912-1954), with whom it perhaps all began.Hernández-Orallo, J.; Dowe, DL. (2013). On potential cognitive abilities in the machine kingdom. Minds and Machines. 23(2):179-210. https://doi.org/10.1007/s11023-012-9299-6S179210232Amari, S., Fujita, N., Shinomoto, S. (1992). Four types of learning curves. Neural Computation 4(4), 605–618.Aristotle (Translation, Introduction, and Commentary by Ross, W.D.) (1924). Aristotle’s Metaphysics. Oxford: Clarendon Press.Barmpalias, G. & Dowe, D. L. (2012). Universality probability of a prefix-free machine. Philosophical transactions of the Royal Society A [Mathematical, Physical and Engineering Sciences] (Phil Trans A), Theme Issue ‘The foundations of computation, physics and mentality: The Turing legacy’ compiled and edited by Barry Cooper and Samson Abramsky, 370, pp 3488–3511.Chaitin, G. J. (1966). On the length of programs for computing finite sequences. Journal of the Association for Computing Machinery, 13, 547–569.Chaitin, G. J. (1975). A theory of program size formally identical to information theory. Journal of the ACM (JACM), 22(3), 329–340.Dowe, D. L. (2008, September). Foreword re C. S. Wallace. Computer Journal, 51(5):523–560, Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L. (2011). MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: P. S. Bandyopadhyay, M. R. Forster (Eds), Handbook of the philosophy of science—Volume 7: Philosophy of statistics (pp. 901–982). Amsterdam: Elsevier.Dowe, D. L. & Hajek, A. R. (1997a). A computational extension to the turing test. Technical report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp, http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html .Dowe, D. L. & Hajek, A. R. (1997b, September). A computational extension to the Turing Test. in Proceedings of the 4th conference of the Australasian Cognitive Science Society, University of Newcastle, NSW, Australia, 9 pp.Dowe, D. L. & Hajek, A. R. (1998, February). A non-behavioural, computational extension to the Turing Test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106.Dowe, D. L., Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: Implications of a quantitative analysis. In Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13124–13131.Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(4), 120–123.Goertzel, B. & Bugaj, S. V. (2009). AGI preschool: A framework for evaluating early-stage human-like AGIs. In Proceedings of the second international conference on artificial general intelligence (AGI-09), pp 31–36.Hernández-Orallo, J. (2000a). Beyond the Turing Test. Journal of Logic, Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000b). On the computational measurement of intelligence factors. In A. Meystel (Ed), Performance metrics for intelligent systems workshop (pp 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2010). On evaluating agent performance in a fixed period of time. In M. Hutter et al. (Eds.), Proceedings of 3rd international conference on artificial general intelligence (pp. 25–30). New York: Atlantis Press.Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J. & Dowe, D. L. (2011, April). Mammals, machines and mind games. Who’s the smartest?. The conversation, http://theconversation.edu.au/mammals-machines-and-mind-games-whos-the-smartest-566 .Hernández-Orallo J., Dowe D. L., España-Cubillo S., Hernández-Lloreda M. V., & Insa-Cabrera J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In: J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), Artificial general intelligence 2011, volume 6830, LNAI series, pp. 82–91. New York: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2012a, March). Measuring cognitive abilities of machines, humans and non-human animals in a unified way: towards universal psychometrics. Technical report 2012/267, Faculty of Information Technology, Clayton School of I.T., Monash University, Australia.Hernández-Orallo, J., Insa, J., Dowe, D. L., & Hibbard, B. (2012b). Turing tests with Turing machines. In A. Voronkov (Ed.), The Alan Turing centenary conference, Turing-100, Manchester, volume 10 of EPiC Series, pp 140–156.Hernández-Orallo, J., & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of the international symposium of engineering of intelligent systems (EIS’98) (pp 146–163). Switzerland: ICSC Press.Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 1360–1366.Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21(1), 102–110.Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of educational psychology, 57(5), 253.Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer.Insa-Cabrera, J., Dowe, D. L., España, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011a). Comparing humans and AI agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp 122–132. Springer, New York.Insa-Cabrera, J., Dowe, D. L., & Hernández-Orallo, J. (2011b). Evaluating a reinforcement learning algorithm with a general intelligence test. In CAEPIA—Lecture Notes in Artificial Intelligence (LNAI), volume 7023, pages 1–11. Springer, New York.Kearns, M. & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning, 49(2), 209–232.Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7.Legg, S. (2008, June). Machine super intelligence. Department of Informatics, University of Lugano.Legg, S. & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Legg, S., & Veness, J. (2012). An approximation of the universal intelligence measure. In Proceedings of Solomonoff 85th memorial conference. New York: Springer.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Li, M., Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed). New York: Springer.Little, V. L., & Bailey, K. G. (1972). Potential intelligence or intelligence test potential? A question of empirical validity. Journal of Consulting and Clinical Psychology, 39(1), 168.Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In Proceedings of the national conference on artificial intelligence, AAAI (pp. 486–502). New Jersey: Wiley.Mahrer, A. R. (1958). Potential intelligence: A learning theory approach to description and clinical implication. The Journal of General Psychology, 59(1), 59–71.Oppy, G., & Dowe, D. L. (2011). The Turing Test. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford University. http://plato.stanford.edu/entries/turing-test/ .Orseau, L. & Ring, M. (2011). Self-modification and mortality in artificial agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pages 1–10. Springer, New York.Ring, M. & Orseau, L. (2011). Delusion, survival, and intelligent agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp. 11–20. Springer, New York.Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., et al. (2007). Checkers is solved. Science, 317(5844), 1518.Solomonoff, R. J. (1962). Training sequences for mechanized induction. In M. Yovits, G. Jacobi, & G. Goldsteins (Eds.), Self-Organizing Systems, 7, 425–434.Solomonoff, R. J. (1964). A formal theory of inductive inference. Information and Control, 7(1–22), 224–254.Solomonoff, R. J. (1967). Inductive inference research: Status, Spring 1967. RTB 154, Rockford Research, Inc., 140 1/2 Mt. Auburn St., Cambridge, Mass. 02138, July 1967.Solomonoff, R. J. (1978). Complexity-based induction systems: comparisons and convergence theorems. IEEE Transactions on Information Theory, 24(4), 422–432.Solomonoff, R. J. (1984). Perfect training sequences and the costs of corruption—A progress report on induction inference research. Oxbridge research.Solomonoff, R. J. (1985). The time scale of artificial intelligence: Reflections on social effects. Human Systems Management, 5, 149–153.Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: The MIT press.Thorp, T. R., & Mahrer, A. R. (1959). Predicting potential intelligence. Journal of Clinical Psychology, 15(3), 286–288.Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.Veness, J., Ng, K. S., Hutter, M., & Silver, D. (2011). A Monte Carlo AIXI approximation. Journal of Artificial Intelligence Research, JAIR, 40, 95–142.Wallace, C. S. (2005). Statistical and inductive inference by minimum message length. New York: Springer.Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computer Journal, 11, 185–194.Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283.Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4), 330–337.Woergoetter, F., & Porr, B. (2008). Reinforcement learning. Scholarpedia, 3(3), 1448.Zvonkin, A. K., & Levin, L. A. (1970). The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys, 25, 83–124

    Glaucoma Detection from Raw SD-OCT Volumes: a Novel Approach Focused on Spatial Dependencies

    Full text link
    [EN] Background and objective:Glaucoma is the leading cause of blindness worldwide. Many studies based on fundus image and optical coherence tomography (OCT) imaging have been developed in the literature to help ophthalmologists through artificial-intelligence techniques. Currently, 3D spectral-domain optical coherence tomography (SD-OCT) samples have become more important since they could enclose promising information for glaucoma detection. To analyse the hidden knowledge of the 3D scans for glaucoma detection, we have proposed, for the first time, a deep-learning methodology based on leveraging the spatial dependencies of the features extracted from the B-scans. Methods:The experiments were performed on a database composed of 176 healthy and 144 glaucomatous SD-OCT volumes centred on the optic nerve head (ONH). The proposed methodology consists of two well-differentiated training stages: a slide-level feature extractor and a volume-based predictive model. The slide-level discriminator is characterised by two new, residual and attention, convolutional modules which are combined via skip-connections with other fine-tuned architectures. Regarding the second stage, we first carried out a data-volume conditioning before extracting the features from the slides of the SD-OCT volumes. Then, Long Short-Term Memory (LSTM) networks were used to combine the recurrent dependencies embedded in the latent space to provide a holistic feature