758,351 research outputs found

    A B2B Architecture and Protocol for Researchers Cooperation

    Full text link
    Acknowledgement: Electronic version of an article published as International Journal of Cooperative Information Systems, Volume 22, Issue 02, 2013, DOI: 10.1142/S021884301350010X © World Scientific Publishing Company http://www.worldscientific.com/Some works on the researchers cooperation's literature provide the key lines for building research networks and propose new protocols and standards for business to business (B2B) data exchange, but none of them explains how researchers should contact and the procedure to select the most appropriate partner of a research enterprise, institute or university. In this paper, we propose a B2B architecture and protocol between research entities, that uses ebXML protocol. The contacts for cooperation are established based on some defined parameters and an information retrieval system. We explain the information retrieval system, the researcher selection procedure, the XML-based protocol and the workflow of our proposal. We also show the information that has to be exchanged to contact other researchers. Several simulations demonstrate that our proposal is a feasible architecture and may be used to promote the research cooperation. The main purpose of this paper is to propose an efficient procedure for searching project partners.Lloret, J.; TomĂĄs GironĂ©s, J.; GarcĂ­a Pineda, M.; Lacuesta Contreras, R. (2013). A B2B Architecture and Protocol for Researchers Cooperation. International Journal of Cooperative Information Systems. 22(2):1-27. doi:10.1142/S021884301350010XS127222B. Wellman and S. D. Berkowitz, Social Structures: A Network Approach (Cambridge University Press, Cambridge, 1988) pp. 19–61.Wasserman, S., & Faust, K. (1994). Social Network Analysis. doi:10.1017/cbo9780511815478Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M., & Haythornthwaite, C. (1996). Computer Networks as Social Networks: Collaborative Work, Telework, and Virtual Community. Annual Review of Sociology, 22(1), 213-238. doi:10.1146/annurev.soc.22.1.213Fulk, J., & Steinfield, C. (1990). Organizations and Communication Technology. doi:10.4135/9781483325385B. Wellman and M. Gulia, Networks in the Global Village (Westview Press, Boulder, CO, 1997) pp. 331–367.Marsden, P. V., & Campbell, K. E. (1984). Measuring Tie Strength. Social Forces, 63(2), 482-501. doi:10.1093/sf/63.2.482Wellman, B., & Wortley, S. (1990). Different Strokes from Different Folks: Community Ties and Social Support. American Journal of Sociology, 96(3), 558-588. doi:10.1086/229572Adamic, L., & Adar, E. (2005). How to search a social network. Social Networks, 27(3), 187-203. doi:10.1016/j.socnet.2005.01.007Ebel, H., Mielsch, L.-I., & Bornholdt, S. (2002). Scale-free topology of e-mail networks. Physical Review E, 66(3). doi:10.1103/physreve.66.035103Jung, J.-Y., Kim, H., & Kang, S.-H. (2006). Standards-based approaches to B2B workflow integration. Computers & Industrial Engineering, 51(2), 321-334. doi:10.1016/j.cie.2006.02.011Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Computer Communications, 31(14), 3438-3450. doi:10.1016/j.comcom.2008.05.030Lloret, J., Garcia, M., TomĂĄs, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., Garcia, M., Bri, D., & Diaz, J. R. (2009). Study and performance of a group-based Content Delivery Network. Journal of Network and Computer Applications, 32(5), 991-999. doi:10.1016/j.jnca.2009.03.008Lloret, J., Garcia, M., Tomas, J., & Sendra, S. (2010). A group-based architecture for grids. Telecommunication Systems, 46(2), 117-133. doi:10.1007/s11235-010-9279-1Lin, T.-C., & Huang, C.-C. (2010). Withholding effort in knowledge contribution: The role of social exchange and social cognitive on project teams. Information & Management, 47(3), 188-196. doi:10.1016/j.im.2010.02.001Maron, M. E., & Kuhns, J. L. (1960). On Relevance, Probabilistic Indexing and Information Retrieval. Journal of the ACM, 7(3), 216-244. doi:10.1145/321033.321035TomĂĄs, J., Lloret, J., & Casacuberta, F. (2005). Phrase-Based Alignment Models for Statistical Machine Translation. Lecture Notes in Computer Science, 605-613. doi:10.1007/11492542_74Turel, O., & Zhang, Y. (Jenny). (2011). Should I e-collaborate with this group? A multilevel model of usage intentions. Information & Management, 48(1), 62-68. doi:10.1016/j.im.2010.12.004Okuda, T., Tanaka, E., & Kasai, T. (1976). A Method for the Correction of Garbled Words Based on the Levenshtein Metric. IEEE Transactions on Computers, C-25(2), 172-178. doi:10.1109/tc.1976.500923

