971,375 research outputs found

    A Practical Procedure to Integrate the First 1:500 Urban Map of Valencia into a Tile-Based Geospatial Information System

    Full text link
    [EN] The use of geographic data from early maps is a common approach to understanding urban geography as well as to study the evolution of cities over time. The specific goal of this paper is to provide a means for the integration of the first 1:500 urban map of the city of Valencia (Spain) on a tile-based geospatial system. We developed a workflow consisting of three stages: the digitization of the original 421 map sheets, the transformation to the European Terrestrial Reference System of 1989 (ETRS89), and the conversion to a tile-based file format, where the second stage is clearly the most mathematically involved. The second stage actually consists of two steps, one transformation from the pixel reference system to the 1929 local reference system followed by a second transformation from the 1929 local to the ETRS89 system. The last stage comprises a map reprojection to adapt to tile-based geospatial standards. The paper describes a pilot study of one map sheet and results showed that the affine and bilinear transformations performed well in both transformations with average residuals under 6 and 3 cm respectively. The online viewer developed in this study shows that the derived tile-based map conforms to common standards and lines up well with other raster and vector datasets.Villar-Cano, M.; JimĂ©nez-MartĂ­nez, MJ.; MarquĂ©s-Mateu, Á. (2019). A Practical Procedure to Integrate the First 1:500 Urban Map of Valencia into a Tile-Based Geospatial Information System. ISPRS International Journal of Geo-Information. 8(9). https://doi.org/10.3390/ijgi809037837889Bitelli, G., & Gatta, G. (2011). Digital Processing and 3D Modelling of an 18th Century Scenographic Map of Bologna. Advances in Cartography and GIScience. Volume 2, 129-146. doi:10.1007/978-3-642-19214-2_9Brovelli, M. A., Minghini, M., Giori, G., & Beretta, M. (2012). Web Geoservices and Ancient Cadastral Maps: The Web C.A.R.T.E. Project. Transactions in GIS, 16(2), 125-142. doi:10.1111/j.1467-9671.2012.01311.xBitelli, G., Cremonini, S., & Gatta, G. (2014). Cartographic heritage: Toward unconventional methods for quantitative analysis of pre-geodetic maps. Journal of Cultural Heritage, 15(2), 183-195. doi:10.1016/j.culher.2013.04.003CardesĂ­n DĂ­az, J. M., & Araujo, J. M. (2016). Historic Urbanization Process in Spain (1746–2013). Journal of Urban History, 43(1), 33-52. doi:10.1177/0096144215583481Villar-Cano, M., MarquĂ©s-Mateu, Á., & JimĂ©nez-MartĂ­nez, M. J. (2019). Triangulation network of 1929–1944 of the first 1:500 urban map of ValĂšncia. Survey Review, 52(373), 317-329. doi:10.1080/00396265.2018.1564599Chen, W., & Hill, C. (2005). Evaluation Procedure for Coordinate Transformation. Journal of Surveying Engineering, 131(2), 43-49. doi:10.1061/(asce)0733-9453(2005)131:2(43)ISO 19157:2013: Geographic Information—Data Qualityhttps://www.iso.org/standard/32575.htmlASPRS Positional Accuracy Standards for Digital Geospatial Datahttps://www.asprs.org/news-resources/asprs-positional-accuracy-standards-for-digital-geospatial-dataEven-Tzur, G. (2018). Coordinate transformation with variable number of parameters. Survey Review, 52(370), 62-68. doi:10.1080/00396265.2018.1517477Yuanxi, Y., & Tianhe, X. (2002). Combined method of datum transformation between different coordinate systems. Geo-spatial Information Science, 5(4), 5-9. doi:10.1007/bf02826467Lehmann, R. (2014). Transformation model selection by multiple hypotheses testing. Journal of Geodesy, 88(12), 1117-1130. doi:10.1007/s00190-014-0747-

