740,393 research outputs found

    Isomorphism Theorem on Vector Spaces over a Ring

    Get PDF
    SummaryIn this article, we formalize in the Mizar system [1, 4] some properties of vector spaces over a ring. We formally prove the first isomorphism theorem of vector spaces over a ring. We also formalize the product space of vector spaces. ℤ-modules are useful for lattice problems such as LLL (Lenstra, Lenstra and Lovász) [5] base reduction algorithm and cryptographic systems [6, 2].Futa Yuichi - Tokyo University of Technology, Tokyo, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free ℤ-module. Formalized Mathematics, 21(4):273–282, 2013. doi:10.2478/forma-2013-0029.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982. doi:10.1007/BF01457454.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31–40, 2012. doi:10.2478/v10037-012-0005-1.25317117

    Recognize Geometry Shapes through Computer Learning in Early Math Skills

    Get PDF
    One form of early mathematical recognition is to introduce the concept of geometric shapes. Geometry is an important scientific discipline for present and future life by developing various ways that fit 21st century skills. This study aims to overcome the problem of early mathematical recognition of early childhood on geometry, especially how to recognize geometric forms based on computer learning. A total of 24 children aged 4-5 years in kindergarten has to carrying out 2 research cycles with a total of 5 meetings. Treatment activities in each learning cycle include mentioning, grouping and imitating geometric shapes. There were only 7 children who were able to recognize the geometric shapes in the pre-research cycle (29.2%). An increase in the number of children who are able to do activities well in each research cycle includes: 1) The activities mentioned in the first cycle and 75% in the second cycle; 2) Classifying activities in the first cycle were 37.5% and 75% in the second cycle; 3) Imitation activities in the first cycle 54.2% and 79.2% in the second cycle. The results of data acquisition show that computer learning application can improve the ability to recognize geometric shapes, this is because computer learning provides software that has activities to recognize geometric shapes with the animation and visuals displayed. Keywords: Early Childhood Computer Learning, Geometry Forms, Early Math Skills Reference Alia, T., & Irwansyah. (2018). Pendampingan Orang Tua pada Anak Usia Dini dalam Penggunaan Teknologi Digital. A Journal of Language, Literature, Culture and Education, 14(1), 65– 78. https://doi.org/10.19166/pji.v14i1.639 Ameliola, S., & Nugraha, H. D. (2013). Perkembangan Media Informasi dan Teknologi Terhadap Anak di Era Globalisasi. International Conferences in Indonesian Studies : “Etnicity and Globalization.” Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman. Arikunto, S. (2010). Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Asdi Mahasatya. Arsyad, N., Rahman, A., & Ahmar, A. S. (2017). Developing a self-learning model based on open-ended questions to increase the students’ creativity in calculus. Global Journal of Engineering Education, 19(2), 143–147. https://doi.org/10.26858/gjeev19i2y2017p143147 Asiye, I., Ahmet, E., & Abdullah, A. (2018). Developing a Test for Geometry and Spatial Perceptions of 5-6 Year-Old. Kastamonu Education Journal, 26(1). Aslan, D., & Yasare, A. (2007). Three to Six Years OldChildren’s Recognition of Geometric Shapes. International Journal of Early Years Education, 15 :1, 83–104. Ben-Yehoshua, D., Yaski, O., & Eilam, D. (2011). Spatial behavior: the impact of global and local geometry. Animal Cognition Journal, 13(3), 341–350. https://doi.org/10.1007/s10071- 010-0368-z Charlesworth, R., & Lind, K. K. (2010). Math and Sciend for Young Children. Canada: Wadsworth/Cengage Learning. Chen, J.-Q., & Chang, C. (2006). using computers in early childhood classrooms teachers’ attitudes,skills and practices. Early Childhood Research. Clements, D. H., & Samara. (2003). Strip mining for gold: Research and policy in educational technology—a response to “Fool’s Gold.” Association for the Advancement of Computing in Education (AACE) Journal, 11(1), 7–69. Cohen, L., & Manion, L. (1994). Research Methods in Education (fourth edi). London: Routledge. Conorldi, C., Mammarela, I. C., & Fine, G. G. (2016). Nonverbal Learning Disability (J. P. Guilford, Ed.). New York. Corey, S. M. (1953). Action Research to Improve School Practice. New York: Teachers College, Columbia University. Couse, L. J., & Chen, D. W. (2010). A tablet computer for