    Recognize Geometry Shapes through Computer Learning in Early Math Skills

    Get PDF
    One form of early mathematical recognition is to introduce the concept of geometric shapes. Geometry is an important scientific discipline for present and future life by developing various ways that fit 21st century skills. This study aims to overcome the problem of early mathematical recognition of early childhood on geometry, especially how to recognize geometric forms based on computer learning. A total of 24 children aged 4-5 years in kindergarten has to carrying out 2 research cycles with a total of 5 meetings. Treatment activities in each learning cycle include mentioning, grouping and imitating geometric shapes. There were only 7 children who were able to recognize the geometric shapes in the pre-research cycle (29.2%). An increase in the number of children who are able to do activities well in each research cycle includes: 1) The activities mentioned in the first cycle and 75% in the second cycle; 2) Classifying activities in the first cycle were 37.5% and 75% in the second cycle; 3) Imitation activities in the first cycle 54.2% and 79.2% in the second cycle. The results of data acquisition show that computer learning application can improve the ability to recognize geometric shapes, this is because computer learning provides software that has activities to recognize geometric shapes with the animation and visuals displayed. Keywords: Early Childhood Computer Learning, Geometry Forms, Early Math Skills Reference Alia, T., & Irwansyah. (2018). Pendampingan Orang Tua pada Anak Usia Dini dalam Penggunaan Teknologi Digital. A Journal of Language, Literature, Culture and Education, 14(1), 65– 78. https://doi.org/10.19166/pji.v14i1.639 Ameliola, S., & Nugraha, H. D. (2013). Perkembangan Media Informasi dan Teknologi Terhadap Anak di Era Globalisasi. International Conferences in Indonesian Studies : “Etnicity and Globalization.” Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman. Arikunto, S. (2010). Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Asdi Mahasatya. Arsyad, N., Rahman, A., & Ahmar, A. S. (2017). Developing a self-learning model based on open-ended questions to increase the students’ creativity in calculus. Global Journal of Engineering Education, 19(2), 143–147. https://doi.org/10.26858/gjeev19i2y2017p143147 Asiye, I., Ahmet, E., & Abdullah, A. (2018). Developing a Test for Geometry and Spatial Perceptions of 5-6 Year-Old. Kastamonu Education Journal, 26(1). Aslan, D., & Yasare, A. (2007). Three to Six Years OldChildren’s Recognition of Geometric Shapes. International Journal of Early Years Education, 15 :1, 83–104. Ben-Yehoshua, D., Yaski, O., & Eilam, D. (2011). Spatial behavior: the impact of global and local geometry. Animal Cognition Journal, 13(3), 341–350. https://doi.org/10.1007/s10071- 010-0368-z Charlesworth, R., & Lind, K. K. (2010). Math and Sciend for Young Children. Canada: Wadsworth/Cengage Learning. Chen, J.-Q., & Chang, C. (2006). using computers in early childhood classrooms teachers’ attitudes,skills and practices. Early Childhood Research. Clements, D. H., & Samara. (2003). Strip mining for gold: Research and policy in educational technology—a response to “Fool’s Gold.” Association for the Advancement of Computing in Education (AACE) Journal, 11(1), 7–69. Cohen, L., & Manion, L. (1994). Research Methods in Education (fourth edi). London: Routledge. Conorldi, C., Mammarela, I. C., & Fine, G. G. (2016). Nonverbal Learning Disability (J. P. Guilford, Ed.). New York. Corey, S. M. (1953). Action Research to Improve School Practice. New York: Teachers College, Columbia University. Couse, L. J., & Chen, D. W. (2010). A tablet computer for young children? Exploring its viability for early childhood education. Journal of Research on Technology in Education, 43(1), 75– 98. https://doi.org/10.1080/15391523.2010.10782562 Delima, R., Arianti, N. K., & Pramudyawardani, B. (2015). Identifikasi Kebutuhan Pengguna Untuk Aplikasi Permainan Edukasi Bagi Anak Usia 4 sampai 6 Tahun. Jurnal Teknik Informatika Dan Sistem Informasi, 1(1). Depdiknas. (2007). Permainan Berhitung Permulaan Di Taman Kanak-kanak. In Pedoman Pembelajaran. Jakarta: Depdiknas. Djadir, Minggi, I., Ja’faruddin., Zaki, A., & Sidjara, S. (2017). Sumber Belajar PLPG 2017: Bangun Datar. In Modul PLPG. Jakarta: Kementrian Pendidikan dan Kebudayaan Direktorat Jenderal Guru dan Tenaga Kependidikan.Dooley, T., Dunphy, E., & Shiel, G. (2014). Mathematics in Early Childhood and Primary Education (3-8 years). Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... Japel, C. (2007). School Readiness and Later Achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428 Duncan, G. J., & Magnuson, K. (2011). The nature and impact of early achievement skills, attention skills, and behavior problems. Whither Opportunity?: Rising Inequality, Schools, and Children’s Life Chances, (0322356), 47–69. Edwards, S. (2009). Early Childhood Education and Care: a sociocultural Approach. New South Wales: Pademelon Press. Feliyanah, Norman, S., & Yulidesni. (2014). Meningkatkan Kemampuan Matematika dengan Menggunakan Teknik Mengurutkan dan Membandingkan. Universitas Bengkulu. Gardner, H. (2011). Frame of Mind ; The theory of Multiple Intelegences. New York: Basic Book. Gimbert, B., & Cristol, D. (2004). Teaching Curriculum with Technology: Enhancing Children’s Technological Competence During Early Childhood. Early Childhood Education Journal, 31(1). Gulay, H. (2011a). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252. Gulay, H. (2011b). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252–257. Gunawan, I., & Palupi, A. R. (2012). Taksonomi Bloom-Revisi Ranah Kognitif; Kerangka Landasan untuk Pembelajaran, Pengajaran, dan Penilaian. Jurnal Pendidikan Dasar Dan Pembelajaran, 2 No.2, 100–108. Inan, H. Z., & Dogan-Temur, O. (2010). Understanding kindergarten teachers’ perspectives of teaching basic geometric shapes: A phenomenographic research. ZDM - International Journal on Mathematics Education, 42(5), 457–468. https://doi.org/10.1007/s11858-010- 0241-1 Jackman, H. I., Beaver, N. H., & Wyatt, S. S. (2014). Early Childhood Curriculum: A child’s connection to the world. (sixth edit). Canada: Cengage Learning. Kennedy, L. M., Tipps, S., & Johnson, A. (2008). Guiding Children’s Learning of Mathematic (Eleventh E; Belmot, Ed.). CA: Thomson Wadsworth. Mackintosh, B. B., & McCoy, D. C. (2019). Exploring Social Competence as a Mediator of Head Start’s Impact on Children’s Early Math Skills: Evidence from the Head Start Impact Study. Early Education and Development, 30(5), 655–677. https://doi.org/10.1080/10409289.2019.1576156 Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2011). Results in Science. Mirawati. (2017). Matematika Kreatif; Pembelajaran Matematika bagi Anak Usia Dini Melalui Kegiatan yang Menyenangkan dan Bermakna. Jurnal Anak Usia Dini Dan Pendidikan Anak Usia Dini, 3. Mohammad, M., & Mohammad, H. (2012). Computer integration into the early childhood curriculum. Education, 133(1), 97–116. National Research Council. (2009). Mathematics Learning in Early Chidhood Paths Toward Excellence and Equity (C. T. Cross, T. Woods, & H. Schweingruber, Eds.). Washinton D.C: The National Academies Press. Norton, A., & Nurnberger-Haag, J. (2018). Bridging frameworks for understanding numerical cognition. Journal of Numerical Cognition, 4(1), 1–8. https://doi.org/10.5964/jnc.v4i1.160 Novitasari, D. R. (2010). Pembangunan Media Pembelajaran Bahasa Inggris Untuk Siswa Kelas 1 Pada Sekolah Dasar Negeri 15 Sragen. Sentra Penelitian Engineering Dan Edukas, Volume 2 N. Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2017). Improving Mathematics Teaching in Kindergarten with Realistic Mathematical Education. Early Childhood Education Journal, 45(3), 369–378. https://doi.org/10.1007/s10643-015-0768-4 Papalia, Old, & Feldman. (2009). Human Development (Psikologi Perkembangan (Kesembilan). Jakarta: Kencana. Paquette, K. R., Fello, S. E., & Jalongo, M. R. (2007). The talking drawings strategy: Using primary children’s Illustrations and oral language to improve comprehension of expository text. Early Childhood Education Journal, 35(1), 65–73. https://doi.org/10.1007/s10643- 007-0184-5 Putra, L. D., & Ishartiwi. (2015). Pengembangan Multimedia Pembelajaram Interaktif Mengenal Angka dan Huruf untuk Anak Usia Dini. Jurnal Inovasi Teknologi Pendidikan, 2(2). Rich, B., & Thomas, C. (2009). Geometry: Includes Plane, Analytic, and Transformational Geometries. . (4th Editio). New York: McGraw-Hill. Rochanah, L. (2016). Pemanfaatan Media Berbasis Komputer Untuk Meningkatkan Kemampuan Huruf pada Anak Usia Dini (Urgensi Media Berbasis Komputer pada Peningkatan Kemampuan Mengenal Huruf ). Jurnal Program Studi PGRA, Volume 2 N, 1–8. Runtukahu, T., & Kandou, S. (2014). Pembelajaran matematika dasar bagi anak berkesulitan belajar. Yogyakarta: Ar-ruzz Media. Santrock, J. W. (2016). Children (Thirteenth). New York: McGraw-Hill Education. Sarama, J., & Clements, D. H. (2006). Mathematics, Young Students, and Computers: Software, Teaching Strategies and Professional Development. The Mathematics Educato, 9(2), 112– 134. Schoenfeld, A. H., & Stipek, D. (2011). Math Matters. Barkeley, California.Shilpa, S., & Sunita, M. (2013). A Study About Role of Multimedia in Early Childhood Education. International Journal of Humanities and Social Science Invention, 2(6). Siswono, T. Y. E. (2012). Belajar dan Mengajar Matematika Anak Usia Dini. Universitas Negeri Surabaya.Smaldino, S. E., Russel, J. D., & Lowther, D. L. (2014). Instructional Technology & Media for Learning (9th ed.). Jakarta: Kencana Prenada Media Group. Sudaryanti. (2006). Pengenalan Matematika Anak Usia Dini. Yogyakarta: FIP UNY. Sufa, F. F., & Setiawan, H. Y. (2017). Analisis Kebutuhan Anak Usia 4-6 Tahun Pada Pembelajaran Berbasis Komputer Pada Anak Usia Dini. Research Fair Unisri, 1(1). Suharjana, A. (2008). Pengenalan Bangun Ruang dan Sifat-sifatnya di SD. Yogyakarta: Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan Matematika. Sujiono, Y . N. (2014). Batasan dan Dasar T eori Pengembangan Kognitif. In Hakikat Pengembangan Kognitif (p. 12). Suryana, D. (2013). Pendidikan Anak Usia Dini (teori dan praktik pembelajaran). Padang: UNP Press. Susperreguy, M. I., & Davis-Kean, P. E. (2016). Maternal Math Talk in the Home and Math Skills in Preschool Children. Early Education and Development, 27(6), 841–857. https://doi.org/10.1080/10409289.2016.1148480 Suwarna. (2010). Pengembangan Multimedia Pembelajaran untuk Pembinaan Kreativitas Melukis di Taman Kanak-kanak. Jurnal Universitas Negeri Yogyakarta. Suziedelyte, A. (2012). Can video games affect children’s cognitive and non-cognitive skills? UNSW Australian School of Business Research Paper. https://doi.org/10.2139/ssrn.2140983 Tarigan, D. (2006). Pembelajaran Matematika Realistik. Jakarta: Departeman Pendidikan Nasional, Direktorat Jendral Pendidikan Tunggi, Direktorat Pembinaan Pendidikan Tenaga Kependidikan dan Ketenaga Perguruan Tinggi. Tatang, S. (2012). Ilmu Pendidikan. Bandung: Pustaka Setia.Trawick, M. (2007). Enemy Line ; Warfare, Childhood, and Play in Batticaloa. London: University of California Press. Trifunović, A., Čičević, S., Lazarević, D., Mitrović1, S., & Dragovi, M. (2018). Comparing Tablets (Touchscreen Devices and PCs in Preschool Children Education: Testing Spatial Relationship Using Geometric Syimbols Traffic Signs. IETI Transections on Economics and Safety, 2(1), 35–41. https://doi.org/10.6722/TES.201808_2(1).0004 Vitianingsih, A. V. (2016). Game Edukasi Sebagai Media Pembelajaran Pendidikan Anak Usia Dini. Jurnal INFORM, 1 No. 1. Wang, F., & Kinzie, M. B. (2010). Applying Technology to Inquiry- Based Learning in Early Childhood Education. Early Childhood Education Journal. Weil, M., Calhoun, E., & Joyce, B. (2011). Models of Teaching. New York.: New York. Zack, N. (2014). Philosophy of Science and Race. New York: Routledge. Zare, Sarikhani, Salarii, & Mansouri. (2016). The Impact Of E-learning on University Student’s Academic Achievement and Creativity. Journal of Technical Education and Training (JTET), 8(11)