    Estudio de los repositorios y plataformas de patrimonio digital en 3D

    Full text link
    [EN] Despite the increasing number of three-dimensional (3D) model portals and online repositories catering for digital heritage scholars, students and interested members of the general public, there are very few recent academic publications that offer a critical analysis when reviewing the relative potential of these portals and online repositories. Solid reviews of the features and functions they offer are insufficient; there is also a lack of explanations as to how these assets and their related functionality can further the digital heritage (and virtual heritage) field, and help in the preservation, maintenance, and promotion of real-world 3D heritage sites and assets. What features do they offer? How could their feature list better cater for the needs of the GLAM (galleries, libraries, archives and museums) sector? This article’s priority is to examine the useful features of 8 institutional and 11 commercial repositories designed specifically to host 3D digital models. The available features of their associated 3D viewers, where applicable, are also analysed, connecting recommendations for future-proofing with the need to address current gaps and weaknesses in the scholarly field of 3D digital heritage. Many projects do not address the requirements stipulated by charters, such as access, reusability, and preservation. The lack of preservation strategies and examples highlights the oxymoronic nature of virtual heritage (oxymoronic in the sense that the virtual heritage projects themselves are seldom preserved). To study these concerns, six criteria for gauging the usefulness of the 3D repositories to host 3D digital models and related digital assets are suggested. The authors also provide 13 features that would be useful additions for their 3D viewers.[ES] A pesar del creciente nĂșmero de portales de modelos tridimensionales (3D) y repositorios en lĂ­nea que atienden a los estudiosos del patrimonio digital, a los estudiantes y al pĂșblico en general, hay muy pocas publicaciones acadĂ©micas recientes que analizan de forma crĂ­tica el potencial relativo de esos portales y repositorios en lĂ­nea. Tampoco hay suficientes revisiones crĂ­ticas de las caracterĂ­sticas y funciones que ofrecen, ni muchas explicaciones sobre la forma en que estos activos y su funcionalidad pueden impulsar en el campo del patrimonio digital (y el patrimonio virtual), y ayudar a preservar, mantener y promocionar los sitios y activos del patrimonio 3D del mundo real. ÂżQuĂ© caracterĂ­sticas ofrecen? ÂżCĂłmo podrĂ­a su lista de caracterĂ­sticas satisfacer mejor las necesidades del sector GLAM (galerĂ­as, bibliotecas, archivos y museos)? La prioridad de este artĂ­culo es examinar las caracterĂ­sticas Ăștiles de 8 depĂłsitos institucionales y 11 comerciales diseñados especĂ­ficamente para albergar modelos digitales en 3D. TambiĂ©n son examinadas las caracterĂ­sticas disponibles de su visores 3D asociados, cuando sea aplicable, y ello conecta con lo recomendado sobre las necesidades futuras y mejoradas para abordar las lagunas y debilidades en el campo acadĂ©mico del patrimonio digital 3D. Muchos proyectos no estudian los requisitos estipulados en las cartas, como son los factores de acceso, la reutilizaciĂłn y la preservaciĂłn. La escasez de estrategias y ejemplos de preservaciĂłn pone de relieve el carĂĄcter oximorĂłnico del patrimonio virtual (oximorĂłnico en el sentido de que los propios proyectos de patrimonio virtual se preservan con muy poca frecuencia). Para hacer frente a estas preocupaciones, se sugieren seis criterios para calibrar la utilidad de los repositorios 3D para albergar modelos digitales 3D y activos digitales relacionados. Los autores tambiĂ©n proporcionan 13 caracterĂ­sticas adicionales que serĂ­an Ăștiles en los visores 3D.Champion, E.; Rahaman, H. (2020). Survey of 3D digital heritage repositories and platforms. Virtual Archaeology Review. 11(23):1-15. https://doi.org/10.4995/var.2020.13226OJS1151123Aalbersberg, I. J., Cos Alvarez, P., Jomier, J., Marion, C., & Zudilova-Seinstra, E. (2014). Bringing 3D visualization into the online research article. Information Services & Use, 34(1-2), 27-37. https://doi.org/10.3233/ISU-140721Addison, A. C. (2000). Emerging trends in virtual heritage. IEEE Multimedia, 7(2), 22-25. https://doi.org/10.1109/93.848421Alliez, P., Bergerot, L., Bernard, J.-F., Boust, C., Bruseker, G., Carboni, N., Chayani, M., Dellepiane, M., Dell'unto, N., & Dutailly, B. (2017). Digital 3D objects in art and humanities: Challenges of creation, interoperability and preservation. In White paper: A result of the PARTHENOS Workshop held in Bordeaux at Maison des Sciences de l'Homme d'Aquitaine and at Archeovision Lab. (France) (pp. 71). France.Beacham, R., Hugh, D., & Niccolucci, F. (2009). The London Charter. In For computer-based visualization of cultural heritage (Vol. Draft 2.1).Bernard, Y., Barreau, J.-B., Bizien-Jaglin, C., Quesnel, L., LangouĂ«t, L., & Daire, M.-Y. (2017). 3D model as a dynamic compilation of knowledge: Interim results on the city of Alet. Virtual Archaeology Review, 8(16). https://doi.org/10.4995/var.2017.5862Boutsi, A.-M., Ioannidis, C., & Soile, S. (2019). An integrated approach to 3D web visualization of cultural heritage heterogeneous datasets. Remote Sensing, 11(21). https://doi.org/10.3390/rs11212508Calin, M., Damian, G., Popescu, T., Manea, R., Erghelegiu, B., & Salagean, T. (2015). 3D modeling for digital preservation of Romanian heritage monuments. Agriculture and Agricultural Science Procedia, 6, 421-428. https://doi.org/10.1016/j.aaspro.2015.08.111Champion, E. (2018). The role of 3D models in virtual heritage intrastructures. In A. Benardou, E. Champion, C. Dallas, & L. M. Hughes (Eds.), Cultural Heritage Infrastructures in Digital Humanities (pp. 172). Abingdon, Oxon New York: NY Routledge. https://doi.org/10.4324/9781315575278Champion, E. (2019). From historical models to virtual heritage simulations. In P. KuroczyƄski, M. Pfarr-Harfst, & S. MĂŒnster (Eds.), Der Modelle Tugend 2.0 Digitale 3d-Rekonstruktion Als Virtueller Raum Der Architekturhistorischen Forschung Computing in Art and Architecture (Vol. 2, pp. 338-351). Heidelberg, Germany: arthistoricum.net. https://doi.org/10.11588/arthistoricum.515Champion, E., & Rahaman, H. (2019). 3D digital heritage models as sustainable scholarly resources. Sustainability, 11(8), 1-8. https://doi.org/10.3390/su11082425Clarke, M. (2015). The digital dilemma: preservation and the digital archaeological record. Advances in Archaeological Practice, 3(4), 313-330. https://doi.org/10.7183/2326-3768.3.4.313Cots, I., VilĂ , J., Diloli, J., FerrĂ©, R., & Bricio, L. (2018). La arqueologĂ­a virtual: de la excavaciĂłn arqueolĂłgica a la gestiĂłn y socializaciĂłn del patrimonio. Les cases de la Catedral (Tortosa) y el yacimiento protohistĂłrico de La Cella(Salou), Tarragona. Virtual Archaeology Review, 9(19). https://doi.org/10.4995/var.2018.9754Di Giuseppantonio Di Franco, P. , Galeazzi, F., & Vassallo, V. (Eds.). (2018). Authenticity and cultural heritage in the age of 3D digital reproductions. Cambridge, UK: McDonald Institute for Archaeological Research. http://doi.org/10.17863/CAM.27029Doyle, J., Viktor, H., & Paquet, E. (2009). Long-term digital preservation: preserving authenticity and usability of 3-D data. International Journal on Digital Libraries, 10(1), 33-47. https://doi.org/10.1007/s00799-009-0051-7Flynn, T. (2019). What happens when you share 3D models online (In 3D)? In J. Grayburn, Z. Lischer-Katz, K. Golubiewski-Davis, & V. Ikeshoji-Orlati (Eds.), 3D/VR in the Academic Library: Emerging Practices and Trends (pp. 73-86). Arlington, USA: Council on Library and Information Resources.Galeazzi, F., Baker, F., Champion, E., Gartski, K., Jeffrey, S., & Kuzminsky, S. (2018). Commentary on 3-D virtual replicas and simulations of the past : "real" or "fake" representations? Current Anthropology, 59(3), 268-286. http://doi.org/10.1086/697489Galeazzi, F., & Franco, P. D. G. D. (2017). Theorising 3D visualisation systems in archaeology: Towards more effective design, evaluations and life cycles. Internet Archaeology(44). http://doi.org/10.11141/ia.44.5Greenop, K., & Barton, J. (2014). Scan, save, and archive: how to protect our digital cultural heritage. The Conversation, 1. https://theconversation.com/scan-save-and-archive-how-to-protect-our-digital-cultural-heritage-22160.Guidazzoli, A., Liguori, M. C., Chiavarini, B., Verri, L., Imboden, S., De Luca, D., & Ponti, F. D. (2017, 31 Oct-4 Nov). From 3D Web to VR historical scenarios: A cross-media digital heritage application for audience development. In 2017 23rd International Conference on Virtual System & Multimedia (VSMM), (pp. 1-8) Dublin, Ireland. https://doi.org/10.1109/VSMM.2017.8346273Huk, T. (2006). Who benefits from learning with 3D models? the case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404. https://doi.org/10.1111/j.1365-2729.2006.00180.xIoannides, M., & Quak, E. (Eds.). (2014). 