young children? Exploring its viability for early childhood education. Journal of Research on Technology in Education, 43(1), 75– 98. https://doi.org/10.1080/15391523.2010.10782562 Delima, R., Arianti, N. K., & Pramudyawardani, B. (2015). Identifikasi Kebutuhan Pengguna Untuk Aplikasi Permainan Edukasi Bagi Anak Usia 4 sampai 6 Tahun. Jurnal Teknik Informatika Dan Sistem Informasi, 1(1). Depdiknas. (2007). Permainan Berhitung Permulaan Di Taman Kanak-kanak. In Pedoman Pembelajaran. Jakarta: Depdiknas. Djadir, Minggi, I., Ja’faruddin., Zaki, A., & Sidjara, S. (2017). Sumber Belajar PLPG 2017: Bangun Datar. In Modul PLPG. Jakarta: Kementrian Pendidikan dan Kebudayaan Direktorat Jenderal Guru dan Tenaga Kependidikan.Dooley, T., Dunphy, E., & Shiel, G. (2014). Mathematics in Early Childhood and Primary Education (3-8 years). Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... Japel, C. (2007). School Readiness and Later Achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428 Duncan, G. J., & Magnuson, K. (2011). The nature and impact of early achievement skills, attention skills, and behavior problems. Whither Opportunity?: Rising Inequality, Schools, and Children’s Life Chances, (0322356), 47–69. Edwards, S. (2009). Early Childhood Education and Care: a sociocultural Approach. New South Wales: Pademelon Press. Feliyanah, Norman, S., & Yulidesni. (2014). Meningkatkan Kemampuan Matematika dengan Menggunakan Teknik Mengurutkan dan Membandingkan. Universitas Bengkulu. Gardner, H. (2011). Frame of Mind ; The theory of Multiple Intelegences. New York: Basic Book. Gimbert, B., & Cristol, D. (2004). Teaching Curriculum with Technology: Enhancing Children’s Technological Competence During Early Childhood. Early Childhood Education Journal, 31(1). Gulay, H. (2011a). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252. Gulay, H. (2011b). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252–257. Gunawan, I., & Palupi, A. R. (2012). Taksonomi Bloom-Revisi Ranah Kognitif; Kerangka Landasan untuk Pembelajaran, Pengajaran, dan Penilaian. Jurnal Pendidikan Dasar Dan Pembelajaran, 2 No.2, 100–108. Inan, H. Z., & Dogan-Temur, O. (2010). Understanding kindergarten teachers’ perspectives of teaching basic geometric shapes: A phenomenographic research. ZDM - International Journal on Mathematics Education, 42(5), 457–468. https://doi.org/10.1007/s11858-010- 0241-1 Jackman, H. I., Beaver, N. H., & Wyatt, S. S. (2014). Early Childhood Curriculum: A child’s connection to the world. (sixth edit). Canada: Cengage Learning. Kennedy, L. M., Tipps, S., & Johnson, A. (2008). Guiding Children’s Learning of Mathematic (Eleventh E; Belmot, Ed.). CA: Thomson Wadsworth. Mackintosh, B. B., & McCoy, D. C. (2019). Exploring Social Competence as a Mediator of Head Start’s Impact on Children’s Early Math Skills: Evidence from the Head Start Impact Study. Early Education and Development, 30(5), 655–677. https://doi.org/10.1080/10409289.2019.1576156 Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2011). Results in Science. Mirawati. (2017). Matematika Kreatif; Pembelajaran Matematika bagi Anak Usia Dini Melalui Kegiatan yang Menyenangkan dan Bermakna. Jurnal Anak Usia Dini Dan Pendidikan Anak Usia Dini, 3. Mohammad, M., & Mohammad, H. (2012). Computer integration into the early childhood curriculum. Education, 133(1), 97–116. National Research Council. (2009). Mathematics Learning in Early Chidhood Paths Toward Excellence and Equity (C. T. Cross, T. Woods, & H. Schweingruber, Eds.). Washinton D.C: The National Academies Press. Norton, A., & Nurnberger-Haag, J. (2018). Bridging frameworks for understanding numerical cognition. Journal of Numerical Cognition, 4(1), 1–8. https://doi.org/10.5964/jnc.v4i1.160 Novitasari, D. R. (2010). Pembangunan Media Pembelajaran Bahasa Inggris Untuk Siswa Kelas 1 Pada Sekolah Dasar Negeri 15 Sragen. Sentra Penelitian Engineering Dan Edukas, Volume 2 N. Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2017). Improving Mathematics Teaching in Kindergarten with Realistic Mathematical Education. Early Childhood Education Journal, 45(3), 369–378. https://doi.org/10.1007/s10643-015-0768-4 Papalia, Old, & Feldman. (2009). Human Development (Psikologi Perkembangan (Kesembilan). Jakarta: Kencana. Paquette, K. R., Fello, S. E., & Jalongo, M. R. (2007). The talking drawings strategy: Using primary children’s Illustrations and oral language to improve comprehension of expository text. Early Childhood Education Journal, 35(1), 65–73. https://doi.org/10.1007/s10643- 007-0184-5 Putra, L. D., & Ishartiwi. (2015). Pengembangan Multimedia Pembelajaram Interaktif Mengenal Angka dan Huruf untuk Anak Usia Dini. Jurnal Inovasi Teknologi Pendidikan, 2(2). Rich, B., & Thomas, C. (2009). Geometry: Includes Plane, Analytic, and Transformational Geometries. . (4th Editio). New York: McGraw-Hill. Rochanah, L. (2016). Pemanfaatan Media Berbasis Komputer Untuk Meningkatkan Kemampuan Huruf pada Anak Usia Dini (Urgensi Media Berbasis Komputer pada Peningkatan Kemampuan Mengenal Huruf ). Jurnal Program Studi PGRA, Volume 2 N, 1–8. Runtukahu, T., & Kandou, S. (2014). Pembelajaran matematika dasar bagi anak berkesulitan belajar. Yogyakarta: Ar-ruzz Media. Santrock, J. W. (2016). Children (Thirteenth). New York: McGraw-Hill Education. Sarama, J., & Clements, D. H. (2006). Mathematics, Young Students, and Computers: Software, Teaching Strategies and Professional Development. The Mathematics Educato, 9(2), 112– 134. Schoenfeld, A. H., & Stipek, D. (2011). Math Matters. Barkeley, California.Shilpa, S., & Sunita, M. (2013). A Study About Role of Multimedia in Early Childhood Education. International Journal of Humanities and Social Science Invention, 2(6). Siswono, T. Y. E. (2012). Belajar dan Mengajar Matematika Anak Usia Dini. Universitas Negeri Surabaya.Smaldino, S. E., Russel, J. D., & Lowther, D. L. (2014). Instructional Technology & Media for Learning (9th ed.). Jakarta: Kencana Prenada Media Group. Sudaryanti. (2006). Pengenalan Matematika Anak Usia Dini. Yogyakarta: FIP UNY. Sufa, F. F., & Setiawan, H. Y. (2017). Analisis Kebutuhan Anak Usia 4-6 Tahun Pada Pembelajaran Berbasis Komputer Pada Anak Usia Dini. Research Fair Unisri, 1(1). Suharjana, A. (2008). Pengenalan Bangun Ruang dan Sifat-sifatnya di SD. Yogyakarta: Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan Matematika. Sujiono, Y . N. (2014). Batasan dan Dasar T eori Pengembangan Kognitif. In Hakikat Pengembangan Kognitif (p. 12). Suryana, D. (2013). Pendidikan Anak Usia Dini (teori dan praktik pembelajaran). Padang: UNP Press. Susperreguy, M. I., & Davis-Kean, P. E. (2016). Maternal Math Talk in the Home and Math Skills in Preschool Children. Early Education and Development, 27(6), 841–857. https://doi.org/10.1080/10409289.2016.1148480 Suwarna. (2010). Pengembangan Multimedia Pembelajaran untuk Pembinaan Kreativitas Melukis di Taman Kanak-kanak. Jurnal Universitas Negeri Yogyakarta. Suziedelyte, A. (2012). Can video games affect children’s cognitive and non-cognitive skills? UNSW Australian School of Business Research Paper. https://doi.org/10.2139/ssrn.2140983 Tarigan, D. (2006). Pembelajaran Matematika Realistik. Jakarta: Departeman Pendidikan Nasional, Direktorat Jendral Pendidikan Tunggi, Direktorat Pembinaan Pendidikan Tenaga Kependidikan dan Ketenaga Perguruan Tinggi. Tatang, S. (2012). Ilmu Pendidikan. Bandung: Pustaka Setia.Trawick, M. (2007). Enemy Line ; Warfare, Childhood, and Play in Batticaloa. London: University of California Press. Trifunović, A., Čičević, S., Lazarević, D., Mitrović1, S., & Dragovi, M. (2018). Comparing Tablets (Touchscreen Devices and PCs in Preschool Children Education: Testing Spatial Relationship Using Geometric Syimbols Traffic Signs. IETI Transections on Economics and Safety, 2(1), 35–41. https://doi.org/10.6722/TES.201808_2(1).0004 Vitianingsih, A. V. (2016). Game Edukasi Sebagai Media Pembelajaran Pendidikan Anak Usia Dini. Jurnal INFORM, 1 No. 1. Wang, F., & Kinzie, M. B. (2010). Applying Technology to Inquiry- Based Learning in Early Childhood Education. Early Childhood Education Journal. Weil, M., Calhoun, E., & Joyce, B. (2011). Models of Teaching. New York.: New York. Zack, N. (2014). Philosophy of Science and Race. New York: Routledge. Zare, Sarikhani, Salarii, & Mansouri. (2016). The Impact Of E-learning on University Student’s Academic Achievement and Creativity. Journal of Technical Education and Training (JTET), 8(11)

    Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures

    Full text link