    Automatic classification of human facial features based on their appearance

    Full text link
    [EN] Classification or typology systems used to categorize different human body parts have existed for many years. Nevertheless, there are very few taxonomies of facial features. Ergonomics, forensic anthropology, crime prevention or new human-machine interaction systems and online activities, like e-commerce, e-learning, games, dating or social networks, are fields in which classifications of facial features are useful, for example, to create digital interlocutors that optimize the interactions between human and machines. However, classifying isolated facial features is difficult for human observers. Previous works reported low inter-observer and intra-observer agreement in the evaluation of facial features. This work presents a computer-based procedure to automatically classify facial features based on their global appearance. This procedure deals with the difficulties associated with classifying features using judgements from human observers, and facilitates the development of taxonomies of facial features. Taxonomies obtained through this procedure are presented for eyes, mouths and noses.Fuentes-Hurtado, F.; Diego-Mas, JA.; Naranjo Ornedo, V.; Alcañiz Raya, ML. (2019). Automatic classification of human facial features based on their appearance. PLoS ONE. 14(1):1-20. https://doi.org/10.1371/journal.pone.0211314S120141Damasio, A. R. (1985). Prosopagnosia. Trends in Neurosciences, 8, 132-135. doi:10.1016/0166-2236(85)90051-7Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327. doi:10.1111/j.2044-8295.1986.tb02199.xTodorov, A. (2011). Evaluating Faces on Social Dimensions. Social Neuroscience, 54-76. doi:10.1093/acprof:oso/9780195316872.003.0004Little, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007). Facial appearance affects voting decisions. Evolution and Human Behavior, 28(1), 18-27. doi:10.1016/j.evolhumbehav.2006.09.002Porter, J. P., & Olson, K. L. (2001). Anthropometric Facial Analysis of the African American Woman. Archives of Facial Plastic Surgery, 3(3), 191-197. doi:10.1001/archfaci.3.3.191GĂŒndĂŒz Arslan, S., Genç, C., OdabaƟ, B., & Devecioğlu Kama, J. (2007). Comparison of Facial Proportions and Anthropometric Norms Among Turkish Young Adults With Different Face Types. Aesthetic Plastic Surgery, 32(2), 234-242. doi:10.1007/s00266-007-9049-yFerring, V., & Pancherz, H. (2008). Divine proportions in the growing face. American Journal of Orthodontics and Dentofacial Orthopedics, 134(4), 472-479. doi:10.1016/j.ajodo.2007.03.027Mane, D. R., Kale, A. D., Bhai, M. B., & Hallikerimath, S. (2010). Anthropometric and anthroposcopic analysis of different shapes of faces in group of Indian population: A pilot study. Journal of Forensic and Legal Medicine, 17(8), 421-425. doi:10.1016/j.jflm.2010.09.001Ritz-Timme, S., Gabriel, P., Tutkuviene, J., Poppa, P., ObertovĂĄ, Z., Gibelli, D., 
 Cattaneo, C. (2011). Metric and morphological assessment of facial features: A study on three European populations. Forensic Science International, 207(1-3), 239.e1-239.e8. doi:10.1016/j.forsciint.2011.01.035Ritz-Timme, S., Gabriel, P., ObertovĂ , Z., Boguslawski, M., Mayer, F., Drabik, A., 
 Cattaneo, C. (2010). A new atlas for the evaluation of facial features: advantages, limits, and applicability. International Journal of Legal Medicine, 125(2), 301-306. doi:10.1007/s00414-010-0446-4Kong, S. G., Heo, J., Abidi, B. R., Paik, J., & Abidi, M. A. (2005). Recent advances in visual and infrared face recognition—a review. Computer Vision and Image Understanding, 97(1), 103-135. doi:10.1016/j.cviu.2004.04.001Tavares, G., MourĂŁo, A., & MagalhĂŁes, J. (2016). Crowdsourcing facial expressions for affective-interaction. Computer Vision and Image Understanding, 147, 102-113. doi:10.1016/j.cviu.2016.02.001Buckingham, G., DeBruine, L. M., Little, A. C., Welling, L. L. M., Conway, C. A., Tiddeman, B. P., & Jones, B. C. (2006). Visual adaptation to masculine and feminine faces influences generalized preferences and perceptions of trustworthiness. Evolution and Human Behavior, 27(5), 381-389. doi:10.1016/j.evolhumbehav.2006.03.001Boberg M, Piippo P, Ollila E. Designing Avatars. DIMEA ‘08 Proc 3rd Int Conf Digit Interact Media Entertain Arts. ACM; 2008; 232–239. doi: https://doi.org/10.1145/1413634.1413679Rojas Q., M., Masip, D., Todorov, A., & Vitria, J. (2011). Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models. PLoS ONE, 6(8), e23323. doi:10.1371/journal.pone.0023323Laurentini, A., & Bottino, A. (2014). Computer analysis of face beauty: A survey. Computer Vision and Image Understanding, 125, 184-199. doi:10.1016/j.cviu.2014.04.006Alemany S, Gonzalez J, Nacher B, Soriano C, Arnaiz C, Heras H. Anthropometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies. 2010. pp. 307–315.VinuĂ©, G., Epifanio, I., & Alemany, S. (2015). Archetypoids: A new approach to define representative archetypal data. Computational Statistics & Data Analysis, 87, 102-115. doi:10.1016/j.csda.2015.01.018Jee, S., & Yun, M. H. (2016). An anthropometric survey of Korean hand and hand shape types. International Journal of Industrial Ergonomics, 53, 10-18. doi:10.1016/j.ergon.2015.10.004Kim, N.-S., & Do, W.-H. (2014). Classification of Elderly Women’s Foot Type. Journal of the Korean Society of Clothing and Textiles, 38(3), 305-320. doi:10.5850/jksct.2014.38.3.305Sarakon P, Charoenpong T, Charoensiriwath S. Face shape classification from 3D human data by using SVM. The 7th 2014 Biomedical Engineering International Conference. IEEE; 2014. pp. 1–5. doi: https://doi.org/10.1109/BMEiCON.2014.7017382PRESTON, T. A., & SINGH, M. (1972). Redintegrated Somatotyping. Ergonomics, 15(6), 693-700. doi:10.1080/00140137208924469Lin, Y.-L., & Lee, K.-L. (1999). Investigation of anthropometry basis grouping technique for subject classification. Ergonomics, 42(10), 1311-1316. doi:10.1080/001401399184965Malousaris, G. G., Bergeles, N. K., Barzouka, K. G., Bayios, I. A., Nassis, G. P., & Koskolou, M. D. (2008). Somatotype, size and body composition of competitive female volleyball players. Journal of Science and Medicine in Sport, 11(3), 337-344. doi:10.1016/j.jsams.2006.11.008Carvalho, P. V. R., dos Santos, I. L., Gomes, J. O., Borges, M. R. S., & Guerlain, S. (2008). Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays, 29(3), 273-284. doi:10.1016/j.displa.2007.08.010Fabri M, Moore D. The use of emotionally expressive avatars in Collaborative Virtual Environments. AISB’05 Convention:Proceedings of the Joint Symposium on Virtual Social Agents: Social Presence Cues for Virtual Humanoids Empathic Interaction with Synthetic Characters Mind Minding Agents. 2005. pp. 88–94. doi:citeulike-article-id:790934Sukhija, P., Behal, S., & Singh, P. (2016). Face Recognition System Using Genetic Algorithm. Procedia Computer Science, 85, 410-417. doi:10.1016/j.procs.2016.05.183Trescak T, Bogdanovych A, Simoff S, Rodriguez I. Generating diverse ethnic groups with genetic algorithms. Proceedings of the 18th ACM symposium on Virtual reality software and technology—VRST ‘12. New York, New York, USA: ACM Press; 2012. p. 1. doi: https://doi.org/10.1145/2407336.2407338Vanezis, P., Lu, D., Cockburn, J., Gonzalez, A., McCombe, G., Trujillo, O., & Vanezis, M. (1996). Morphological Classification of Facial Features in Adult Caucasian Males Based on an Assessment of Photographs of 50 Subjects. Journal of Forensic Sciences, 41(5), 13998J. doi:10.1520/jfs13998jTamir, A. (2011). Numerical Survey of the Different Shapes of the Human Nose. Journal of Craniofacial Surgery, 22(3), 1104-1107. doi:10.1097/scs.0b013e3182108eb3Tamir, A. (2013). Numerical Survey of the Different Shapes of Human Chin. Journal of Craniofacial Surgery, 24(5), 1657-1659. doi:10.1097/scs.0b013e3182942b77Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic Processing Predicts Face Recognition. Psychological Science, 22(4), 464-471. doi:10.1177/0956797611401753Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273-1278. doi:10.1016/j.visres.2011.04.002Donnelly, N., & Davidoff, J. (1999). The Mental Representations of Faces and Houses: Issues Concerning Parts and Wholes. Visual Cognition, 6(3-4), 319-343. doi:10.1080/135062899395000Davidoff, J., & Donnelly, N. (1990). Object superiority: A comparison of complete and part probes. Acta Psychologica, 73(3), 225-243. doi:10.1016/0001-6918(90)90024-aTanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225-245. doi:10.1080/14640749308401045Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual Differences in Holistic Processing Predict Face Recognition Ability. Psychological Science, 23(2), 169-177. doi:10.1177/0956797611420575Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. (2009). Contact and other-race effects in configural and component processing of faces. British Journal of Psychology, 100(4), 717-728. doi:10.1348/000712608x396503Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 101(2), 343-352. doi:10.1037/0033-295x.101.2.343Scharff, A., Palmer, J., & Moore, C. M. (2011). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18(4), 713-721. doi:10.3758/s13423-011-0101-1Meyers, E., & Wolf, L. (2007). Using Biologically Inspired Features for Face Processing. International Journal of Computer Vision, 76(1), 93-104. doi:10.1007/s11263-007-0058-8Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681-685. doi:10.1109/34.927467Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037-2041. doi:10.1109/tpami.2006.244Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711-720. doi:10.1109/34.598228Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. doi:10.1162/jocn.1991.3.1.71Klare B, Jain AK. On a taxonomy of facial features. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. IEEE; 2010. pp. 1–8. doi: https://doi.org/10.1109/BTAS.2010.5634533Chihaoui, M., Elkefi, A., Bellil, W., & Ben Amar, C. (2016). A Survey of 2D Face Recognition Techniques. Computers, 5(4), 21. doi:10.3390/computers5040021Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods, 47(4), 1122-1135. doi:10.3758/s13428-014-0532-5Asthana A, Zafeiriou S, Cheng S, Pantic M. Incremental face alignment in the wild. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014. pp. 1859–1866. doi: https://doi.org/10.1109/CVPR.2014.240Bag S, Barik S, Sen P, Sanyal G. A statistical nonparametric approach of face recognition: combination of eigenface & modified k-means clustering. Proceedings Second International Conference on Information Processing. 2008. p. 198.Doukas, C., & Maglogiannis, I. (2010). A Fast Mobile Face Recognition System for Android OS Based on Eigenfaces Decomposition. Artificial Intelligence Applications and Innovations, 295-302. doi:10.1007/978-3-642-16239-8_39Huang P, Huang Y, Wang W, Wang L. Deep embedding network for clustering. Proceedings—International Conference on Pattern Recognition. 2014. pp. 1532–1537. doi: https://doi.org/10.1109/ICPR.2014.272Dizaji KG, Herandi A, Deng C, Cai W, Huang H. Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization. Proceedings of the IEEE International Conference on Computer Vision. 2017. doi: https://doi.org/10.1109/ICCV.2017.612Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis [Internet]. Proceedings of the 33rd International Conference on International Conference on Machine Learning—Volume 48. JMLR.org; 2016. pp. 478–487. Available: https://dl.acm.org/citation.cfm?id=3045442Nousi, P., & Tefas, A. (2017). Discriminatively Trained Autoencoders for Fast and Accurate Face Recognition. Communications in Computer and Information Science, 205-215. doi:10.1007/978-3-319-65172-9_18Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3), 519. doi:10.1364/josaa.4.00051