3D research challenges in cultural heritage : A roadmap in digital heritage preservation. NewYork, Dordrecht, London: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44630-0Khronos, G. (2009). OpenGL ES for the web. WebGL Overview. Retrieved 4 March, 2020, from https://www.khronos.org/webgl/Kiourt, C., Koutsoudis, A., Markantonatou, S., & Pavlidis, G. (2016). The 'synthesis' virtual museum. Mediterranean Archaeology and Archaeometry, 16(5), 1-9. http://doi.org/10.5281/zenodo.204961Koller, D., Frischer, B., & Humphreys, G. (2009). Research challenges for digital archives of 3D cultural heritage models. Journal on Computing and Cultural Heritage, 2(3), 1-17. https://doi.org/10.1145/1658346.1658347Koutsabasis, P. (2017). Empirical evaluations of interactive systems in cultural heritage: A review. International Journal of Computational Methods in Heritage Science, 1(1), 100-122. https://doi.org/10.4018/IJCMHS.2017010107Kuroczynski, P. (2017). Virtual research environment for digital 3D reconstructions : Standards, thresholds and prospects. Studies in Digital Heritage, 1(2), 456-476. https://doi.org/10.14434/sdh.v1i2.23330Lloyd, J. (2016). Contextualizing 3D cultural heritage. In M. Ioannides, E. Fink, R. Brumana, P. Patias, A. Doulamis, J. Martins, & M. Wallace (Eds.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection (Vol. 1, pp. 859-868). Nicosia, Cyprus: Springer International Publishing. https://doi.org/10.1007/978-3-319-48496-9_69Maiwald, F., Bruschke, J., Lehmann, C., & Niebling, F. (2019). A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR. Virtual Archaeology Review, 10(21). https://doi.org/10.4995/var.2019.11867McHenry, K., & Bajcsy, P. (2008). An overview of 3d data content, file formats and viewers. Retrieved from Urbana, IL: https://www.archives.gov/files/applied-research/ncsa/8-an-overview-of-3d-data-content-file-formats-and-viewers.pdf.Muñoz Morcillo, J., Schaaf, F., Schneider, R. H., & Robertson-von Trotha, C. Y. (2017). Authenticity through VR-based documentation of cultural heritage. A theoretical approach based on conservation and documentation practices. Virtual Archaeology Review, 8(16). https://doi.org/10.4995/var.2017.5932Munster, S. (2018, 26-29 June). Digital 3D modelling in the humanities. In Digital Heritage 2018, (pp. 627-629) Mexico.MĂŒnster, S., Pfarr-Harfst, M., KuroczyƄski, P., & Ioannides, M. (Eds.). (2016). 3D research challenges in cultural heritage II : How to manage data and knowledge related to interpretative digital 3D reconstructions of cultural heritage. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-47647-6Newe, A., Brandner, J., Aichinger, W., & Becker, L. (2018). An open source tool for creating model files for virtual volume rendering in PDF documents. In Bildverarbeitung fĂŒr die Medizin 2018, (pp. 133-138) Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_97Niven, K., & Richards, J. D. (2017). The storage and long-term preservation of 3D data. In D. Errickson & T. Thompson (Eds.), Human Remains: Another Dimension (pp. 175-184): Academic Press. https://doi.org/10.1016/B978-0-12-804602-9.00013-8Pauwels, P., Verstraeten, R., De Meyer, R., & Van Campenhout, J. (2008). Architectural Information Modelling for Virtual Heritage Application. In Digital Heritage-Proceedings of the 14th International Conference on Virtual Systems and Multimedia, (pp. 18-23).Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., & Chamzas, C. (2007). Methods for 3D digitization of cultural heritage. Journal of Cultural Heritage, 8(1), 93-98. https://doi.org/10.1016/j.culher.2006.10.007Pletinckx, D., & Nolle, D. (2015). 3D-ICONS: D5.1-Report on 3D publication formats suitable for Europeana. Retrieved from https://zenodo.org/record/1311590#.Xt34Zy97G50. https://doi.org/10.5281/zenodo.1311589Potenziani, M., Callieri, M., Dellepiane, M., Corsini, M., Ponchio, F., & Scopigno, R. (2015). 3DHOP: 3D heritage online presenter. Computers & Graphics, 52, 129-141. http://doi.org/10.1016/j.cag.2015.07.001Rabinowitz, A., Esteva, M., & Trelogan, J. (2013, 26-28 September). Ensuring a future for the past. In Proceedings of The Memory of the World in the Digital Age: Digitization and Preservation, (pp. 940-954) Vancouver, British Columbia, Canada.Rahaman, H., & Champion, E. (2019, 15-18 April). The scholarly rewards and tragic irony of 3D models in virtual heritage discourse. In 24th Annual Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2019), (pp. 695-704) Wellington, New Zealand.Roussou, M. (2002, 24-25 November). Virtual heritage : From the research lab to the broad public. In VAST Euroconference, (pp. 93-100) Arezzo, Italy.Scopigno, R., Callieri, M., Dellepiane, M., Ponchio, F., & Potenziani, M. (2017). Delivering and using 3D models on the web: are we ready? Virtual Archaeology Review, 8(17), 1-9. http://dx.doi.org/10.4995/var.2017.6405Snyder, L. M. (2014). VSim : Scholarly annotations in real-time 3D environments. Paper presented at the DH-CASE II: Collaborative Annotations on Shared Environments: metadata, tools and techniques in the Digital Humanities - DH-CASE '14, (pp. 1-8.) Fort Collins, CA, USA. http://dx.doi.org/10.1145/2657480.2657483Statham, N. (2019). Scientific rigour of online platforms for 3D visualisation of heritage. Virtual Archaeology Review, 10(20), 1-16. https://doi.org/10.4995/var.2019.9715Sullivan, E. (2016). Potential pasts: Taking a humanistic approach to computer visualization of ancient landscapes. Bulletin of the Institute of Classical Studies, 59(2), 71-88. https://doi.org/10.1111/j.2041-5370.2016.12039.xSullivan, E., Nieves, A. D., & Snyder, L. M. (2017). Making the model: Scholarship and rhetoric in 3-D historical reconstructions. In J. Sayers (Ed.), Making Things and Drawing Boundaries : Experiments in the Digital Humanities. Minneapolis, MN: University of Minnesota Press. https://doi.org/10.5749/j.ctt1pwt6wq.38Sullivan, E. A., & Snyder, L. M. (2017). Digital Karnak. Journal of the Society of Architectural Historians, 76(4), 464-482. https://doi.org/10.1525/jsah.2017.76.4.464Thwaites, H. (2013). Digital heritage : What happens when we digitize everything? In E. Ch'ng, V. Gaffney, & H. Chapman (Eds.), Visual heritage in the digital age (pp. 327-348). London, UK: Springer-Verlag. https://doi.org/10.1007/978-1-4471-5535-5Tsiafaki, D., & Michailidou, N. (2015). Benefits and problems through the application of 3D technologies in archaeology: Recording, visualisation, representation and reconstruction. Scientific Culture, 1(3), 37-45. http://doi.org/10.5281/zenodo.18448Tucci, G., Bonora, V., Conti, A., & Fiorini, L. (2017). High-quality 3d models and their use in a cultural heritage conservation project. In The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences : 26th International CIPA Symposium 2017, (pp. 687) Ottawa, Canada. http://doi.org/10.5194/isprs-archives-XLII-2-W5-687-2017Übel, M. V. (2019). Free 3D models - Best download sites & 3D archives of 2019. Get the Best for Free. Retrieved 12 February, 2019, from https://all3dp.com/1/free-3d-models-download-best-sites-3d-archive-3dUNESCO. (2003, 29 Sept-15Oct 2003). Charter on the preservation of the digital heritage. In 32nd Session: The General Conference of the United Nations Educational, Scientific and Cultural Organization, (pp. 74-76) Paris.Zhang, N., Li, Q., Jia, H., Zhang, M., & Liu, J. (2017). U3D file format analyzing and 3DPDF generating method. In IGTA: Chinese Conference on Image and Graphics Technologies : Advances in Image and Graphics Technologies, (pp. 136-146) Singapore. https://doi.org/10.1007/978-981-10-7389-2_1