    [EN] Finite element method has been employed to establish the feasibility of a fixation plate made of PLA by additive manufacturing for femoral shaft fractures. For this purpose, Von Mises stress and the pressure contact between bones had been analysed. The proposed design has been compared with an actual titanium fixation plate as a point of reference.J. Ivorra-Martinez is funded with a Formación de Profesorado Universitario (FPU) grant from the Spanish Government (Ministerio de Ciencia, Innovación y Universidades), with reference FPU19/01759.Ivorra Martínez, J.; SellÊs Cantó, MÁ.; Sånchez Caballero, S.; Boronat Vitoria, T. (2021). Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures. Journal of Applied Research in Technology & Engineering. 2(1):11-16. https://doi.org/10.4995/jarte.2021.14712OJS111621Alizadeh-Osgouei, M., Li, Y., Wen, C. (2019). A comprehensive review of biodegradable synthetic polymerceramic composites and their manufacture for biomedical applications. Bioactive materials, 4(1), 22-36. https://doi.org/10.1016/j.bioactmat.2018.11.003Arabnejad, S., Johnston, B., Tanzer, M., Pasini, D. (2017). Fully porous 3D printed titanium femoral stem toreduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.https://doi.org/10.1002/jor.23445Elkins, J., Marsh, J.L., Lujan, T., Peindl, R., Kellam, J., Anderson, D D., & Lack, W. (2016). Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. The Journal of bone and joint surgery. American volume, 98(4), 276. https://doi.org/10.2106/JBJS.O.00684Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Progress in materials science, 54(3), 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004George, D., Allena, R., Remond, Y. (2017). Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Computer Methods in Biomechanics and Biomedical Engineering, 20(sup1), S91-S92, https://doi.org/10.1080/10255842.2017.1382876Guastaldi, F., Martini, A., Rocha, E., Hochuli-Vieira, E., Guastaldi, A. (2019). Ti-15Mo Alloy Decreases the Stress Concentration in Mandibular Angle Fracture Internal Fixation Hardware. Journal of Maxillofacial and Oral Surgery, 19, 314-320. https://doi.org/10.1007/s12663-019-01251-8Hayes, J., Richards, R. (2010). The use of titanium and stainless steel in fracture fixation. Expert review of medical devices, 7(6), 843-853. https://doi.org/10.1586/erd.10.53Heimbach, B., Grassie, K., Shaw, M.T., Olson, J.R., Wei, M. (2017). Effect of hydroxyapatite concentration on highmodulus composite for biodegradable bone-fixation devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1963-1971. https://doi.org/10.1002/jbm.b.33713Jahagirdar, R., Scammell, B.E. (2009). Principles of fracture healing and disorders of bone union. Surgery (Oxford), 27(2), 63-69. https://doi.org/10.1016/j.mpsur.2008.12.011Kanno, T., Sukegawa, S., Furuki, Y., Nariai, Y., Sekine, J. (2018). Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Japanese Dental Science Review, 54(3), 127-138. https://doi.org/10.1016/j.jdsr.2018.03.003Kim, H.J., Chang, S.H., Jung, H.J. (2012). The simulation of tissue differentiation at a fracture gap using a mechanoregulation theory dealing with deviatoric strains in the presence of a composite bone plate. Composites Part B: Engineering, 43(3), 978-987. https://doi.org/10.1016/j.compositesb.2011.09.011Klein, K.F., Hu, J., Reed, M.P., Hoff, C.N., Rupp, J.D. (2015). Development and validation of statistical models of femur geometry for use with parametric finite element models. Annals of biomedical engineering, 43(10), 2503-2514. https://doi.org/10.1007/s10439-015-1307-6Li, J., Li, Z., Ye, L., Zhao, X., Coates, P., Caton-Rose, F. (2017). Structure and biocompatibility improvement mechanism of highly oriented poly (lactic acid) produced by solid die drawing. European Polymer Journal, 97, 68-76. https://doi.org/10.1016/j.eurpolymj.2017.09.038Li, J., Qin, L., Yang, K., Ma, Z., Wang, Y., Cheng, L., Zhao, D. (2020). Materials evolution of bone plates for internal fixation of bone fractures: A review. Journal of Materials Science & Technology, 36, 190-208. https://doi.org/10.1016/j.jmst.2019.07.024Li, J., Yin, P., Zhang, L., Chen, H., Tang, P. (2019). Medial anatomical buttress plate in treating displaced femoral neck fracture a finite element analysis. Injury, 50(11), 1895-1900. https://doi.org/10.1016/j.injury.2019.08.024Liu, B., Zhang, S., Zhang, J., Xu, Z., Chen, Y., Liu, S., Yang, L. (2019). A personalized preoperative modeling system for internal fixation plates in long bone fracture surgery-A straightforward way from CT images to plate model. The International Journal of Medical Robotics and Computer Assisted Surgery, 15(5), e2029. https://doi.org/10.1002/rcs.2029McClellan, R.T. (2013). The variable angle hip fracture nail relative to the Gamma 3: A finite element analysis illustrating the same stiffness and fatigue characteristics. Advances in orthopedics, 2013. https://doi.org/10.1155/2013/143801Murr, L.E. (2016). Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. Journal of Materials Science & Technology, 32(10), 987-995. https://doi.org/10.1016/j.jmst.2016.08.011Narayanan, G., Vernekar, V.N., Kuyinu, E.L., Laurencin, C.T. (2016). Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced drug delivery reviews, 107, 247-276. https://doi.org/10.1016/j.addr.2016.04.015Nurettin, D., Burak, B. (2018). Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. Journal of Cranio-Maxillofacial Surgery, 46(12), 2182-2189. https://doi.org/10.1016/j.jcms.2018.09.030Parthasarathy, J. (2015). 14 Additive Manufacturing of Medical Devices. Additive Manufacturing: Innovations, Advances, and Applications, 369.Ridzwan, M., Shuib, S., Hassan, A., Shokri, A., Ibrahim, M. (2006). Optimization in implant topology to reduce stress shielding problem. Journal of Applied Sciences, 6(13), 2768-2773. https://doi.org/10.3923/jas.2006.2768.2773Sariali, E., Mouttet, A., Pasquier, G., Durante, E. (2009). Three-dimensional hip anatomy in osteoarthritis: analysis of the femoral offset. The Journal of arthroplasty, 24(6), 990-997. https://doi.org/10.1016/j.arth.2008.04.031Singh, D., Singh, R., Boparai, K.S. (2018). Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review. Journal of Manufacturing Processes, 31, 80-95. https://doi.org/10.1016/j.jmapro.2017.10.026Spiridon, I., Tanase, C.E. (2018). Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. International journal of biological macromolecules, 114, 855-863. https://doi.org/10.1016/j.ijbiomac.2018.03.140Tang, G., Liu, S.L., Wang, D.M., Wei, G.F., Wang, C.T. (2013). Finite element analysis in femoral fixation with TA3 titanium compressioll plate. In Advanced Materials Research, 647, 16-19. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.647.16Tymrak, B., Kreiger, M., Pearce, J.M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242-246. https://doi.org/10.1016/j.matdes.2014.02.038Wang, A.Y., Peng, J., Sun, M.X., Sui, X., Wang, X., Tian, Y., Lu, S.B. (2006). Biomechanical comparison of different structural bone grafting in femoral heads' defects of weight-bearing region. Journal of Medical Biomechanics, 4.Wang, J., Ma, J.X., Lu, B., Bai, H.H., Wang, Y., Ma, X.L. (2020). Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthopaedics & Traumatology: Surgery & Research, 106(1), 95-101. https://doi.org/10.1016/j.otsr.2019.04.027Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Xie, Y.M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141. https://doi.org/10.1016/j.biomaterials.2016.01.012Wu, C., Zheng, K., Fang, J., Steven, G.P., Li, Q. (2020). Time-dependent topology optimization of bone plates considering bone remodeling. Computer Methods in Applied Mechanics and Engineering, 359, 112702. https://doi.org/10.1016/j.cma.2019.112702Wu, K.J., Li, S.H., Yeh, K.T., Chen, H., Lee, R.P., Yu, T.C., Wang, J.H. (2019). The risk factors of nonunion after intramedullary nailing fixation of femur shaft fracture in middle age patients. Medicine, 98(29). https://doi.org/10.1097/MD.0000000000016559Wu, X., Wang, Z., Li, H., Li, Y., Wang, H., Tian, W. (2019). Biomechanical evaluation of osteoporotic fracture: Metal fixation versus absorbable fixation in Sawbones models. Injury, 50(7), 1272-1276. https://doi.org/10.1016/j.injury.2019.05.023Zhao, X., Niinomi, M., Nakai, M., Hieda, J., Ishimoto, T., Nakano, T. (2012). Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. Acta biomaterialia, 8(6), 2392-2400. https://doi.org/10.1016/j.actbio.2012.02.01

    A B2B Architecture and Protocol for Researchers Cooperation

    Full text link
    Acknowledgement: Electronic version of an article published as International Journal of Cooperative Information Systems, Volume 22, Issue 02, 2013, DOI: 10.1142/S021884301350010X © World Scientific Publishing Company http://www.worldscientific.com/Some works on the researchers cooperation's literature provide the key lines for building research networks and propose new protocols and standards for business to business (B2B) data exchange, but none of them explains how researchers should contact and the procedure to select the most appropriate partner of a research enterprise, institute or university. In this paper, we propose a B2B architecture and protocol between research entities, that uses ebXML protocol. The contacts for cooperation are established based on some defined parameters and an information retrieval system. We explain the information retrieval system, the researcher selection procedure, the XML-based protocol and the workflow of our proposal. We also show the information that has to be exchanged to contact other researchers. Several simulations demonstrate that our proposal is a feasible architecture and may be used to promote the research cooperation. The main purpose of this paper is to propose an efficient procedure for searching project partners.Lloret, J.; Tomás Gironés, J.; García Pineda, M.; Lacuesta Contreras, R. (2013). A B2B Architecture and Protocol for Researchers Cooperation. International Journal of Cooperative Information Systems. 