    General Theory and Tools for Proving Algorithms in Nominative Data Systems

    Get PDF
    In this paper we introduce some new definitions for sequences of operations and extract general theorems about properties of iterative algorithms encoded in nominative data language [20] in the Mizar system [3], [1] in order to simplify the process of proving algorithms in the future. This paper continues verification of algorithms [10], [13], [12], [14] written in terms of simple-named complex-valued nominative data [6], [8], [18], [11], [15], [16]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and postconditions [17], [19], [7], [5].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical Aspects of Computer Science, 19(19–32), 1967.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27 (2):189–195, 2019. doi:10.2478/forma-2019-0018.Adrian Jaszczak and Artur KorniƂowicz. Partial correctness of a factorial algorithm. Formalized Mathematics, 27(2):181–187, 2019. doi:10.2478/forma-2019-0017.Artur KorniƂowicz. Partial correctness of a Fibonacci algorithm. Formalized Mathematics, 28(2):187–196, 2020. doi:10.2478/forma-2020-0016.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy ƚwiątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.28426927

    Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures

    Full text link
    [EN] Finite element method has been employed to establish the feasibility of a fixation plate made of PLA by additive manufacturing for femoral shaft fractures. For this purpose, Von Mises stress and the pressure contact between bones had been analysed. The proposed design has been compared with an actual titanium fixation plate as a point of reference.J. Ivorra-Martinez is funded with a FormaciĂłn de Profesorado Universitario (FPU) grant from the Spanish Government (Ministerio de Ciencia, InnovaciĂłn y Universidades), with reference FPU19/01759.Ivorra MartĂ­nez, J.; SellĂ©s CantĂł, MÁ.; SĂĄnchez Caballero, S.; Boronat Vitoria, T. (2021). Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures. Journal of Applied Research in Technology & Engineering. 2(1):11-16. https://doi.org/10.4995/jarte.2021.14712OJS111621Alizadeh-Osgouei, M., Li, Y., Wen, C. (2019). A comprehensive review of biodegradable synthetic polymerceramic composites and their manufacture for biomedical applications. Bioactive materials, 4(1), 22-36. https://doi.org/10.1016/j.bioactmat.2018.11.003Arabnejad, S., Johnston, B., Tanzer, M., Pasini, D. (2017). Fully porous 3D printed titanium femoral stem toreduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.https://doi.org/10.1002/jor.23445Elkins, J., Marsh, J.L., Lujan, T., Peindl, R., Kellam, J., Anderson, D D., & Lack, W. (2016). Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. The Journal of bone and joint surgery. American volume, 98(4), 276. https://doi.org/10.2106/JBJS.O.00684Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Progress in materials science, 54(3), 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004George, D., Allena, R., Remond, Y. (2017). Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Computer Methods in Biomechanics and Biomedical Engineering, 20(sup1), S91-S92, https://doi.org/10.1080/10255842.2017.1382876Guastaldi, F., Martini, A., Rocha, E., Hochuli-Vieira, E., Guastaldi, A. (2019). Ti-15Mo Alloy Decreases the Stress Concentration in Mandibular Angle Fracture Internal Fixation Hardware. Journal of Maxillofacial and Oral Surgery, 19, 314-320. https://doi.org/10.1007/s12663-019-01251-8Hayes, J., Richards, R. (2010). The use of titanium and stainless steel in fracture fixation. Expert review of medical devices, 7(6), 843-853. https://doi.org/10.1586/erd.10.53Heimbach, B., Grassie, K., Shaw, M.T., Olson, J.R., Wei, M. (2017). Effect of hydroxyapatite concentration on highmodulus composite for biodegradable bone-fixation devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1963-1971. https://doi.org/10.1002/jbm.b.33713Jahagirdar, R., Scammell, B.E. (2009). Principles of fracture healing and disorders of bone union. Surgery (Oxford), 27(2), 63-69. https://doi.org/10.1016/j.mpsur.2008.12.011Kanno, T., Sukegawa, S., Furuki, Y., Nariai, Y., Sekine, J. (2018). Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Japanese Dental Science Review, 54(3), 127-138. https://doi.org/10.1016/j.jdsr.2018.03.003Kim, H.J., Chang, S.H., Jung, H.J. (2012). The simulation of tissue differentiation at a fracture gap using a mechanoregulation theory dealing with deviatoric strains in the presence of a composite bone plate. Composites Part B: Engineering, 43(3), 978-987. https://doi.org/10.1016/j.compositesb.2011.09.011Klein, K.F., Hu, J., Reed, M.P., Hoff, C.N., Rupp, J.D. (2015). Development and validation of statistical models of femur geometry for use with parametric finite element models. Annals of biomedical engineering, 43(10), 2503-2514. https://doi.org/10.1007/s10439-015-1307-6Li, J., Li, Z., Ye, L., Zhao, X., Coates, P., Caton-Rose, F. (2017). Structure and biocompatibility improvement mechanism of highly oriented poly (lactic acid) produced by solid die drawing. European Polymer Journal, 97, 68-76. https://doi.org/10.1016/j.eurpolymj.2017.09.038Li, J., Qin, L., Yang, K., Ma, Z., Wang, Y., Cheng, L., Zhao, D. (2020). Materials evolution of bone plates for internal fixation of bone fractures: A review. Journal of Materials Science & Technology, 36, 190-208. https://doi.org/10.1016/j.jmst.2019.07.024Li, J., Yin, P., Zhang, L., Chen, H., Tang, P. (2019). Medial anatomical buttress plate in treating displaced femoral neck fracture a finite element analysis. Injury, 50(11), 1895-1900. https://doi.org/10.1016/j.injury.2019.08.024Liu, B., Zhang, S., Zhang, J., Xu, Z., Chen, Y., Liu, S., Yang, L. (2019). A personalized preoperative modeling system for internal fixation plates in long bone fracture surgery-A straightforward way from CT images to plate model. The International Journal of Medical Robotics and Computer Assisted Surgery, 15(5), e2029. https://doi.org/10.1002/rcs.2029McClellan, R.T. (2013). The variable angle hip fracture nail relative to the Gamma 3: A finite element analysis illustrating the same stiffness and fatigue characteristics. Advances in orthopedics, 2013. https://doi.org/10.1155/2013/143801Murr, L.E. (2016). Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. Journal of Materials Science & Technology, 32(10), 987-995. https://doi.org/10.1016/j.jmst.2016.08.011Narayanan, G., Vernekar, V.N., Kuyinu, E.L., Laurencin, C.T. (2016). Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced drug delivery reviews, 107, 247-276. https://doi.org/10.1016/j.addr.2016.04.015Nurettin, D., Burak, B. (2018). Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. Journal of Cranio-Maxillofacial Surgery, 46(12), 2182-2189. https://doi.org/10.1016/j.jcms.2018.09.030Parthasarathy, J. (2015). 14 Additive Manufacturing of Medical Devices. Additive Manufacturing: Innovations, Advances, and Applications, 369.Ridzwan, M., Shuib, S., Hassan, A., Shokri, A., Ibrahim, M. (2006). Optimization in implant topology to reduce stress shielding problem. Journal of Applied Sciences, 6(13), 2768-2773. https://doi.org/10.3923/jas.2006.2768.2773Sariali, E., Mouttet, A., Pasquier, G., Durante, E. (2009). Three-dimensional hip anatomy in osteoarthritis: analysis of the femoral offset. The Journal of arthroplasty, 24(6), 990-997. https://doi.org/10.1016/j.arth.2008.04.031Singh, D., Singh, R., Boparai, K.S. (2018). Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review. Journal of Manufacturing Processes, 31, 80-95. https://doi.org/10.1016/j.jmapro.2017.10.026Spiridon, I., Tanase, C.E. (2018). Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. International journal of biological macromolecules, 114, 855-863. https://doi.org/10.1016/j.ijbiomac.2018.03.140Tang, G., Liu, S.L., Wang, D.M., Wei, G.F., Wang, C.T. (2013). Finite element analysis in femoral fixation with TA3 titanium compressioll plate. In Advanced Materials Research, 647, 16-19. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.647.16Tymrak, B., Kreiger, M., Pearce, J.M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242-246. https://doi.org/10.1016/j.matdes.2014.02.038Wang, A.Y., Peng, J., Sun, M.X., Sui, X., Wang, X., Tian, Y., Lu, S.B. (2006). Biomechanical comparison of different structural bone grafting in femoral heads' defects of weight-bearing region. Journal of Medical Biomechanics, 4.Wang, J., Ma, J.X., Lu, B., Bai, H.H., Wang, Y., Ma, X.L. (2020). Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthopaedics & Traumatology: Surgery & Research, 106(1), 95-101. https://doi.org/10.1016/j.otsr.2019.04.027Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Xie, Y.M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141. https://doi.org/10.1016/j.biomaterials.2016.01.012Wu, C., Zheng, K., Fang, J., Steven, G.P., Li, Q. (2020). Time-dependent topology optimization of bone plates considering bone remodeling. Computer Methods in Applied Mechanics and Engineering, 359, 112702. https://doi.org/10.1016/j.cma.2019.112702Wu, K.J., Li, S.H., Yeh, K.T., Chen, H., Lee, R.P., Yu, T.C., Wang, J.H. (2019). The risk factors of nonunion after intramedullary nailing fixation of femur shaft fracture in middle age patients. Medicine, 98(29). https://doi.org/10.1097/MD.0000000000016559Wu, X., Wang, Z., Li, H., Li, Y., Wang, H., Tian, W. (2019). Biomechanical evaluation of osteoporotic fracture: Metal fixation versus absorbable fixation in Sawbones models. Injury, 50(7), 1272-1276. https://doi.org/10.1016/j.injury.2019.05.023Zhao, X., Niinomi, M., Nakai, M., Hieda, J., Ishimoto, T., Nakano, T. (2012). Optimization of Cr content of metastable ÎČ-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. Acta biomaterialia, 8(6), 2392-2400. https://doi.org/10.1016/j.actbio.2012.02.01