    Mother's Perspective About Using the Gadget Safeness for Children

    Get PDF
    The rapid development of technology makes it easier for mothers to provide stimulation related to growth and development using gadgets. However, parental knowledge is needed about the safe limits of using a gadget in early childhood. This study aims to determine the perspective and behavior of mothers about the use of gadgets in toddlers. The method used is quantitative research with a cross-sectional approach. The participants of this study were thirty-one mothers who have early childhood and who are empowering family welfare. The inclusion criteria were mothers who agreed to be respondents, the exclusion criteria for mothers who did not have gadgets. This study uses a questionnaire measurement instrument for data collection. Data analysis was performed univariate and bivariate using the chi-square test. The results of the study concluded that the mother's knowledge regarding the safety of using a gadget was still lacking, with a value of around 54.8%, while the mother's behavior related to the same thing was better, which was around 58.1%. The relationship test shows that there is a strong enough relationship between maternal knowledge and maternal behavior in introducing or using gadgets in toddlers.  Keywords: Early Childhood, Mother Perspective, Gadget Safeness  References Appel, M. (2012). Are heavy users of computer games and social media more computer literate? Computers and Education, 59(4), 1339–1349. https://doi.org/10.1016/j.compedu.2012.06.004 Bandura, A. (1977). Social learning theory. Prentice-Hall. Cingel, D. P., & Krcmar, M. (2013). Predicting Media Use in Very Young Children: The Role of Demographics and Parent Attitudes. Communication Studies, 64(4), 374–394. https://doi.org/10.1080/10510974.2013.770408 Connell, S. L., Lauricella, A. R., & Wartella, E. (2015). Parental Co-Use of Media Technology with their Young Children in the USA. Journal OfChildren and Media, 9(1), 5–21. https://doi.org/10.1080/17482798.2015.997440 Haines, J., O’Brien, A., McDonald, J., Goldman, R. E., Evans-Schmidt, M., Price, S., King, S., Sherry, B., & Taveras, E. M. (2013). Television Viewing and Televisions in Bedrooms: Perceptions of Racial/Ethnic Minority Parents of Young Children. Journal of Child and Family Studies, 22(6), 749–756. https://doi.org/10.1007/s10826-012-9629-6 Jones, I., & Park, Y. (2015). Virtual worlds: Young children using the internet. Young children and families in the information age. Educating the young child (Advances in theory and research, implications for practice) (I. K. Heider & J. M. Renck (eds.); Volume 10). Springer. Lauricella, A. R., Wartella, E., & Rideout, V. J. (2015). Young children’s screen time: The complex role of parent and child factors. Journal of Applied Developmental Psychology, 36, 11–17. https://doi.org/10.1016/j.appdev.2014.12.001 Livingstone, S, Görzig, A., & Ólafsson, K. (2011). Disadvantaged children and online risk. http://eprints.lse.ac.uk/39385/ Livingstone, Sonia, Mascheroni, G., Dreier, M., Chaudron, S., & Lagae, K. (2015). How parents of young children manage digital devices at home: The role of income, education and parental style (Issue September). Livingstone, Sonia, Ólafsson, K., Helsper, E. J., Lupiåñez-Villanueva, F., Veltri, G. A., & Folkvord, F. (2017). Maximizing Opportunities and Minimizing Risks for Children Online: The Role of Digital Skills in Emerging Strategies of Parental Mediation. Journal of Communication, 67(1), 82–105. https://doi.org/10.1111/jcom.12277 M, S. (2017). The Impact of using Gadgets on Children. Journal of Depression and Anxiety, 07(01), 1–3. https://doi.org/10.4172/2167-1044.1000296 Marsh, J., Hannon, P., Lewis, M., & Ritchie, L. (2017). Young children’s initiation into family literacy practices in the digital age. Journal of Early Childhood Research, 15(1), 47–60. https://doi.org/10.1177/1476718X15582095 Mifsud, C. L., & Petrova, R. (2017). Young Children (0-8) and Digital Technology. In JRC Science and Policies Reports. Nevski, E., & Siibak, A. (2016). The role of parents and parental mediation on 0–3-year olds’ digital play with smart devices: Estonian parents’ attitudes and practices. Early Years, 36(3), 227–241. https://doi.org/10.1080/09575146.2016.1161601 Nikken, P. (2017). Implications of low or high media use among parents for young children’s media use. Cyberpsychology, 11(3 Special Issue). https://doi.org/10.5817/CP2017-3-1 Nikken, P., & de Haan, J. (2015). Guiding young children’s internet use at home: Problems that parents experience in their parental mediation and the need for parenting support. Cyberpsychology, 9(1). https://doi.org/10.5817/CP2015-1-3 Piotrowski, J. (2017). Media exposure during infancy and early childhood: The effect of content and context on learning and development. In I. R. Barr & D. Linebarger (Eds.), The parental media mediation context of young children’s media use.(pp. 205–219). Springer International Publishing. Plowman, L., Stevenson, O., Stephen, C., & McPake, J. (2012). Preschool children’s learning with technology at home. Computers and Education, 59(1), 30–37. https://doi.org/10.1016/j.compedu.2011.11.014 Rasmussen, E. E., Shafer, A., Colwell, M. J., White, S., Punyanunt-Carter, N., Densley, R. L., & Wright, H. (2016). Relation between active mediation, exposure to Daniel Tiger’s Neighborhood, and US preschoolers’ social and emotional development. Journal of Children and Media, 10(4), 443–461. https://doi.org/10.1080/17482798.2016.1203806 Smahelova, M., JuhovĂĄ, D., Cermak, I., & Smahel, D. (2017). Mediation of young children’s digital technology use: The parents’ perspective. Cyberpsychology, 11(3 Special Issue). https://doi.org/10.5817/CP2017-3-4 Troseth, G. L., Strouse, G. A., & Russo Johnson, C. E. (2017). Early Digital Literacy: Learning to Watch, Watching to Learn. In Cognitive Development in Digital Contexts. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809481-5.00002-X Vaala, S. E. (2014). The Nature and Predictive Value of Mothers’ Beliefs Regarding Infants’ and Toddlers’ TV/Video Viewing: Applying the Integrative Model of Behavioral Prediction. Media Psychology, 17(3), 282–310. https://doi.org/10.1080/15213269.2013.872995 Zaman, B., & Mifsud, C. L. (2017). Editorial: Young children’s use of digital media and parental mediation. Cyberpsychology, 11(3 Special Issue), 9. https://doi.org/10.5817/CP2017-3-x