22(2):1-27. doi:10.1142/S021884301350010XS127222B. Wellman and S. D. Berkowitz, Social Structures: A Network Approach (Cambridge University Press, Cambridge, 1988) pp. 19–61.Wasserman, S., & Faust, K. (1994). Social Network Analysis. doi:10.1017/cbo9780511815478Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M., & Haythornthwaite, C. (1996). Computer Networks as Social Networks: Collaborative Work, Telework, and Virtual Community. Annual Review of Sociology, 22(1), 213-238. doi:10.1146/annurev.soc.22.1.213Fulk, J., & Steinfield, C. (1990). Organizations and Communication Technology. doi:10.4135/9781483325385B. Wellman and M. Gulia, Networks in the Global Village (Westview Press, Boulder, CO, 1997) pp. 331–367.Marsden, P. V., & Campbell, K. E. (1984). Measuring Tie Strength. Social Forces, 63(2), 482-501. doi:10.1093/sf/63.2.482Wellman, B., & Wortley, S. (1990). Different Strokes from Different Folks: Community Ties and Social Support. American Journal of Sociology, 96(3), 558-588. doi:10.1086/229572Adamic, L., & Adar, E. (2005). How to search a social network. Social Networks, 27(3), 187-203. doi:10.1016/j.socnet.2005.01.007Ebel, H., Mielsch, L.-I., & Bornholdt, S. (2002). Scale-free topology of e-mail networks. Physical Review E, 66(3). doi:10.1103/physreve.66.035103Jung, J.-Y., Kim, H., & Kang, S.-H. (2006). Standards-based approaches to B2B workflow integration. Computers & Industrial Engineering, 51(2), 321-334. doi:10.1016/j.cie.2006.02.011Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Computer Communications, 31(14), 3438-3450. doi:10.1016/j.comcom.2008.05.030Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., Garcia, M., Bri, D., & Diaz, J. R. (2009). Study and performance of a group-based Content Delivery Network. Journal of Network and Computer Applications, 32(5), 991-999. doi:10.1016/j.jnca.2009.03.008Lloret, J., Garcia, M., Tomas, J., & Sendra, S. (2010). A group-based architecture for grids. Telecommunication Systems, 46(2), 117-133. doi:10.1007/s11235-010-9279-1Lin, T.-C., & Huang, C.-C. (2010). Withholding effort in knowledge contribution: The role of social exchange and social cognitive on project teams. Information & Management, 47(3), 188-196. doi:10.1016/j.im.2010.02.001Maron, M. E., & Kuhns, J. L. (1960). On Relevance, Probabilistic Indexing and Information Retrieval. Journal of the ACM, 7(3), 216-244. doi:10.1145/321033.321035Tomás, J., Lloret, J., & Casacuberta, F. (2005). Phrase-Based Alignment Models for Statistical Machine Translation. Lecture Notes in Computer Science, 605-613. doi:10.1007/11492542_74Turel, O., & Zhang, Y. (Jenny). (2011). Should I e-collaborate with this group? A multilevel model of usage intentions. Information & Management, 48(1), 62-68. doi:10.1016/j.im.2010.12.004Okuda, T., Tanaka, E., & Kasai, T. (1976). A Method for the Correction of Garbled Words Based on the Levenshtein Metric. IEEE Transactions on Computers, C-25(2), 172-178. doi:10.1109/tc.1976.500923

    On potential cognitive abilities in the machine kingdom

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11023-012-9299-6Animals, including humans, are usually judged on what they could become, rather than what they are. Many physical and cognitive abilities in the ‘animal kingdom’ are only acquired (to a given degree) when the subject reaches a certain stage of development, which can be accelerated or spoilt depending on how the environment, training or education is. The term ‘potential ability’ usually refers to how quick and likely the process of attaining the ability is. In principle, things should not be different for the ‘machine kingdom’. While machines can be characterised by a set of cognitive abilities, and measuring them is already a big challenge, known as ‘universal psychometrics’, a more informative, and yet more challenging, goal would be to also determine the potential cognitive abilities of a machine. In this paper we investigate the notion of potential cognitive ability for machines, focussing especially on universality and intelligence. We consider several machine characterisations (non-interactive and interactive) and give definitions for each case, considering permanent and temporal potentials. From these definitions, we analyse the relation between some potential abilities, we bring out the dependency on the environment distribution and we suggest some ideas about how potential abilities can be