    Partial Correctness of a Fibonacci Algorithm

    Get PDF
    In this paper we introduce some notions to facilitate formulating and proving properties of iterative algorithms encoded in nominative data language [19] in the Mizar system [3], [1]. It is tested on verification of the partial correctness of an algorithm computing n-th Fibonacci number: i := 0 s := 0 b := 1 c := 0 while (i n)   c := s   s := b   b := c + s   i := i + 1 return s This paper continues verification of algorithms [10], [13], [12] written in terms of simple-named complex-valued nominative data [6], [8], [17], [11], [14], [15]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-conditions [16], [18], [7], [5].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science, 19(19–32), 1967.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27 (2):189–195, 2019. doi:10.2478/forma-2019-0018.Adrian Jaszczak and Artur KorniƂowicz. Partial correctness of a factorial algorithm. Formalized Mathematics, 27(2):181–187, 2019. doi:10.2478/forma-2019-0017.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy ƚwiątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.28218719

    Partial Correctness of an Algorithm Computing Lucas Sequences

    Get PDF
    In this paper we define some properties about finite sequences and verify the partial correctness of an algorithm computing n-th element of Lucas sequence [23], [20] with given P and Q coefficients as well as two first elements (x and y). The algorithm is encoded in nominative data language [22] in the Mizar system [3], [1]. i := 0 s := x b := y c := x while (i n) c := s s := b ps := p*s qc := q*c b := ps − qc i := i + j return s This paper continues verification of algorithms [10], [14], [12], [15], [13] written in terms of simple-named complex-valued nominative data [6], [8], [19], [11], [16], [17]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-conditions [18], [21], [7], [5].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical Aspects of Computer Science, 19(19–32), 1967.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur KorniƂowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur KorniƂowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27 (2):189–195, 2019. doi:10.2478/forma-2019-0018.Adrian Jaszczak. General theory and tools for proving algorithms in nominative data systems. Formalized Mathematics, 28(4):269–278, 2020. doi:10.2478/forma-2020-0024.Adrian Jaszczak and Artur KorniƂowicz. Partial correctness of a factorial algorithm. Formalized Mathematics, 27(2):181–187, 2019. doi:10.2478/forma-2019-0017.Artur KorniƂowicz. Partial correctness of a Fibonacci algorithm. Formalized Mathematics, 28(2):187–196, 2020. doi:10.2478/forma-2020-0016.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy ƚwiątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur KorniƂowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur KorniƂowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Thomas Koshy. Fibonacci and Lucas Numbers with Applications, Volume 1. John Wiley & Sons, Inc., 2017. ISBN 978-1118742129. doi:10.1002/9781118742327.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.Steven Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. Dover Publications, 2007. ISBN 978-0486462769.28427928

    Factors Affecting Teacher Readiness for Online Learning (TROL) in Early Childhood Education: TISE and TPACK