    Resolving the productivity paradox of digitalised production

    Full text link
    [EN] Although Industry 4.0 and other initiatives predict widespread adoption of digitalised technology on the factory floor, few companies use new digitalised production technology holistically in their ecosystems; in practical implementation, companies often decide against digitalisation for financial reasons. This is due to a paradox (akin to the so called “productivity paradox”) caused by the complexity of value creation and value delivery within digitalised production. This article analyses and synthesises cross-disciplinary research using a grounded theory model, thus offering valuable insights for businesses considering investing in digitalised production. A qualitative model and an associated toolbox (complete with tools for practical application by business leaders and decision-makers) are presented to address organisational uncertainty and leadership disconnect that often contribute to the paradoxical gap between digital strategy and operational implementation.Dold, L.; Speck, C. (2021). Resolving the productivity paradox of digitalised production. International Journal of Production Management and Engineering. 9(2):65-80. https://doi.org/10.4995/ijpme.2021.15058OJS658092Al-Debei, Mutaz M.; Avison, David (2010): Developing a unified framework of the business model concept. In Euro-pean Journal of Information Systems 19 (3), pp. 359-376. https://doi.org/10.1057/ejis.2010.21Andulkar, Mayur; Le, Duc Tho; Berger, Ulrich (2018): A multi-case study on Industry 4.0 for SME's in Brandenburg, Germany. Proceedings of the 51st Hawaii International Conference on System Sciences. Hawaii, 2018. https://doi.org/10.24251/HICSS.2018.574Arnold, Christian; Kiel, Daniel; Voight, Kai-Ingo (2017): Innovative Business Models for the Industrial Internet of Things. In Berg Huettenmaenn Monatsh 162 (9), pp. 371-381. https://doi.org/10.1007/s00501-017-0667-7Arnold, Christian; Voight, Kai-Ingo (2017): Ecosystem Effects of the Industrial Internet of Things on Manufacturing Companies. In Acta INFOLOGICA 1 (2), pp. 99-108.Berghaus, Sabine (2018): The Fuzzy Front End of Digital Transformation. Activities and Approaches for Initiating Organizational Change Strategies. UniversitĂ€t St. Gallen. Available online at https://www1.unisg.ch/www/edis.nsf/SysLkpByIdentifier/4704/$FILE/dis4704.pdf.Berghaus, Sabine; Back, Andrea; Kaltenrieder, Bramwell. (2017): Digital Maturity & Transformation Report 2017. ZĂŒrich: Crosswalk AG,. In Veröffentlichung zur Studie der UniversitĂ€t St. Gallen in Kooperation mit Crosswalk. St. Gallen, March 2017.Bouwman, Harry; Nikou, Shahrokh; Molina-Castillo, Francisco J.; Reuver, Mark de (2018): The impact of digitaliza-tion on business models. In Digital Policy, Regulation and Governance 20 (2), pp. 105-124. https://doi.org/10.1108/DPRG-07-2017-0039Buchholz, Birgit; Ferdinand, Jan-Peter; Gieschen, Jan-Hinrich; Seidel, Uwe (2017): Digitalisierung industrieller Wertschöpfung. Eine Studie im Rahmen der Begleitforschung zum Technologieprogramm AUTONOMIK fĂŒr In-dustrie 4.0 des Bundesministeriums fĂŒr Wirtschaft und Energie. Berlin: iit-Institut fĂŒr Innovation und Technik der VDI/VDE Innovation + Technik GmbH.BurggrĂ€f, Peter; Dannapfel, Matthias; Voet, Hanno; Bök, Patrick-Benjamin; Uelpenich, JĂ©rĂŽme; Hoppe, Julian (2017): Digital Transformation of Lean Production. Systematic Approach for the Determination of Digitally Pervasive Val-ue Chains. In World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering 11 (10), 2462-2471.Burmeister, Christian; Luettgens, Dirk; Piller, Frank T. (2016): Business Model Innovation for Industrie 4.0. Why the 'Industrial Internet' Mandates a New Perspective. In Die UnternehmensfĂŒhrung ; RWTH-TIM Working Paper 70 (2), pp. 124-152. https://doi.org/10.2139/ssrn.2571033Cañas, HĂ©ctor; Mula, Josefa; DĂ­az-Madroñero, Manuel; Campuzano-BolarĂ­n, Francisco (2021): Implementing Industry 4.0 principles. In Computers & Industrial Engineering 158 (1), p. 107379. https://doi.org/10.1016/j.cie.2021.107379Charmaz, Kathy (2014): Constructing grounded theory. 2nd edition. Los Angeles, London, New Delhi, Singapore, Washington DC: SAGE.Chesbrough, Henry (2010): Business model innovation: opportunities and barriers. Opportunities and Barriers. In Long range planning 43 (2-3), pp. 354-363. https://doi.org/10.1016/j.lrp.2009.07.010Chesbrough, Henry; Rosenbloom, Richard S. (2002): The role of the business model in capturing value from innova-tion: evidence from Xerox Corporation's technology spin‐off companies. In Industrial and corporate change 11 (3), pp. 529-555. https://doi.org/10.1093/icc/11.3.529Cottyn, Johannes; Stockman, Kurt; Hendrik, van Landeghem (2008): The Complementarity of Lean Thinking and the ISA 95 Standard. WBF 2008. WBF. Barcelona, November 2008. Available online at http://hdl.handle.net/1854/LU-524679.Dold, Luzian (2020): Beurteilung von Investitionen in die digitalisierte Produktion. Eine Mixed-Method-Studie zur moderierenden Wirkung von Nutzenkonstrukten aus GeschĂ€ftsmodellen an der LĂŒcke zwischen digitaler Strategie und operativen Prozessen. Dissertation. Middlesex University, London.Dold, Luzian (2021): A Value Centred Paradigm to Moderate the Digital Transformation of Manufacturing. In Adv. J Social Sci. 8 (1), pp. 86-95. DOI: 10.21467/ajss.8.1.86-95.Döring, Nicola; Bortz, JĂŒrgen (2016): Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften. With assistance of Sandra Pöschl. 5. vollstĂ€ndig ĂŒberarbeitete, aktualisierte und erweiterte Auflage. Berlin, Heidel-berg: Springer (Springer-Lehrbuch). https://doi.org/10.1007/978-3-642-41089-5Dorst, Wolfgang (2016): Implementation Strategy Industrie 4.0. Report on the results of the Industrie 4.0 Platform. With assistance of W. Dorst, C. Glohr, T. Hahn, U. Loewen, Rosen, R. Schiemann, T., F. Vollmar et al. Edited by BITKOM e.V., VDMA e.V., ZVEI e.V. Berlin, Frankfurt am Main.Eruvankai, Saju; Muthukrishnan, Murugesan; Mysore, Anantharamaiah Kumar (2017): Accelerating IIOT Adoption with OPC UA. In INTERNETWORKING INDONESIA 9 (1), pp. 3-8. Available online at http://www.internetworkingindonesia.org/Issues/Vol9-No1-2017/iij_vol9_no1_2017_eruvankai.pdf.Fleisch, Elgar; Weinberger, Markus; Wortmann, Ass Felix; Wortmann, Felix (2014): GeschĂ€ftsmodelle im Internet der Dinge. In HMD Praxis der Wirtschaftsinformatik 51 (6), pp. 812-826. https://doi.org/10.1365/s40702-014-0083-3Geissbauer, Reinhard; Schrauf Stefan; Koch Volkmar; Kuge Simon (2014): Industry 4.0 : Opportunities and Challenges of the Industrial Internet. Edited by Pricewaterhousecooper Aktiengesellschaft. MĂŒnchen.Gibbons, Paul M.; Burgess, Stuart C. (2010): Introducing OEE as a measure of lean Six Sigma capability. In Lean Six Sigma Journal 1 (2), pp. 134-156. https://doi.org/10.1108/20401461011049511Grebe, Michael; RĂŒssmann, Michael,Leyh Michael; Franke, Roman (2019): HOW DIGITAL CHAMPIONS INVEST. Edited by Boston Consulting Group. MĂŒnchen. Available online at http://image-src.bcg.com/Images/BCG-How-Digital-Champions-Invest-June-2019_tcm15-223286.pdf, checked on 1/6/2020.GĂŒrdĂŒr, Didem; El-khoury, Jad; Törngren, Martin (2019): Digitalizing Swedish industry. What is next? In Computers in Industry 105 (1), pp. 153-163. https://doi.org/10.1016/j.compind.2018.12.011Henssen, Robert; Schleipen, Miriam (2014): Interoperability between OPC UA and AutomationML. In Procedia CIRP 25, pp. 297-304. https://doi.org/10.1016/j.procir.2014.10.042Hopp, Wallace J.; Spearman, Mark L. (2004): To Pull or Not to Pull. What Is the Question? In Manufacturing & Ser-vice Operations Management 6 (2), pp. 133-148. https://doi.org/10.1287/msom.1030.0028Imtiaz, Jahanzaib; Jasperneite, JĂŒrgen (2013): Scalability of OPC-UA down to the chip level enables "Internet of Things". In IEEE intelligent Systems, pp. 500-505. https://doi.org/10.1109/INDIN.2013.6622935Industrial Value Chain Initiative (2018): Industrial Value Chain Reference Architecture -Next. Strategic implementation framework of industrial value chain for connected industries. Edited by Industrial Value Chain Initiative. Monozu-kuri Nippon Conference c/o. Tokyo.Jesse, Norbert (2016): Internet of Things and Big Data - The Disruption of the Value Chain and the Rise of New Soft-ware Ecosystems. In IFAC-PapersOnLine 49 (29), pp. 275-282. https://doi.org/10.1016/j.ifacol.2016.11.079JĂŒttemann, Gerd (Ed.) (1989): Qualitative Forschung in der Psychologie. Grundfragen, Verfahrensweisen, Anwen-dungsfelder. 