measured. Finally, we also analyse the potential of environments at different levels and briefly discuss whether machines should be designed to be intelligent or potentially intelligent.We thank the anonymous reviewers for their comments, which have helped to significantly improve this paper. This work was supported by the MEC-MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT. Finally, we thank three pioneers ahead of their time(s). We thank Ray Solomonoff (1926-2009) and Chris Wallace (1933-2004) for all that they taught us, directly and indirectly. And, in his centenary year, we thank Alan Turing (1912-1954), with whom it perhaps all began.Hernández-Orallo, J.; Dowe, DL. (2013). On potential cognitive abilities in the machine kingdom. Minds and Machines. 23(2):179-210. https://doi.org/10.1007/s11023-012-9299-6S179210232Amari, S., Fujita, N., Shinomoto, S. (1992). Four types of learning curves. Neural Computation 4(4), 605–618.Aristotle (Translation, Introduction, and Commentary by Ross, W.D.) (1924). Aristotle’s Metaphysics. Oxford: Clarendon Press.Barmpalias, G. & Dowe, D. L. (2012). Universality probability of a prefix-free machine. Philosophical transactions of the Royal Society A [Mathematical, Physical and Engineering Sciences] (Phil Trans A), Theme Issue ‘The foundations of computation, physics and mentality: The Turing legacy’ compiled and edited by Barry Cooper and Samson Abramsky, 370, pp 3488–3511.Chaitin, G. J. (1966). On the length of programs for computing finite sequences. Journal of the Association for Computing Machinery, 13, 547–569.Chaitin, G. J. (1975). A theory of program size formally identical to information theory. Journal of the ACM (JACM), 22(3), 329–340.Dowe, D. L. (2008, September). Foreword re C. S. Wallace. Computer Journal, 51(5):523–560, Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L. (2011). MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: P. S. Bandyopadhyay, M. R. Forster (Eds), Handbook of the philosophy of science—Volume 7: Philosophy of statistics (pp. 901–982). Amsterdam: Elsevier.Dowe, D. L. & Hajek, A. R. (1997a). A computational extension to the turing test. Technical report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp, http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html .Dowe, D. L. & Hajek, A. R. (1997b, September). A computational extension to the Turing Test. in Proceedings of the 4th conference of the Australasian Cognitive Science Society, University of Newcastle, NSW, Australia, 9 pp.Dowe, D. L. & Hajek, A. R. (1998, February). A non-behavioural, computational extension to the Turing Test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106.Dowe, D. L., Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: Implications of a quantitative analysis. In Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13124–13131.Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(4), 120–123.Goertzel, B. & Bugaj, S. V. (2009). AGI preschool: A framework for evaluating early-stage human-like AGIs. In Proceedings of the second international conference on artificial general intelligence (AGI-09), pp 31–36.Hernández-Orallo, J. (2000a). Beyond the Turing Test. Journal of Logic, Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000b). On the computational measurement of intelligence factors. In A. Meystel (Ed), Performance metrics for intelligent systems workshop (pp 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2010). On evaluating agent performance in a fixed period of time. In M. Hutter et al. (Eds.), Proceedings of 3rd international conference on artificial general intelligence (pp. 25–30). New York: Atlantis Press.Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J. & Dowe, D. L. (2011, April). Mammals, machines and mind games. Who’s the smartest?. The conversation, http://theconversation.edu.au/mammals-machines-and-mind-games-whos-the-smartest-566 .Hernández-Orallo J., Dowe D. L., España-Cubillo S., Hernández-Lloreda M. V., & Insa-Cabrera J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In: J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), Artificial general intelligence 2011, volume 6830, LNAI series, pp. 82–91. New York: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2012a, March). Measuring cognitive abilities of machines, humans and non-human animals in a unified way: towards universal psychometrics. Technical report 2012/267, Faculty of Information Technology, Clayton School of I.T., Monash University, Australia.Hernández-Orallo, J., Insa, J., Dowe, D. L., & Hibbard, B. (2012b). Turing tests with Turing machines. In A. Voronkov (Ed.), The Alan Turing centenary conference, Turing-100, Manchester, volume 10 of EPiC Series, pp 140–156.Hernández-Orallo, J., & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of the international symposium of engineering of intelligent systems (EIS’98) (pp 146–163). Switzerland: ICSC Press.Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 1360–1366.Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21(1), 102–110.Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of educational psychology, 57(5), 253.Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer.Insa-Cabrera, J., Dowe, D. L., España, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011a). Comparing humans and AI agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp 122–132. Springer, New York.Insa-Cabrera, J., Dowe, D. L., & Hernández-Orallo, J. (2011b). Evaluating a reinforcement learning algorithm with a general intelligence test. In CAEPIA—Lecture Notes in Artificial Intelligence (LNAI), volume 7023, pages 1–11. Springer, New York.Kearns, M. & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning, 49(2), 209–232.Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7.Legg, S. (2008, June). Machine super intelligence. Department of Informatics, University of Lugano.Legg, S. & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Legg, S., & Veness, J. (2012). An approximation of the universal intelligence measure. In Proceedings of Solomonoff 85th memorial conference. New York: Springer.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Li, M., Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed). New York: Springer.Little, V. L., & Bailey, K. G. (1972). Potential intelligence or intelligence test potential? A question of empirical validity. Journal of Consulting and Clinical Psychology, 39(1), 168.Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In Proceedings of the national conference on artificial intelligence, AAAI (pp. 486–502). New Jersey: Wiley.Mahrer, A. R. (1958). Potential intelligence: A learning theory approach to description and clinical implication. The Journal of General Psychology, 59(1), 59–71.Oppy, G., & Dowe, D. L. (2011). The Turing Test. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford University. http://plato.stanford.edu/entries/turing-test/ .Orseau, L. & Ring, M. (2011). Self-modification and mortality in artificial agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pages 1–10. Springer, New York.Ring, M. & Orseau, L. (2011). Delusion, survival, and intelligent agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp. 11–20. Springer, New York.Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., et al. (2007). Checkers is solved. Science, 317(5844), 1518.Solomonoff, R. J. (1962). Training sequences for mechanized induction. In M. Yovits, G. Jacobi, & G. Goldsteins (Eds.), Self-Organizing Systems, 7, 425–434.Solomonoff, R. J. (1964). A formal theory of inductive inference. Information and Control, 7(1–22), 224–254.Solomonoff, R. J. (1967). Inductive inference research: Status, Spring 1967. RTB 154, Rockford Research, Inc., 140 1/2 Mt. Auburn St., Cambridge, Mass. 02138, July 1967.Solomonoff, R. J. (1978). Complexity-based induction systems: comparisons and convergence theorems. IEEE Transactions on Information Theory, 24(4), 422–432.Solomonoff, R. J. (1984). Perfect training sequences and the costs of corruption—A progress report on induction inference research. Oxbridge research.Solomonoff, R. J. (1985). The time scale of artificial intelligence: Reflections on social effects. Human Systems Management, 5, 149–153.Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: The MIT press.Thorp, T. R., & Mahrer, A. R. (1959). Predicting potential intelligence. Journal of Clinical Psychology, 15(3), 286–288.Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.Veness, J., Ng, K. S., Hutter, M., & Silver, D. (2011). A Monte Carlo AIXI approximation. Journal of Artificial Intelligence Research, JAIR, 40, 95–142.Wallace, C. S. (2005). Statistical and inductive inference by minimum message length. New York: Springer.Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computer Journal, 11, 185–194.Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283.Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4), 330–337.Woergoetter, F., & Porr, B. (2008). Reinforcement learning. Scholarpedia, 3(3), 1448.Zvonkin, A. K., & Levin, L. A. (1970). The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys, 25, 83–124

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    • …
    corecore