    Get PDF
    This study aims to find empirical information about the effect of Technological Pedagogical Content Knowledge (TPACK), and Technology Integration Self Efficacy (TISE) on Teacher Readiness for Online Learning (TROL). This study uses a quantitative survey method with path analysis techniques. This study measures the readiness of kindergarten teachers in distance learning in Tanah Datar Regency, West Sumatra Province, Indonesia with a sampling technique using simple random sampling involving 105 teachers. Empirical findings reveal that; 1) there is a direct positive effect of Technology Integration Self Efficacy on Teacher Readiness for Online Learning; 2) there is a direct positive effect of PACK on Teacher Readiness for Online Learning; 3) there is a direct positive effect of Technology Integration Self Efficacy on TPACK. If want to improve teacher readiness for online learning, Technological Pedagogical Content Knowledge (TPACK) must be improved by paying attention to Technology Integration Self Efficacy (TISE). Keywords: TROL, TPACK, TISE, Early Childhood Education References: Abbitt, J. T. (2011). An Investigation of the Relationship between Self-Efficacy Beliefs about Technology Integration and Technological Pedagogical Content Knowledge (TPACK) among Preservice Teachers. Journal of Digital Learning in Teacher Education, 27(4), 134–143. Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments, 1–13. https://doi.org/10.1080/10494820.2020.1813180 Adnan, M. (2020). Online learning amid the COVID-19 pandemic: Students perspectives. Journal of Pedagogical Sociology and Psychology, 1(2), 45–51. https://doi.org/10.33902/JPSP.2020261309 Alqurashi, E. (2016). Self-Efficacy in Online Learning Environments: A Literature Review. Contemporary Issues in Education Research (CIER), 9(1), 45–52. https://doi.org/10.19030/cier.v9i1.9549 Amir, H. (2016). Korelasi Pengaruh Faktor Efikasi Diri Dan Manajemen Diri Terhadap Motivasi Berprestasi Pada Mahasiswa Pendidikan Kimia Unversitas Bengkulu. Manajer Pendidikan, 10(4). Anderson, T. (2008). The theory and practice of online learning. Athabasca University Press. Anggraeni, N., Ridlo, S., & Setiati, N. (2018). The Relationship Between TISE and TPACK among Prospective Biology Teachers of UNNES. Journal of Biology Education, 7(3), 305–311. https://doi.org/10.15294/jbe.v7i3.26021 Ariani, D. N. (2015). Hubungan antara Technological Pedagogical Content Knowledge dengan Technology Integration Self Efficacy Guru Matematika di Sekolah Dasar. Muallimuna: Jurnal Madrasah Ibtidaiyah, 1(1), 79–91. Birisci, S., & Kul, E. (2019). Predictors of Technology Integration Self-Efficacy Beliefs of Preservice Teachers. Contemporary Educational Technology, 10(1). https://doi.org/10.30935/cet.512537 Bozkurt, A., Jung, I., Xiao, J., Vladimirschi, V., Schuwer, R., Egorov, G., Lambert, S. R., Al-freih, M., Pete, J., Olcott, D., Rodes, V., Aranciaga, I., Bali, M., Alvarez, A. V, Roberts, J., Pazurek, A., Raffaghelli, J. E., Panagiotou, N., CoĂ«tlogon, P. De, 
 Paskevicius, M. (2020). UVicSPACE: Research & Learning Repository Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education, 15(1), 1–126. Brinkley-Etzkorn, K. E. (2018). Learning to teach online: Measuring the influence of faculty development training on teaching effectiveness through a TPACK lens. The Internet and Higher Education, 38, 28–35. https://doi.org/10.1016/j.iheduc.2018.04.004 Butnaru, G. I., Niță, V., Anichiti, A., & BrĂźnză, G. (2021). The effectiveness of online education during covid 19 pandemic—A comparative analysis between the perceptions of academic students and high school students from romania. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13095311 Carliner, S. (2003). Modeling information for three-dimensional space: Lessons learned from museum exhibit design. Technical Communication, 50(4), 554–570. Cengiz, C. (2015). The development of TPACK, Technology Integrated Self-Efficacy and Instructional Technology Outcome Expectations of pre-service physical education teachers. Asia-Pacific Journal of Teacher Education, 43(5), 411–422. https://doi.org/10.1080/1359866X.2014.932332 Chou, P., & Ph, D. (2012). Effect of Students ’ Self -Directed Learning Abilities on Online Learning Outcomes: Two Exploratory Experiments in Electronic Engineering Department of Education. 2(6), 172–179. Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Burton, R., Glowatz, M., Magni, P. A., & Lam, S. (2020). COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3(1). https://doi.org/10.37074/jalt.2020.3.1.7 Dolighan, T., & Owen, M. (2021). Teacher efficacy for online teaching during the COVID-19 pandemic. Brock Education Journal, 30(1), 95. https://doi.org/10.26522/brocked.v30i1.851 Dong, Y., Chai, C. S., Sang, G.-Y., Koh, J. H. L., & Tsai, C.-C. (2015). Exploring the Profiles and Interplays of Pre-service and In-service Teachers’ Technological Pedagogical Content Knowledge (TPACK) in China. International Forum of Educational Technology & Society, 18(1), 158–169. Donitsa-Schmidt, S., & Ramot, R. (2020). Opportunities and challenges: Teacher education in Israel in the Covid-19 pandemic. Journal of Education for Teaching, 46(4), 586–595. https://doi.org/10.1080/02607476.2020.1799708 Elas, N. I. B., Majid, F. B. A., & Narasuman, S. A. (2019). Development of Technological Pedagogical Content Knowledge (TPACK) For English Teachers: The Validity and Reliability. International Journal of Emerging Technologies in Learning (IJET), 14(20), 18. https://doi.org/10.3991/ijet.v14i20.11456 Ghozali, I. (2011). Aplikasi multivariate dengan program IBM SPSS 19. Badan Penerbit Universitas Diponegoro. Giles, R. M., & Kent, A. M. (2016). An Investigation of Preservice Teachers ’ Self-Efficacy for Teaching with Technology. 1(1), 32–40. https://doi.org/10.20849/aes.v1i1.19 Gil-flores, J., & RodrĂ­guez-santero, J. (2017). Computers in Human Behavior Factors that explain the use of ICT in secondary-education classrooms: The role of teacher characteristics and school infrastructure. Computers in Human Behavior, 68, 441–449. https://doi.org/10.1016/j.chb.2016.11.057 Habibi, A., Yusop, F. D., & Razak, R. A. (2019). The role of TPACK in affecting pre-service language teachers’ ICT integration during teaching practices: Indonesian context. Education and Information Technologies. https://doi.org/10.1007/s10639-019-10040-2 Harris, J. B., & Hofer, M. J. (2011). Technological Pedagogical Content Knowledge (TPACK) in Action. Journal of Research on Technology in Education, 43(3), 211–229. https://doi.org/10.1080/15391523.2011.10782570 Hatlevik, I. K. R., & Hatlevik, O. E. (2018). Examining the relationship between teachers’ ICT self-efficacy for educational purposes, collegial collaboration, lack of facilitation and the use of ICT in teaching practice. Frontiers in Psychology, 9(JUN), 1–8. https://doi.org/10.3389/fpsyg.2018.00935 Hung, M. L. (2016). Teacher readiness for online learning: Scale development and teacher perceptions. Computers and Education, 94, 120–133. https://doi.org/10.1016/j.compedu.2015.11.012 Hung, M. L., Chou, C., Chen, C. H., & Own, Z. Y. (2010). Learner readiness for online learning: Scale development and student perceptions. Computers and Education, 55(3), 1080–1090. https://doi.org/10.1016/j.compedu.2010.05.004 Juanda, A., Shidiq, A. S., & Nasrudin, D. (2021). Teacher Learning Management: Investigating Biology Teachers’ TPACK to Conduct Learning During the Covid-19 Outbreak. Jurnal Pendidikan IPA Indonesia, 10(1), 48–59. https://doi.org/10.15294/jpii.v10i1.26499 Karatas, M. A.