2. Aufl. Heidelberg: Asanger.Kagermann, Henning; Anderl, Reiner; Gausemeier, JĂŒrgen; Schuh, GĂŒnther; Wahlster Wolfgang (2016): Industrie 4.0 im globalen Kontext. Strategien der Zusammenarbeit mit internationalen Partnern. Acatech Studie. MĂŒnchen: Her-bert Utz Verlag.Kagermann, Henning; Wahlster, Wolfgang; Helbig, Johannes (2013): Umsetzungsempfehlungen fĂŒr das Zukunftspro-jekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0. Edited by Prof. Dr. Henning Kagermann. For-schungsunion Wirtschaft und Wissenschaft, Arbeitskreis Industrie 4.0. Frankfurt am Main.Kagermann, Henning; Wahlster, Wolfgang; Lukas, Wolf-Dieter (2011): Industrie 4.0 : Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution. In VDI Nachrichten 2011, 4/1/2011 (13).Kiel, Daniel; MĂŒller, Julian; Arnold, Christian; Voight, Kai-Ingo (2017): Sustainable Industrial Value Creation. Benefits and Challenges of Industry 4.0. In International Journal of Innovation Management (ijim) 21 (8), pp. 1-34. https://doi.org/10.1142/S1363919617400151Koch, Arno (2016): OEE fĂŒr das Produktionsteam. Das vollstĂ€ndige OEE-Benutzerhandbuch - oder wie Sie die ver-borgene Maschine entdecken. 3., korrigierte Auflage. Herrieden: CETPM Publishing (Operational Excellence, Nr. 5).Legrenzi, Christopher (2017): THE DIGITAL PARADOX. INFORMATION, INFORMATICS, AND INFOR-MATION SYSTEM. In ISM Journal of International Business, pp. 35-42.Lerch, Christian; JĂ€ger, Angela; Maloca, Spomenka (2017): Wie digital ist Deutschlands Industrie wirklich. Arbeit und ProduktivitĂ€t in der digitalen Produktion. In Mitteilungen aus der ISI-Erhebung Modernisierung der Produktion, Ausgabe 71.Leyh, Christian; Bley, Katja (2016): Digitalisierung. Chance oder Risiko fĂŒr den deutschen Mittelstand? - Eine Studie ausgewĂ€hlter Unternehmen. In HMD 53 (1), pp. 29-41. https://doi.org/10.1365/s40702-015-0197-2Lin, Shi-Wan; Crawford, Mark; Mellor, Stephen (2017): The Industrial Internet of Things Volume G1: Reference Architecture. Version 1.80. Needham, MA. In Industrial Internet Consortium (IIC) Tech. Rep.Magruk, Andrzej (2016): Uncertainty in the Sphere of the Industry 4.0 - Potential Areas to Research. In Business, Management & Education/Verslas, Vadyba ir Studijos 14 (2), pp. 275-291. https://doi.org/10.3846/bme.2016.332Maier, W.; Weber, M. (2013): Management von Big-Data-Projekten. Leitfaden. Berlin: Bundesverband Information-swirtschaft,Telekommunikation und neue Medien e. V.Maklan, Stan; Peppard, Joe; Klaus, Philipp (2015): Show me the money. In European Journal of Marketing 49 (3/4), pp. 561-595. https://doi.org/10.1108/EJM-08-2013-0411Mayring, Philipp (2008): EinfĂŒhrung in die qualititative Sozialforschung. Eine Anleitung zu qualitativem Denken. 5. Aufl. Weinheim, Basel: Beltz (Beltz Studium).Obermaier, Robert (2019): Industrie 4.0 und Digitale Transformation als unternehmerische Gestaltungsaufgabe. In Robert Obermaier (Ed.): Handbuch Industrie 4.0 und Digitale Transformation. Betriebswirtschaftliche, technische und rechtliche Herausforderungen. 1st ed. 2019. Wiesbaden: Springer Fachmedien Wiesbaden, pp. 3-46. https://doi.org/10.1007/978-3-658-24576-4_1Obermaier, Robert; Schweikl, Stefan (2019): Zur Bedeutung von Solows Paradoxon. Empirische Evidenz und ihre Übertragbarkeit auf Digitalisierungsinvestitionen in einer Industrie 4.0. In Robert Obermaier (Ed.): Handbuch In-dustrie 4.0 und Digitale Transformation. Betriebswirtschaftliche, technische und rechtliche Herausforderungen. 1st ed. 2019. Wiesbaden: Springer Fachmedien Wiesbaden, pp. 529-564. https://doi.org/10.1007/978-3-658-24576-4_22Osterwalder, Alexander (2004): The business model ontology: A proposition in a design science approach. Disserti-ation. Universite de Lausanne, Lausanne. Ecole des Hautes Etudes Commerciales. Available online at https://doc.rero.ch/record/4210/files/1_these_Osterwalder.pdf.Osterwalder, Alexander; Pigneur, Yves (2010): Business model generation: a handbook for visionaries, game changers, and challengers. Hoboken: John Wiley & Sons.Palm, Florian; GrĂŒner, Sten; Pfrommer, Julius; Graube, Markus; Urbas, Leon (2014): open62541-der offene OPC UA Stack. In Onlinepublikation des Fraunhofer IOSB, Lehrstuhl Prozessleittechnik der RWTH Aachen; TU Dresden, Professur fĂŒr Prozessleitechnik,Porter, Michael E. (2010): Wettbewerbsvorteile. Spitzenleistungen erreichen und behaupten. 7. durchgesehene Auflage Auflage. Frankfurt, New York: Campus.Porter, Michael E.; Heppelmann, James E. (2014): How smart, connected products are transforming competition. In Harvard business review 92 (11), pp. 64-88.Rachinger, Michael; Rauter, Romana; MĂŒller, Christiana; Vorraber, Wolfgang; Schirgi, Eva (2019): Digitalization and its influence on business model innovation. In Journal of Manufacturing Technology Management 30 (8), pp. 1143-1160. https://doi.org/10.1108/JMTM-01-2018-0020Remane, Gerrit; Hanelt, Andre; Wiesboeck, Florian; Kolbe, Lutz M. (2017): Digital maturity in traditional industries - an exploratory analysis. Twenty-Fifth European Conference on Information Systems (ECIS),. GuimarĂŁes,Portugal, 2017.Rese, Mario; Meier, Horst; Gesing, Judith; Boßlau, Mario (2013): An ontology of business models for industrial prod-uct-service systems. In Yoshiki Shimomura, Koji Kimita (Eds.): The Philosopher's Stone for Sustainability. Pro-ceedings of the 4th CIRP International Conference on Industrial Product-Service Systems, Tokyo, Japan, Novem-ber 8th - 9th, 2012. Heidelberg: Springer (Lecture Notes in Production Engineering), pp. 191-196. https://doi.org/10.1007/978-3-642-32847-3_32Sauer, Olaf (2014): Information Technology for the Factory of the Future - State of the Art and Need for Action. In Procedia CIRP 25, pp. 293-296. https://doi.org/10.1016/j.procir.2014.10.041Schmenner, Roger W. (2015): The Pursuit of Productivity. In Production and Operations Management 24 (2), pp. 341-350. https://doi.org/10.1111/poms.12230Schuh, G.; Anderl, R.; Dumitrescu, R.; Hompel, M. ten; KrĂŒger, A. (Eds.) (2020): Industrie 4.0 Maturity Index. Man-aging the Digital Transformation of Companies - UPDATE 2020 - (acatech STUDY). MUNICH: Herbert Utz Verlag.Schuh, GĂŒnther; Reuter, Christina; Hauptvogel, Annika; Dölle, Christian (2015): Hypotheses for a Theory of Produc-tion in the Context of Industrie 4.0. In : Advances in Production Technology: Springer, pp. 11-23. Available online at https://link.springer.com/10.1007/978-3-319-12304-2_2 https://doi.org/10.1007/978-3-319-12304-2_2Skilton, Mark; Gordon, Penelope; Harding, Chris (2010): Building return on investment from cloud computing. Cloud Business Artifacts Project, Cloud Computing Work Group, The Open Group. Edited by The Open Group. Burling-ton, MA.Solow, R. M. (1987): We'd better watch out. In New York Times Book Review 36.Strauss, Anselm; Corbin, Juliet (2010): Grounded theory. Grundlagen qualitativer Sozialforschung. UnverĂ€nd. Nachdr. der letzten Aufl. Weinheim: Beltz.Tantik, Erdal; Anderl, Reiner (2016): Industrie 4.0. Using Cyber-physical Systems for Value-stream Based Production Evaluation. In Procedia CIRP 57, pp. 207-212. https://doi.org/10.1016/j.procir.2016.11.036Veile, Johannes; Kiel, Daniel; Voight, Kai-Ingo; MĂŒller, Julian Marius (2019): Lessons learned from Industry 4.0 implementation in the German manufacturing industry. In Journal of Manufacturing Technology Management (ahead-of-print). https://doi.org/10.1108/JMTM-08-2018-0270Witzel, Andreas (2000): Das problemzentrierte Interview. In Forum Qualitative Sozialforschung / Forum: Qualitative Social Research 1 (1). https://doi.org/10.1016/j.lrp.2015.04.001YlipÀÀ, Torbjörn; Skoogh, Anders; Bokrantz, Jon; Gopalakrishnan, Maheshwaran (2017): Identification of maintenance improvement potential using OEE assessment. In International Journal of Productivity and Performance Manage-ment 66 (1), pp. 126-143. https://doi.org/10.1108/IJPPM-01-2016-0028Zennaro, Ilenia; Battini, Daria; Sgarbossa, Fabio; Persona, Alessandro; Marchi, Rosario de; van der Wiele, Ton (2018): Micro Downtime - Data Collection, Analysis and Impact on OEE in Bottling Lines The San Benedetto Case Study. In Int J Qual & Reliability Mgmt 17 (9), p. 0. https://doi.org/10.1108/IJQRM-11-2016-0202Zott, Christoph; Amit, Raphael; Massa, Lorenzo (2011): The Business model: Recent Developments and Future Re-search. In Journal of management 37 (4), pp. 1019-1042. https://doi.org/10.1177/0149206311406265Zuehlke, Detlef (2010): SmartFactory-Towards a factory-of-things. In Annual Reviews in Control 34 (1), pp. 129-138. https://doi.org/10.1016/j.arcontrol.2010.02.00

