236,082 research outputs found

    Efficient Resource Matching in Heterogeneous Grid Using Resource Vector

    Full text link
    In this paper, a method for efficient scheduling to obtain optimum job throughput in a distributed campus grid environment is presented; Traditional job schedulers determine job scheduling using user and job resource attributes. User attributes are related to current usage, historical usage, user priority and project access. Job resource attributes mainly comprise of soft requirements (compilers, libraries) and hard requirements like memory, storage and interconnect. A job scheduler dispatches jobs to a resource if a job's hard and soft requirements are met by a resource. In current scenario during execution of a job, if a resource becomes unavailable, schedulers are presented with limited options, namely re-queuing job or migrating job to a different resource. Both options are expensive in terms of data and compute time. These situations can be avoided, if the often ignored factor, availability time of a resource in a grid environment is considered. We propose resource rank approach, in which jobs are dispatched to a resource which has the highest rank among all resources that match the job's requirement. The results show that our approach can increase throughput of many serial / monolithic jobs.Comment: 10 page

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    Level Set Jet Schemes for Stiff Advection Equations: The SemiJet Method

    Get PDF
    Many interfacial phenomena in physical and biological systems are dominated by high order geometric quantities such as curvature. Here a semi-implicit method is combined with a level set jet scheme to handle stiff nonlinear advection problems. The new method offers an improvement over the semi-implicit gradient augmented level set method previously introduced by requiring only one smoothing step when updating the level set jet function while still preserving the underlying methods higher accuracy. Sample results demonstrate that accuracy is not sacrificed while strict time step restrictions can be avoided
    • …
    corecore