-K. (2020). COVID - 19 Pandemisinin Toplum Psikolojisine Etkileri ve Eğitime Yansımaları. Journal of Turkish Studies, Volume 15(Volume 15 Issue 4), 1–13. https://doi.org/10.7827/TurkishStudies.44336 Kaymak, Z. D., & Horzum, M. B. (2013). Relationship between online learning readiness and structure and interaction of online learning students. Kuram ve Uygulamada Egitim Bilimleri, 13(3), 1792–1797. https://doi.org/10.12738/estp.2013.3.1580 Keser, H., Karaoğlan Yılmaz, F. G., & Yılmaz, R. (2015). TPACK Competencies and Technology Integration Self-Efficacy Perceptions of Pre-Service Teachers. Elementary Education Online, 14(4), 1193–1207. https://doi.org/10.17051/io.2015.65067 Kim, J. (2020). Learning and Teaching Online During Covid-19: Experiences of Student Teachers in an Early Childhood Education Practicum. International Journal of Early Childhood, 52(2), 145–158. https://doi.org/10.1007/s13158-020-00272-6 Koehler, M. J., Mishra, P., & Cain, W. (2013). What is Technological Pedagogical Content Knowledge (TPACK)? Journal of Education, 193(3), 13–19. https://doi.org/10.1177/002205741319300303 Lee, Y., & Lee, J. (2014). Enhancing pre-service teachers’ self-efficacy beliefs for technology integration through lesson planning practice. Computers and Education, 73, 121–128. https://doi.org/10.1016/j.compedu.2014.01.001 Mallillin, L. L. D., Mendoza, L. C., Mallillin, J. B., Felix, R. C., & Lipayon, I. C. (2020). Implementation and Readiness of Online Learning Pedagogy: A Transition To Covid 19 Pandemic. European Journal of Open Education and E-Learning Studies, 5(2), 71–90. https://doi.org/10.46827/ejoe.v5i2.3321 Mishra, P. (2019). Considering Contextual Knowledge: The TPACK Diagram Gets an Upgrade. Journal of Digital Learning in Teacher Education, 35(2), 76–78. https://doi.org/10.1080/21532974.2019.1588611 Moorhouse, B. L. (2020). Adaptations to a face-to-face initial teacher education course ‘forced’ online due to the COVID-19 pandemic. Journal of Education for Teaching, 46(4), 609–611. https://doi.org/10.1080/02607476.2020.1755205 Mulyadi, D., Wijayatingsih, T. D., Budiastuti, R. E., Ifadah, M., & Aimah, S. (2020). Technological Pedagogical and Content Knowledge of ESP Teachers in Blended Learning Format. International Journal of Emerging Technologies in Learning (IJET), 15(06), 124. https://doi.org/10.3991/ijet.v15i06.11490 Murtaza, G., Mahmood, K., & Fatima, N. (2021). Readiness for Online Learning during COVID-19 pandemic: A survey of Pakistani LIS students The Journal of Academic Librarianship Readiness for Online Learning during COVID-19 pandemic: A survey of Pakistani LIS students. The Journal of Academic Librarianship, 47(3), 102346. https://doi.org/10.1016/j.acalib.2021.102346 Mustika, M., & Sapriya. (2019). Kesiapan Guru IPS dalam E-learning Berdasarkan: Survei melalui Pendekatan TPACK. 32–35. https://doi.org/10.1145/3306500.3306566 Niess, M. L. (2011). Investigating TPACK: Knowledge Growth in Teaching with Technology. Journal of Educational Computing Research, 44(3), 299–317. https://doi.org/10.2190/EC.44.3.c Oketch, & Otchieng, H. (2013). University of Nairobi, H. A. (2013). E-Learning Readiness Assessment Model in Kenyas’ Higher Education Institutions: A Case Study of University of Nairobi by: Oketch, Hada Achieng a Research Project Submitted in Partial Fulfillment of the Requirement of M. October. Pamuk, S., Ergun, M., Cakir, R., Yilmaz, H. B., & Ayas, C. (2015). Exploring relationships among TPACK components and development of the TPACK instrument. Education and Information Technologies, 20(2), 241–263. https://doi.org/10.1007/s10639-013-9278-4 Paraskeva, F., Bouta, H., & Papagianni, A. (2008). Individual characteristics and computer self-efficacy in secondary education teachers to integrate technology in educational practice. Computers and Education, 50(3), 1084–1091. https://doi.org/10.1016/j.compedu.2006.10.006 Putro, S. T., Widyastuti, M., & Hastuti, H. (2020). Problematika Pembelajaran di Era Pandemi COVID-19 Stud Kasus: Indonesia, Filipina, Nigeria, Ethiopia, Finlandia, dan Jerman. Geomedia Majalah Ilmiah Dan Informasi Kegeografian, 18(2), 50–64. Qudsiya, R., Widiyaningrum, P., & Setiati, N. (2018). The Relationship Between TISE and TPACK among Prospective Biology Teachers of UNNES. Journal of Biology Education, 7(3), 305–311. https://doi.org/10.15294/jbe.v7i3.26021 Reflianto, & Syamsuar. (2018). Pendidikan dan Tantangan Pembelajaran Berbasis Teknologi Informasi di Era Revolusi Industri 4.0. Jurnal Ilmiah Teknologi Pendidikan, 6(2), 1–13. Reski, A., & Sari, K. (2020). Analisis Kemampuan TPACK Guru Fisika Se-Distrik Merauke. Jurnla Kreatif Online, 8(1), 1–8. Ruggiero, D., & Mong, C. J. (2015). The teacher technology integration experience: Practice and reflection in the classroom. Journal of Information Technology Education, 14. Santika, V., Indriayu, M., & Sangka, K. B. (2021). Profil TPACK Guru Ekonomi di Indonesia sebagai Pendekatan Integrasi TIK selama Pembelajaran Jarak Jauh pada Masa Pandemi Covid-19. Duconomics Sci-Meet (Education & Economics Science Meet), 1, 356–369. https://doi.org/10.37010/duconomics.v1.5470 Semiz, K., & Ince, M. L. (2012). Pre-service physical education teachers’ technological pedagogical content knowledge, technology integration self-efficacy and instructional technology outcome expectations. Australasian Journal of Educational Technology, 28(7). https://doi.org/10.14742/ajet.800 Senthilkumar, Sivapragasam, & Senthamaraikannan. (2014). Role of ICT in Teaching Biology. International Journal of Research, 1(9), 780–788. Setiaji, B., & Dinata, P. A. C. (2020). Analisis kesiapan mahasiswa jurusan pendidikan fisika menggunakan e-learning dalam situasi pandemi Covid-19 Analysis of e-learning readiness on physics education students during Covid-19 pandemic. 6(1), 59–70. Siagian, H. S., Ritonga, T., & Lubis, R. (2021). Analisis Kesiapan Belajar Daring Siswa Kelas Vii Pada Masa Pandemi Covid-19 Di Desa Simpang. JURNAL MathEdu (Mathematic Education Journal), 4(2), 194–201. Sintawati, M., & Indriani, F. (2019). Pentingnya Technological Pedagogical Content Knowledge (TPACK) Guru di Era Revolusi Industri 4.0. Seminar Nasional Pagelaran Pendidikan Dasar Nasional (PPDN), 1(1), 417–422. Sojanah, J., Suwatno, Kodri, & Machmud, A. (2021). Factors affecting teachers’ technological pedagogical and content knowledge (A survey on economics teacher knowledge). Cakrawala Pendidikan, 40(1), 1–16. https://doi.org/10.21831/cp.v40i1.31035 Subhan, M. (2020). Analisis Penerapan Technological Pedagogical Content Knowledge Pada Proses Pembelajaran Kurikulum 2013 di Kelas V. International Journal of Technology Vocational Education and Training, 1(2), 174–179. Sum, T. A., & Taran, E. G. M. (2020). Kompetensi Pedagogik Guru PAUD dalam Perencanaan dan Pelaksanaan Pembelajaran. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 4(2), 543. https://doi.org/10.31004/obsesi.v4i2.287 Suryawati, E., Firdaus, L. N., & Yosua, H. (2014). Analisis keterampilan technological pedagogical content knowledge (TPCK) guru biologi SMA negeri kota Pekanbaru. Jurnal Biogenesis, 11(1), 67-72. Suyamto, J., Masykuri, M., & Sarwanto, S. (2020). Analisis Kemampuan Tpack (Technolgical, Pedagogical, and Content, Knowledge) Guru Biologi Sma Dalam Menyusun Perangkat Pembelajaran Materi Sistem Peredaran Darah. INKUIRI: Jurnal Pendidikan IPA, 9(1), 46. https://doi.org/10.20961/inkuiri.v9i1.41381 Tiara, D. R., & Pratiwi, E. (2020). Pentingnya Mengukur Kesiapan Guru Sebagai Dasar Pembelajaran Daring. Jurnal Golden Age, 04(2), 362–368. Trionanda, S. (2021). Analisis kesiapan dan pelaksanaan pembelajaran matematika jarak jauh berdasarkan profil TPACK di SD Katolik Tanjungpinang tahun ajaran 2020 / 2021. In Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 6, 69–76. Tsai, C.-C., & Chai, C. S. (2012). The ‘third’-order barrier for technology-integration instruction: Implications for teacher education. Australasian Journal of Educational Technology, 28(6). https://doi.org/10.14742/ajet.810 Wahyuni, F. T. (2019). Hubungan Antara Technological Pedagogical Content Knowledge (Tpack) Dengan Technology Integration Self Efficacy (Tise) Guru Matematika Di Madrasah Ibtidaiyah. Jurnal Pendidikan Matematika (Kudus), 2(2), 109–122. https://doi.org/10.21043/jpm.v2i2.6358 Wang, L., Ertmer, P. A., & Newby, T. J. (2014). Journal of Research on Technology in Education Increasing Preservice Teachers’ Self-Efficacy Beliefs for Technology Integration. Journal of Research on Technology in Education, 36(3), 37–41. https://doi.org/10.1080/15391523.2004.10782414 Warden, C. A., Yi-Shun, W., Stanworth, J. O., & Chen, J. F. (2020). Millennials’ technology readiness and self-efficacy in online classes. Innovations in Education and Teaching International, 00(00), 1–11. https://doi.org/10.1080/14703297.2020.1798269 Widarjono, A. (2015). Analisis Multivariat Terapan edisi kedua. UPP STIM YKPN. Wiresti, R. D. (2021). Analisis Dampak Work from Home pada Anak Usia Dini di Masa Pandemi Covid-19. Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini, 5(1), 641653. https://doi.org/10.31004/obsesi.v5i1.563 Yildiz Durak, H. (2019). Modeling of relations between K-12 teachers’ TPACK levels and their technology integration self-efficacy, technology literacy levels, attitudes toward technology and usage objectives of social networks. Interactive Learning Environments, 1–27. https://doi.org/10.1080/10494820.2019.1619591 Yudha, F., Aziz, A., & Tohir, M. (2021). Pendampingan Siswa Terdampak Covid-19 Melalui Media Animasi Sebagai Inovasi Pembelajaran Online. JMM (Jurnal Masyarakat Mandiri), 5(3), 964–978. YurdugĂŒl, H., & Demir, Ö. (2017). An investigation of Pre-service Teachers’ Readiness for E-learning at Undergraduate Level Teacher Training Programs: The Case of Hacettepe University. The Case of Hacettepe University. &nbsp