vector, which was generated by the proposed sequential-weighting module (SWM). Results:The feature extractor reports AUC values higher than 0.93 both in the primary and external test sets. Otherwise, the proposed end-to-end system based on a combination of CNN and LSTM networks achieves an AUC of 0.8847 in the prediction stage, which outperforms other state-of-the-art approaches intended for glaucoma detection. Additionally, Class Activation Maps (CAMs) were computed to highlight the most interesting regions per B-scan when discerning between healthy and glaucomatous eyes from raw SD-OCT volumes. Conclusions:The proposed model is able to extract the features from the B-scans of the volumes and combine the information of the latent space to perform a volume-level glaucoma prediction. Our model, which combines residual and attention blocks with a sequential weighting module to refine the LSTM outputs, surpass the results achieved from current state-of-the-art methods focused on 3D deep-learning architectures.The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used here.This work has been funded by GALAHAD project [H2020-ICT-2016-2017, 732613], SICAP project (DPI2016-77869-C2-1-R) and GVA through project PROMETEO/2019/109. The work of Gabriel García has been supported by the State Research Spanish Agency PTA2017-14610-I.García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V. (2021). Glaucoma Detection from Raw SD-OCT Volumes: a Novel Approach Focused on Spatial Dependencies. Computer Methods and Programs in Biomedicine. 200:1-16. https://doi.org/10.1016/j.cmpb.2020.105855S116200Weinreb, R. N., & Khaw, P. T. (2004). Primary open-angle glaucoma. The Lancet, 363(9422), 1711-1720. doi:10.1016/s0140-6736(04)16257-0Jonas, J. B., Aung, T., Bourne, R. R., Bron, A. M., Ritch, R., & Panda-Jonas, S. (2018). Glaucoma – Authors’ reply. The Lancet, 391(10122), 740. doi:10.1016/s0140-6736(18)30305-2Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C.-Y. (2014). Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology, 121(11), 2081-2090. doi:10.1016/j.ophtha.2014.05.013Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., … Fujimoto, J. G. (1991). Optical Coherence Tomography. Science, 254(5035), 1178-1181. doi:10.1126/science.1957169Medeiros, F. A., Zangwill, L. M., Alencar, L. M., Bowd, C., Sample, P. A., Susanna, R., & Weinreb, R. N. (2009). Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements. Investigative Opthalmology & Visual Science, 50(12), 5741. doi:10.1167/iovs.09-3715Sinthanayothin, C., Boyce, J. F., Williamson, T. H., Cook, H. L., Mensah, E., Lal, S., & Usher, D. (2002). Automated detection of diabetic retinopathy on digital fundus images. Diabetic Medicine, 19(2), 105-112. doi:10.1046/j.1464-5491.2002.00613.xWalter, T., Massin, P., Erginay, A., Ordonez, R., Jeulin, C., & Klein, J.-C. (2007). Automatic detection of microaneurysms in color fundus images. Medical Image Analysis, 11(6), 555-566. doi:10.1016/j.media.2007.05.001Diaz-Pinto, A., Colomer, A., Naranjo, V., Morales, S., Xu, Y., & Frangi, A. F. (2019). Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 38(9), 2211-2218. doi:10.1109/tmi.2019.2903434Bussel, I. I., Wollstein, G., & Schuman, J. S. (2013). OCT for glaucoma diagnosis, screening and detection of glaucoma progression. British Journal of Ophthalmology, 98(Suppl 2), ii15-ii19. doi:10.1136/bjophthalmol-2013-304326Varma, R., Steinmann, W. C., & Scott, I. U. (1992). Expert Agreement in Evaluating the Optic Disc for Glaucoma. Ophthalmology, 99(2), 215-221. doi:10.1016/s0161-6420(92)31990-6Jaffe, G. J., & Caprioli, J. (2004). Optical coherence tomography to detect and manage retinal disease and glaucoma. American Journal of Ophthalmology, 137(1), 156-169. doi:10.1016/s0002-9394(03)00792-xHood, D. C., & Raza, A. S. (2014). On improving the use of OCT imaging for detecting glaucomatous damage. British Journal of Ophthalmology, 98(Suppl 2), ii1-ii9. doi:10.1136/bjophthalmol-2014-305156Bizios, D., Heijl, A., Hougaard, J. L., & Bengtsson, B. (2010). Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmologica, 88(1), 44-52. doi:10.1111/j.1755-3768.2009.01784.xKim, S. J., Cho, K. J., & Oh, S. (2017). Development of machine learning models for diagnosis of glaucoma. PLOS ONE, 12(5), e0177726. doi:10.1371/journal.pone.0177726Medeiros, F. A., Jammal, A. A., & Thompson, A. C. (2019). From Machine to Machine. Ophthalmology, 126(4), 513-521. doi:10.1016/j.ophtha.2018.12.033An, G., Omodaka, K., Hashimoto, K., Tsuda, S., Shiga, Y., Takada, N., … Nakazawa, T. (2019). Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images. Journal of Healthcare Engineering, 2019, 1-9. doi:10.1155/2019/4061313Fang, L., Cunefare, D., Wang, C., Guymer, R. H., Li, S., & Farsiu, S. (2017). Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomedical Optics Express, 8(5), 2732. doi:10.1364/boe.8.002732Pekala, M., Joshi, N., Liu, T. Y. A., Bressler, N. M., DeBuc, D. C., & Burlina, P. (2019). Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114, 103445. doi:10.1016/j.compbiomed.2019.103445Barella, K. A., Costa, V. P., Gonçalves Vidotti, V., Silva, F. R., Dias, M., & Gomi, E. S. (2013). Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT. Journal of Ophthalmology, 2013, 1-7. doi:10.1155/2013/789129Vidotti, V. G., Costa, V. P., Silva, F. R., Resende, G. M., Cremasco, F., Dias, M., & Gomi, E. S. (2013). Sensitivity and Specificity of Machine Learning Classifiers and Spectral Domain OCT for the Diagnosis of Glaucoma. European Journal of Ophthalmology, 23(1), 61-69. doi:10.5301/ejo.5000183Xu, J., Ishikawa, H., Wollstein, G., Bilonick, R. A., Folio, L. S., Nadler, Z., … Schuman, J. S. (2013). Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection. PLoS ONE, 8(2), e55476. doi:10.1371/journal.pone.0055476Maetschke, S., Antony, B., Ishikawa, H., Wollstein, G., Schuman, J., & Garnavi, R. (2019). A feature agnostic approach for glaucoma detection in OCT volumes. PLOS ONE, 14(7), e0219126. doi:10.1371/journal.pone.0219126Ran, A. R., Cheung, C. Y., Wang, X., Chen, H., Luo, L., Chan, P. P., … Tham, C. C. (2019). Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. The Lancet Digital Health, 1(4), e172-e182. doi:10.1016/s2589-7500(19)30085-8De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., … Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342-1350. doi:10.1038/s41591-018-0107-6Wang, X., Chen, H., Ran, A.-R., Luo, L., Chan, P. P., Tham, C. C., … Heng, P.-A. (2020). Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning. Medical Image Analysis, 63, 101695. doi:10.1016/j.media.2020.101695Ran, A. R., Shi, J., Ngai, A. K., Chan, W.-Y., Chan, P. P., Young, A. L., … Cheung, C. Y. (2019). Artificial intelligence deep learning algorithm for discriminating ungradable optical coherence tomography three-dimensional volumetric optic disc scans. Neurophotonics, 6(04), 1. doi:10.1117/1.nph.6.4.041110Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Jiang, J., Liu, X., Liu, L., Wang, S., Long, E., Yang, H., … Lin, H. (2018). Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. PLOS ONE, 13(7), e0201142. doi:10.1371/journal.pone.0201142Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., & Liang, J. (2016). Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging, 35(5), 1299-1312. doi:10.1109/tmi.2016.2535302Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.13

    An Empirical Analysis of Predictive Machine Learning Algorithms on High-Dimensional Microarray Cancer Data

    Get PDF
    This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space p is much larger than the number of observations n. Seven gene-expression microarray cancer datasets, where the ratio κ = n/p is less than one, were chosen for evaluation. The statistical and computational challenges inherent with this type of high-dimensional low sample size (HDLSS) data were explored. The capability and performance of a diverse set of machine learning algorithms is presented and compared. The sparsity and collinearity of the data being employed, in conjunction with the complexity of the algorithms studied, demanded rigorous and careful tuning of the hyperparameters and regularization parameters. This necessitated several extensions of cross-validation to be investigated, with the purpose of culminating in the best predictive performance. For the techniques evaluated in this thesis, regularization or kernelization, and often both, produced lower classification error rates than randomized ensemble for all datasets used in this research. However, no one technique evaluated for classifying HDLSS microarray cancer data emerged as the universally best technique for predicting the generalization error.1 From the empirical analysis performed in this thesis, the following fundamentals emerged as being instrumental in consistently resulting in lower error rates when estimating the generalization error in this HDLSS microarray cancer data: • Thoroughly investigate and understand the data • Stratify during all sampling due to the uneven classes and extreme sparsity of this data. • Perform 3 to 5 replicates of stratified cross-validation, implementing an adaptive K-fold, to determine the optimal tuning parameters. • To estimate the generalization error in HDLSS data, replication is paramount. Replicate R=500 or R=1000 times with training and test sets of 2/3 and 1/3, respectively, to get the best generalization error estimate. • Whenever possible, obtain an independent validation dataset. • Seed the data for a fair and unbiased comparison among techniques. • Define a methodology or standard set of process protocols to apply to machine learning research. This would prove very beneficial in ensuring reproducibility and would enable better comparisons among techniques. _____ 1A predominant portion of this research was published in the Serdica Journal of Computing (Volume 8, Number 2, 2014) as proceedings from the 2014 Flint International Statistical Conference at Kettering University, Michigan, USA

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE
    corecore