    Transversal Competences in Engineering Degrees: Integrating Content and Foreign Language Teaching

    Full text link
    [EN] There has been a constant advance of the labour markets and permanent reorientation towards digital Industry 4.0. Yet, the environments for learning remain unchallenged when it comes to the provision of new professionals across the globe. Therefore, this has created a gap in transversal competences, which has compelled students of higher learning institutions to pursue them. The majority of higher learning institutions have emphasised transversal skills among learners and developed curriculums to accomplish these demands. The primary focus of the study was to attain integration and fusion of transversal skills into the development of specialised curriculum training for foreign language proficiency. The study applied mixed methodology techniques, which combined qualitative and quantitative methods in the study. To guarantee cohesion of the study, four research and monitoring techniques such as course dossiers, needs analysis, task-based activities and adapted competences scales were used. The outcome of the research shows findings provided by the piloting stage of the teaching experience and emphasises the need for student-based skill training.The described experience was carried out as part of the work in the Innovation and Quality Education Teaching (EICE DESMAHIA) Development of active methodologies and evaluation strategies applied to the field of Hydraulic Engineering at the Universitat PolitĂšcnica de ValĂšncia.Polyakova, O.; Galstyan-Sargsyan, R.; LĂłpez JimĂ©nez, PA.; PĂ©rez-SĂĄnchez, M. (2020). Transversal Competences in Engineering Degrees: Integrating Content and Foreign Language Teaching. Education Sciences. 10(11):1-13. https://doi.org/10.3390/educsci10110296S1131011Laguna-SĂĄnchez, P., Abad, P., de la Fuente-Cabrero, C., & Calero, R. (2020). A University Training Programme for Acquiring Entrepreneurial and Transversal Employability Skills, a Students’ Assessment. Sustainability, 12(3), 796. doi:10.3390/su12030796Moldovan, L. (2020). A Reference Framework for Continuous Improvement of Employability Assessment. Procedia Manufacturing, 46, 271-278. doi:10.1016/j.promfg.2020.03.040Succi, C., & Canovi, M. (2019). Soft skills to enhance graduate employability: comparing students and employers’ perceptions. Studies in Higher Education, 45(9), 1834-1847. doi:10.1080/03075079.2019.1585420Competency Framework. OECDhttps://www.oecd.org/careers/competency_framework_en.pdfSerrano, R. M., Romero, J. A., Bello, M. J., & PĂ©rez, J. D. (2011). Student Training in Transversal Competences at the University of Cordoba. European Educational Research Journal, 10(1), 34-52. doi:10.2304/eerj.2011.10.1.34Graczyk-Kucharska, M., Özmen, A., SzafraƄski, M., Weber, G. W., GoliƄƛki, M., & SpychaƂa, M. (2019). Knowledge accelerator by transversal competences and multivariate adaptive regression splines. Central European Journal of Operations Research, 28(2), 645-669. doi:10.1007/s10100-019-00636-xHortigĂŒela AlcalĂĄ, D., Palacios Picos, A., & LĂłpez Pastor, V. (2018). The impact of formative and shared or co-assessment on the acquisition of transversal competences in higher education. Assessment & Evaluation in Higher Education, 44(6), 933-945. doi:10.1080/02602938.2018.1530341Vasconcelos, S., & Balula, A. (2019). DO YOU SPEAK DIGITAL? – A LITERATURE REVIEW ON LANGUAGE AND DIGITAL COMPETENCES IN TOURISM EDUCATION. doi:10.20867/tosee.05.32VillardĂłn-Gallego, L., Flores-Moncada, L., Yåñez-Marquina, L., & GarcĂ­a-Montero, R. (2020). Best Practices in the Development of Transversal Competences among Youths in Vulnerable Situations. Education Sciences, 10(9), 230. doi:10.3390/educsci10090230SĂĄ, M., & Serpa, S. (2018). Transversal Competences: Their Importance and Learning Processes by Higher Education Students. Education Sciences, 8(3), 126. doi:10.3390/educsci8030126Cepic, R., Vorkapic, S. T., Loncaric, D., Andic, D., & Mihic, S. S. (2015). Considering Transversal Competences, Personality and Reputation in the Context of the Teachers’ Professional Development. International Education Studies, 8(2). doi:10.5539/ies.v8n2p8Developing key competences at school in Europe: Challenges and Opportunities for Policy; Eurydice Report 2012/11https://eacea.ec.europa.eu/national-policies/eurydice/content/developing-key-competences-school-europe-challenges-and-opportunities-policy_enCommon European Framework of Reference for Languages: Learning, Teaching, and Assessment. Companion Volume with New Descriptors. Strasbourg: Council of Europe Publishinghttps://rm.coe.int/cefr-companion-volume-with-new-descriptors-2018/168078798Zamora-Polo, F., MartĂ­nez SĂĄnchez-CortĂ©s, M., Reyes-RodrĂ­guez, A. M., & GarcĂ­a Sanz-Calcedo, J. (2019). Developing Project Managers’ Transversal Competences Using Building Information Modeling. Applied Sciences, 9(19), 4006. doi:10.3390/app9194006Smit, U., & Dafouz, E. (2012). Integrating content and language in higher education. Integrating Content and Language in Higher Education, 25, 1-12. doi:10.1075/aila.25.01sm

