360,750 research outputs found

    Novel Artificial Human Optimization Field Algorithms - The Beginning

    Full text link
    New Artificial Human Optimization (AHO) Field Algorithms can be created from scratch or by adding the concept of Artificial Humans into other existing Optimization Algorithms. Particle Swarm Optimization (PSO) has been very popular for solving complex optimization problems due to its simplicity. In this work, new Artificial Human Optimization Field Algorithms are created by modifying existing PSO algorithms with AHO Field Concepts. These Hybrid PSO Algorithms comes under PSO Field as well as AHO Field. There are Hybrid PSO research articles based on Human Behavior, Human Cognition and Human Thinking etc. But there are no Hybrid PSO articles which based on concepts like Human Disease, Human Kindness and Human Relaxation. This paper proposes new AHO Field algorithms based on these research gaps. Some existing Hybrid PSO algorithms are given a new name in this work so that it will be easy for future AHO researchers to find these novel Artificial Human Optimization Field Algorithms. A total of 6 Artificial Human Optimization Field algorithms titled "Human Safety Particle Swarm Optimization (HuSaPSO)", "Human Kindness Particle Swarm Optimization (HKPSO)", "Human Relaxation Particle Swarm Optimization (HRPSO)", "Multiple Strategy Human Particle Swarm Optimization (MSHPSO)", "Human Thinking Particle Swarm Optimization (HTPSO)" and "Human Disease Particle Swarm Optimization (HDPSO)" are tested by applying these novel algorithms on Ackley, Beale, Bohachevsky, Booth and Three-Hump Camel Benchmark Functions. Results obtained are compared with PSO algorithm.Comment: 25 pages, 41 figure

    Cluster-Based Optimization of Cellular Materials and Structures for Crashworthiness

    Get PDF
    The objective of this work is to establish a cluster-based optimization method for the optimal design of cellular materials and structures for crashworthiness, which involves the use of nonlinear, dynamic finite element models. The proposed method uses a cluster-based structural optimization approach consisting of four steps: conceptual design generation, clustering, metamodel-based global optimization, and cellular material design. The conceptual design is generated using structural optimization methods. K-means clustering is applied to the conceptual design to reduce the dimensional of the design space as well as define the internal architectures of the multimaterial structure. With reduced dimension space, global optimization aims to improve the crashworthiness of the structure can be performed efficiently. The cellular material design incorporates two homogenization methods, namely, energy-based homogenization for linear and nonlinear elastic material models and mean-field homogenization for (fully) nonlinear material models. The proposed methodology is demonstrated using three designs for crashworthiness that include linear, geometrically nonlinear, and nonlinear models

    Optimized Superconducting Nanowire Single Photon Detectors to Maximize Absorptance

    Get PDF
    Dispersion characteristics of four types of superconducting nanowire single photon detectors, nano-cavity-array- (NCA-), nano-cavity-deflector-array- (NCDA-), nano-cavity-double-deflector-array- (NCDDA-) and nano-cavity-trench-array- (NCTA-) integrated (I-A-SNSPDs) devices was optimized in three periodicity intervals commensurate with half-, three-quarter- and one SPP wavelength. The optimal configurations capable of maximizing NbN absorptance correspond to periodicity dependent tilting in S-orientation (90{\deg} azimuthal orientation). In NCAI-A-SNSPDs absorptance maxima are reached at the plasmonic Brewster angle (PBA) due to light tunneling. The absorptance maximum is attained in a wide plasmonic-pass-band in NCDAI_1/2*lambda-A, inside a flat-plasmonic-pass-band in NCDAI_3/4*lambda-A and inside a narrow plasmonic-band in NCDAI_lambda-A. In NCDDAI_1/2*lambda-A bands of strongly-coupled cavity and plasmonic modes cross, in NCDDAI_3/4*lambda-A an inverted-plasmonic-band-gap develops, while in NCDDAI_lambda-A a narrow plasmonic-pass-band appears inside an inverted-minigap. The absorptance maximum is achieved in NCTAI_1/2*lambda-A inside a plasmonic-pass-band, in NCTAI_3/4*lambda-A at inverted-plasmonic-band-gap center, while in NCTAI_lambda-A inside an inverted-minigap. The highest 95.05% absorptance is attained at perpendicular incidence onto NCTAI_lambda-A. Quarter-wavelength type cavity modes contribute to the near-field enhancement around NbN segments except in NCDAI_lambda-A and NCDDAI_3/4*lambda-A. The polarization contrast is moderate in NCAI-A-SNSPDs (~10^2), NCDAI- and NCDDAI-A-SNSPDs make possible to attain considerably large polarization contrast (~10^2-10^3 and ~10^3-10^4), while NCTAI-A-SNSPDs exhibit a weak polarization selectivity (~10-10^2).Comment: 26 pages, 8 figure

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
    • …
    corecore