    Fully automatic smartphone-based photogrammetric 3D modelling of infantÂżs heads for cranial deformation analysis

    Full text link
    [EN] Image-based and range-based solutions can be used for the acquisition of valuable data in medicine. However, most of these methods are not valid for non-static patients. Cranial deformation is a problem with high prevalence among infants and image-based solutions can be used to assess the degree of deformation and monitor the evolution of patients. However, it is required to deal with infants normal movement during the assessment in order to avoid sedation. Some high-end multiple-sensor image-based solutions allow the achievement of accurate 3D data for medical applications under unpredicted dynamic conditions in consultation. In this paper, a novel, single photogrammetric smartphone-based solution for cranial deformation assessment is presented. A coded cap is placed on the infant's head and a guided smartphone app is used by the user to acquire the information, that is later processed on a server to obtain the 3D model. The smartphone app is designed to guide users with no knowledge of photogrammetry, computer vision or 3D modelling. The processing is fully automatic offline. The photogrammetric tool is also non-invasive, reacting well with quick and sudden infant's movements. Therefore, it does not require sedation. This paper tackles the accuracy and repeatability analysis tested both for a single user (intrauser) and multiple non-expert user (interuser) on 3D printed head models. The results allow us to confirm an accuracy below 1.5 mm, which makes the system suitable for clinical practice by medical staff. The basic automatically-derived anthropometric linear magnitudes are also tested obtaining a mean variability of 0.6 +/- 0.6 mm for the longitudinal and transversal distances and 1.4 +/- 1.3 mm for the maximum perimeter.This project is funded by Instituto de Salud Carlos III and European Regional Development Fund (FEDER), project number PI18/00881, and by Generalitat Valenciana, grant number ACIF/2017/056.Barbero-GarcĂ­a, I.; Lerma, JL.; Mora Navarro, JG. (2020). Fully automatic smartphone-based photogrammetric 3D modelling of infantÂżs heads for cranial deformation analysis. ISPRS Journal of Photogrammetry and Remote Sensing. 166:268-277. https://doi.org/10.1016/j.isprsjprs.2020.06.013S268277166Aldridge, K., Boyadjiev, S. A., Capone, G. T., DeLeon, V. B., & Richtsmeier, J. T. (2005). Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images. American Journal of Medical Genetics Part A, 138A(3), 247-253. doi:10.1002/ajmg.a.30959Argenta, L. (2004). Clinical Classification of Positional Plagiocephaly. Journal of Craniofacial Surgery, 15(3), 368-372. doi:10.1097/00001665-200405000-00004Ballardini, E., Sisti, M., Basaglia, N., Benedetto, M., Baldan, A., Borgna-Pignatti, C., & Garani, G. (2018). Prevalence and characteristics of positional plagiocephaly in healthy full-term infants at 8–12 weeks of life. European Journal of Pediatrics, 177(10), 1547-1554. doi:10.1007/s00431-018-3212-0Barbero-GarcĂ­a, I., Cabrelles, M., Lerma, J. L., & MarquĂ©s-Mateu, Á. (2018). Smartphone-based close-range photogrammetric assessment of spherical objects. The Photogrammetric Record, 33(162), 283-299. doi:10.1111/phor.12243Barbero-GarcĂ­a, I., Lerma, J. L., MarquĂ©s-Mateu, Á., & Miranda, P. (2017). Low-Cost Smartphone-Based Photogrammetry for the Analysis of Cranial Deformation in Infants. World Neurosurgery, 102, 545-554. doi:10.1016/j.wneu.2017.03.015Barbero-GarcĂ­a, I., Lerma, J. L., Miranda, P., & MarquĂ©s-Mateu, Á. (2019). Smartphone-based photogrammetric 3D modelling assessment by comparison with radiological medical imaging for cranial deformation analysis. Measurement, 131, 372-379. doi:10.1016/j.measurement.2018.08.059Bay, H., Ess, A., Tuytelaars, T., Gool, L. Van, 2007. Speeded-Up Robust Features (SURF). https://doi.org/10.1016/j.cviu.2007.09.014.Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4), 349-359. doi:10.1109/2945.817351Besl, P.J., McKay, N.D., 1992. Method for registation of 3-D shapes. In: Schenker, P.S. (Ed.), Sensor Fusion IV: Control Paradigms and Data Structures. SPIE, pp. 586–606. https://doi.org/10.1117/12.57955.Camison, L., Bykowski, M., Lee, W. W., Carlson, J. C., Roosenboom, J., Goldstein, J. A., 
 Weinberg, S. M. (2018). Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. International Journal of Oral and Maxillofacial Surgery, 47(3), 403-410. doi:10.1016/j.ijom.2017.08.008Caple, J. M., Stephan, C. N., Gregory, L. S., & MacGregor, D. M. (2015). Effect of Head Position on Facial Soft Tissue Depth Measurements Obtained Using Computed Tomography. Journal of Forensic Sciences, 61(1), 147-152. doi:10.1111/1556-4029.12896Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. MeshLab: an Open-Source Mesh Processing Tool. In: Scarano, V., Chiara, R. De, Erra, U. (Eds.), Eurographics Italian Chapter Conference. The Eurographics Association. https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.Collett, B. R., Wallace, E. R., Kartin, D., Cunningham, M. L., & Speltz, M. L. (2019). Cognitive Outcomes and Positional Plagiocephaly. Pediatrics, 143(2), e20182373. doi:10.1542/peds.2018-2373De Jong, G., Tolhuisen, M., Meulstee, J., van der Heijden, F., van Lindert, E., Borstlap, W., 
 Delye, H. (2017). Radiation-free 3D head shape and volume evaluation after endoscopically assisted strip craniectomy followed by helmet therapy for trigonocephaly. Journal of Cranio-Maxillofacial Surgery, 45(5), 661-671. doi:10.1016/j.jcms.2017.02.007De Jong, G. A., Maal, T. J. J., & Delye, H. (2015). The computed cranial focal point. Journal of Cranio-Maxillofacial Surgery, 43(9), 1737-1742. doi:10.1016/j.jcms.2015.08.023Dörhage, K. W. W., Wiltfang, J., von Grabe, V., Sonntag, A., Becker, S. T., & Beck-Broichsitter, B. E. (2018). Effect of head orthoses on skull deformities in positional plagiocephaly: Evaluation of a 3-dimensional approach. Journal of Cranio-Maxillofacial Surgery, 46(6), 953-957. doi:10.1016/j.jcms.2018.03.013Farkas, L.G., 1994. Anthropometry of the Head and Face. Raven Pr.Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 51, 481-491. doi:10.1016/j.patcog.2015.09.023Goebbels, S., Pohle-Fröhlich, R., Pricken, P., 2019. Iterative closest point algorithm for accurate registration of coarsely registered point clouds with CityGML models. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. pp. 201–208. https://doi.org/10.5194/isprs-annals-IV-2-W5-201-2019.Grazioso, S., Selvaggio, M., Caporaso, T., & Di Gironimo, G. (2019). A Digital Photogrammetric Method to Enhance the Fabrication of Custom-Made Spinal Orthoses. JPO Journal of Prosthetics and Orthotics, 31(2), 133-139. doi:10.1097/jpo.0000000000000244Heymsfield, S.B., Bourgeois, B., Ng, B.K., Sommer, M.J., Li, X., Shepherd, J.A., 2018. Digital anthropometry: A critical review. In: European Journal of Clinical Nutrition. Nature Publishing Group, pp. 680–687. https://doi.org/10.1038/s41430-018-0145-7.Hsu, C.-K., Hallac, R. R., Denadai, R., Wang, S.-W., Kane, A. A., Lo, L.-J., & Chou, P.-Y. (2019). Quantifying normal head form and craniofacial asymmetry of elementary school students in Taiwan. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72(12), 2033-2040. doi:10.1016/j.bjps.2019.09.005Jodeh, D. S., Curtis, H., Cray, J. J., Ford, J., Decker, S., & Rottgers, S. A. (2018). Anthropometric Evaluation of Periorbital Region and Facial Projection Using Three-Dimensional Photogrammetry. Journal of Craniofacial Surgery, 29(8), 2017-2020. doi:10.1097/scs.0000000000004761Khormi, Y., Chiu, M., Goodluck Tyndall, R., Mortenson, P., Smith, D., & Steinbok, P. (2019). Safety and efficacy of independent allied healthcare professionals in the assessment and management of plagiocephaly patients. Child’s Nervous System, 36(2), 373-377. doi:10.1007/s00381-019-04400-zKournoutas, I., Vigo, V., Chae, R., Wang, M., Gurrola, J., Abla, A. A., 
 Rubio, R. R. (2019). Acquisition of Volumetric Models of Skull Base Anatomy Using Endoscopic Endonasal Approaches: 3D Scanning of Deep Corridors Via Photogrammetry. World Neurosurgery, 129, 372-377. doi:10.1016/j.wneu.2019.05.251Lopes Alho, E.J., Rondinoni, C., Furokawa, F.O., Monaco, B.A., 2019. Computer-assisted craniometric evaluation for diagnosis and follow-up of craniofacial asymmetries: SymMetric v. 1.0. Child’s Nerv. Syst. 1–7. https://doi.org/10.1007/s00381-019-04451-2.Lowe, D.G., 1999. Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99. IEEE Computer Society, Washington, DC, USA, p. 1150.LĂŒbbers, H.-T., Medinger, L., Kruse, A., GrĂ€tz, K. W., & Matthews, F. (2010). Precision and Accuracy of the 3dMD Photogrammetric System in Craniomaxillofacial Application. Journal of Craniofacial Surgery, 21(3), 763-767. doi:10.1097/scs.0b013e3181d841f7Martiniuk, A. L. C., Vujovich-Dunn, C., Park, M., Yu, W., & Lucas, B. R. (2017). Plagiocephaly and Developmental Delay: A Systematic Review. Journal of Developmental & Behavioral Pediatrics, 38(1), 67-78. doi:10.1097/dbp.0000000000000376Meulstee, J. W., Verhamme, L. M., Borstlap, W. A., Van der Heijden, F., De Jong, G. A., Xi, T., 
 Maal, T. J. J. (2017). A new method for three-dimensional evaluation of the cranial shape and the automatic identification of craniosynostosis using 3D stereophotogrammetry. International Journal of Oral and Maxillofacial Surgery, 46(7), 819-826. doi:10.1016/j.ijom.2017.03.017Mitchell, H. ., & Newton, I. (2002). Medical photogrammetric measurement: overview and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 56(5-6), 286-294. doi:10.1016/s0924-2716(02)00065-5Mortenson, P. A., & Steinbok, P. (2006). Quantifying Positional Plagiocephaly. Journal of Craniofacial Surgery, 17(3), 413-419. doi:10.1097/00001665-200605000-00005Munn, L., & Stephan, C. N. (2018). Changes in face topography from supine-to-upright position—And soft tissue correction values for craniofacial identification. Forensic Science International, 289, 40-50. doi:10.1016/j.forsciint.2018.05.016Muñoz-Salinas, R., MarĂ­n-Jimenez, M. J., Yeguas-Bolivar, E., & Medina-Carnicer, R. (2018). Mapping and localization from planar markers. Pattern Recognition, 73, 158-171. doi:10.1016/j.patcog.2017.08.010Nahles, S., Klein, M., Yacoub, A., & Neyer, J. (2018). Evaluation of positional plagiocephaly: Conventional anthropometric measurement versus laser scanning method. Journal of Cranio-Maxillofacial Surgery, 46(1), 11-21. doi:10.1016/j.jcms.2017.10.010Nocerino, E., Poiesi, F., Locher, A., Tefera, Y.T., Remondino, F., Chippendale, P., Van Gool, L., 2017. 3D Reconstruction with a Collaborative Approach Based on Smartphones and a Cloud-based Server. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2/W8, 187–194. https://doi.org/10.5194/isprs-archives-XLII-2-W8-187-2017.Patias, P. (2002). Medical imaging challenges photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 56(5-6), 295-310. doi:10.1016/s0924-2716(02)00066-7Pierrot Deseilligny, M., & Clery, I. (2012). APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W16, 269-276. doi:10.5194/isprsarchives-xxxviii-5-w16-269-2011Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). Speeded up detection of squared fiducial markers. Image and Vision Computing, 76, 38-47. doi:10.1016/j.imavis.2018.05.004Siegenthaler, M. H. (2015). Methods to Diagnose, Classify, and Monitor Infantile Deformational Plagiocephaly and Brachycephaly: A Narrative Review. Journal of Chiropractic Medicine, 14(3), 191-204. doi:10.1016/j.jcm.2015.05.003Sirazitdinova, E., Deserno, T.M., 2017. System Design for 3D Wound Imaging Using Low-Cost Mobile Devices. In: Cook, T.S., Zhang, J. (Eds.), Proc. SPIE 10138, Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications. International Society for Optics and Photonics. https://doi.org/10.3233/978-1-61499-830-3-1237.UrbanovĂĄ, P., Hejna, P., & Jurda, M. (2015). Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Forensic Science International, 250, 77-86. doi:10.1016/j.forsciint.2015.03.005Ursitti, F., Fadda, T., Papetti, L., Pagnoni, M., Nicita, F., Iannetti, G., & Spalice, A. (2011). Evaluation and management of nonsyndromic craniosynostosis. Acta Paediatrica, 100(9), 1185-1194. doi:10.1111/j.1651-2227.2011.02299.xWang, C., Zhang, Y., & Zhou, X. (2018). Robust Image Watermarking Algorithm Based on ASIFT against Geometric Attacks. Applied Sciences, 8(3), 410. doi:10.3390/app8030410Wilbrand, J.-F., Wilbrand, M., Pons-Kuehnemann, J., Blecher, J.-C., Christophis, P., Howaldt, H.-P., & Schaaf, H. (2011). Value and reliability of anthropometric measurements of cranial deformity in early childhood. Journal of Cranio-Maxillofacial Surgery, 39(1), 24-29. doi:10.1016/j.jcms.2010.03.010Wong, J. Y., Oh, A. K., Ohta, E., Hunt, A. T., Rogers, G. F., Mulliken, J. B., & Deutsch, C. K. (2008). Validity and Reliability of Craniofacial Anthropometric Measurement of 3D Digital Photogrammetric Images. The Cleft Palate-Craniofacial Journal, 45(3), 232-239. doi:10.1597/06-17

    Interoperability, Trust Based Information Sharing Protocol and Security: Digital Government Key Issues

    Full text link
    Improved interoperability between public and private organizations is of key significance to make digital government newest triumphant. Digital Government interoperability, information sharing protocol and security are measured the key issue for achieving a refined stage of digital government. Flawless interoperability is essential to share the information between diverse and merely dispersed organisations in several network environments by using computer based tools. Digital government must ensure security for its information systems, including computers and networks for providing better service to the citizens. Governments around the world are increasingly revolving to information sharing and integration for solving problems in programs and policy areas. Evils of global worry such as syndrome discovery and manage, terror campaign, immigration and border control, prohibited drug trafficking, and more demand information sharing, harmonization and cooperation amid government agencies within a country and across national borders. A number of daunting challenges survive to the progress of an efficient information sharing protocol. A secure and trusted information-sharing protocol is required to enable users to interact and share information easily and perfectly across many diverse networks and databases globally.Comment: 20 page

    Digital Economy and Financial Inclusion

    Get PDF
    The digital economy is quickly creating worldwide as the bigger of development, rivakry, and development. Despite the fact that numerous individuals have been rejected, huge open doors are accessible for the digital to help budgetary incorporation for maintainable financial improvement. Financial inclusion is conveying the financial administration to the more fragile and low salary area of society the goal that an ever increasing number of individuals can use the financial administration. We have seen little however noteworthy advances being taken by the administration, towards computerized strengthening of the individuals
    • 

    corecore