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Effect of Gamification on students’ motivation and learning achievement in Second Language Acquisition within higher education: a literature review 2011-2019

    Full text link
    [EN] This paper focuses on a fairly new motivational technique, the so-called Gamification, which consists of introducing game mechanics in non-game environments to promote motivation and engagement. By the turn of the 21rst century, Gamification took off in the business field and soon after became an attractive concept for researchers and professionals in education as it appears to be an increasingly popular method to motivate learners. Nevertheless, it is still a nascent field in terms of empirical evidence available to firmly support its educational benefits. This paper intends to shed some more light on this topic through a comprehensive review of literature published in the most prominent journals. The present study is framed within the field of Second Language Acquisition (SLA) in higher education and Computer-Assisted Language Learning, and focuses on the effects of gamified learning environments on student’s motivation and learning. A Meta-analysis method was used to explore relevant empirical research published between 2011 and 2019. After reviewing a corpus of 68  papers drawn from the leading databases Scopus and Web Of Science, and from which only 15 could be included in the study, we can point out two main findings: (i) there is still very limited literature in the field of SLA and, (ii) results seem to be predominantly positive in terms of motivation and engagement but only a few studies confirm clear interconnections with learning outcomes. The results suggest a lack of solid correlations between Gamification, motivation and cognitive processes. Azzouz Boudadi, N.; GutiĂ©rrez-ColĂłn, M. (2020). Effect of Gamification on students’ motivation and learning achievement in Second Language Acquisition within higher education: a literature review 2011-2019. The EuroCALL Review. 28(1):40-56. https://doi.org/10.4995/eurocall.2020.12974OJS4056281Bandura, A. (2012). Social cognitive theory. In P. A. Van Lange A. W. Kruglanski & E. T. Higgins Handbook of theories of social psychology: volume 1 (pp. 349-374). London: SAGE Publications Ltd. https://doi.org/10.4135/9781446249215.n18Barcena, E., & Sanfilippo, M. (2015). The audiovisual knowledge pill as a gamification strategy in second language online courses. Circulo de Linguistica Aplicada a La Comunicacion, 63, 22- 151. https://doi.org/10.5209/rev_CLAC.2015.v63.50172Bartle, R. (1996). Hearts, clubs, diamonds, spades: Players who suit MUDs. Journal of MUD Research, 1(1), 19-42. Retrieved from https://urlzs.com/HTjvG%0ABeatty, K. (2013). Teaching and researching computer-assisted language learning, second edition. London, UK: Routledge. https://doi.org/10.4324/9781315833774Berns, A., Isla-Montes, J.-L., Palomo-Duarte, M., & Dodero, J.-. (2016). Motivation, students' needs and learning outcomes: A hybrid game-based app for enhanced language learning. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2971-1Bustillo, J., Rivera, C., GuzmĂĄn, J., & Ramos, L. (2017). Benefits of using a mobile application in learning a foreign language. Sistemas & TelemĂĄtica, 15(40), 55- 68. https://doi.org/10.18046/syt.v15i40.2391Cardoso, W., Rueb, A., & Grimshaw, J. (2017). Can an interactive digital game help French learners improve their pronunciation? In K. Borthwick, L. Bradley & S. ThouĂ«sny (Eds), CALL in a climate of change: adapting to turbulent global conditions - short papers from EUROCALL 2017 (pp. 67-72). Researchpublishing.net. https://doi.org/10.14705/rpnet.2017.eurocall2017.691Castañeda, D. A., & Cho, M.-H. (2016). Use of a game-like application on a mobile device to improve accuracy in conjugating spanish verbs. Computer Assisted Language Learning, 29(7), 1195-1204. https://doi.org/10.1080/09588221.2016.1197950Chapelle, C. A. (2003). English Language Learning and Technology: Lectures on applied linguistics in the age of information and communication technology. Amsterdam/Philadelphia: John Benjamins Publishing Company. https://doi.org/10.1075/lllt.7Chapelle, C. A. (2009). The relationship between second language acquisition theory and computer-assisted language learning. Modern Language Journal, 93(1), 741- 753. https://doi.org/10.1111/j.1540-4781.2009.00970.xChapelle, C. A. (2016). Call in the year 2000: A look back from 2016. Language Learning and Technology, 20(2), 159-161. https://doi.org/http://hdl.handle.net/10125/44468Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. New York, USA: Academy of Management Review.Deci, E. L., & Ryan, R. M. (2010). Self-Determination. In The Corsini Encyclopedia of Psychology. https://doi.org/10.1002/9780470479216.corpsy0834Deterding, S., Khaled, R., Nacke L.E. and Dixon, D. (2011). Gamification: Toward a Definition. In CHI 2011 Gamification Workshop Proceedings, Vancouver, 2011 (pp. 1215.). https://doi.org/978-1-4503-0268-5/11/0Dichev, C., & Dicheva, D. (2017). Gamifying education: what is known, what is believed and what remains uncertain: a critical review. International Journal of Educational Technology in Higher Education, 14(1), 9. https://doi.org/10.1186/s41239-017-0042-5Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Educational Technology and Society, 18(3), 75- 88. https://doi.org/10.1109/EDUCON.2014.6826129DomĂ­nguez, A., Saenz-De-Navarrete, J., De-Marcos, L., FernĂĄndez-Sanz, L., PagĂ©s, C., & MartĂ­nez-HerrĂĄiz, J. J. (2013). Gamifying learning experiences: Practical implications and outcomes. Computers and Education. https://doi.org/10.1016/j.compedu.2012.12.020Dörnyei, Z., & Ryan, S. (2015). The psychology of the language learner revisited. Routledge. New York. https://doi.org/10.4324/9781315779553Figueroa Flores, J. F. (2015). Using gamification to enhance second language learning. Digital Education Review, 27, 32-54. Retrieved from http://revistes.ub.edu/index.php/der/article/view/11912/pdfGafni, R., Biran Achituv, D., & Rahmani, G. (2017). Learning Foreign Languages Using Mobile Applications. Journal of Information Technology Education: Research, 16, 301- 317. https://doi.org/10.28945/3855Gardner, R. C., & Lambert, W. E. (1972). Attitudes and Motivation in Second Language Learning. Rowley, MA: Newbury House Publishers.Godwin-Jones, R. (2015). Emerging technologies the evolving roles of language teachers: trained coders, local researchers, global citizens. Language, Learning and Technology, 19(1), 10-22.Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? - A literature review of empirical studies on gamification. In Proceedings of the Annual Hawaii International Conference on System Sciences (pp. 3025-3034). https://doi.org/10.1109/HICSS.2014.377Hew, K., Huang, B., Wah Samuel Chu, K., & Chiu, D. (2016). Engaging Asian students through game mechanics: Findings from two experiment studies. Computers & Education, 92-93, 221- 236. https://doi.org/10.1016/j.compedu.2015.10.010Hubbard, P. (2008). CALL and the Future of Language Teacher Education. CALICO Journal, 25(2), 175. https://doi.org/10.11139/cj.25.2.175-188Hung, H.-T. (2017). Clickers in the flipped classroom: bring your own device (BYOD) to promote student learning. Interactive Learning Environments, 25(8), 983-995. https://doi.org/10.1080/10494820.2016.1240090Iaremenko, N. (2017). Enhancing English language learners' motivation through online games. Information Technologies and Learning Tools, 59, 126-133. https://doi.org/10.33407/itlt.v59i3.1606Kapp, K. M. (2012). The Gamification of Learning and Instruction: Game-based Methods and Strategies for Training and Education. San Francisco, USA: Pfeiffer & Company. https://doi.org/10.1145/2207270.2211316KĂ©tyi, A. (2016, September 1). From Mobile Language Learning to Gamification: an Overlook of Research Results with Business Management Students over a Five-Year Period. Innovating in the Didactic Second Language Scenario Innovating in the Didactic Second Language Scenario: New Mobile, Open and Social Model, Edition: MonogrĂĄfico I., 45-59. Retrieved from https://urlzs.com/iZXtMLi, L. (2016). Benefits of CALL in lexico-grammatical acquisition. The Routledge Handbook of English Language Teaching (p. 463). London and New York: Routledge.Liu, Y., Holden, D., & Zheng, D. (2016). Analyzing students' Language Learning Experience in an Augmented Reality Mobile Game: An Exploration of an Emergent Learning Environment. Procedia - Social and Behavioral Sciences, 228, 369-374. https://doi.org/10.1016/j.sbspro.2016.07.055MacIntyre, P. D. (2002). Motivation, anxiety and emotion in second language acquisition. Individual Differences and Instructed Language Learning, 2, 45-68. https://doi.org/10.1075/lllt.2.05macMarczewski, A. (2019). Introduction to Gamification Part 4: Motivation (R.A.M.P, Maslow, SDT and more). Retrieved from https://www.gamified.uk/2019/01/30/introduction-to-gamification-part4-motivation-r-a-m-p-maslow-sdt-and-more/Mateo-Gallego, C., & Ruiz Yepes, G. (2018). Terapias de errores con aprendizaje mĂłvil y gamificaciĂłn: estudio comparativo en español de los negocios. Folios, 48, 121-135. https://doi.org/10.17227/folios.48-8139Munday, P. (2016). The case for using Duolingo as part of the language classroom experience. RIED. Revista Iberoamericana de EducaciĂłn a Distancia, 19 (1), 83-101. https://doi.org/10.5944/ried.19.1.14581Palomo-Duarte, M., Berns, A., Cejas, A., Dodero, J. M., Caballero, J. A., & Ruiz-Rube, I. (2016). Assessing Foreign Language Learning Through Mobile Game-Based Learning Environments. International Journal of Human Capital and Information Technology Professionals (IJHCITP), 7(2), 53-67. https://doi.org/10.4018/IJHCITP.2016040104Perry, B. (2015). Gamifying French Language Learning: A Case Study Examining a Quest-based, Augmented Reality Mobile Learning-tool. Procedia - Social and Behavioral Sciences, 174, 2308- 2315. https://doi.org/10.1016/j.sbspro.2015.01.892Plass, J. L., Homer, B. D., & Kinzer, C. K. (2015). Foundations of Game-Based Learning. Educational Psychologist, 50, 258-283. https://doi.org/10.1080/00461520.2015.1122533Purgina, M., Mozgovoy, M., & Blake, J. (2019). WordBricks: Mobile Technology and Visual Grammar Formalism for Gamification of Natural Language Grammar Acquisition. Journal of Educational Computing Research. https://doi.org/10.1177/0735633119833010Rickinson, M., & May, H. (2009). A Comparative Study of Methodological Approaches to Reviewing Literature. UK : Higher Education AcademySeverengiz, M., Roeder, I., Schindler, K., & Seliger, G. (2018). Influence of Gaming Elements on Summative Assessment in Engineering Education for Sustainable Manufacturing. In Procedia Manufacturing (pp. 429-437). https://doi.org/10.1016/j.promfg.2018.02.141Sheldon, L. (2012). The Multiplayer Classroom: Designing Coursework as a Game. Boston, MA: Cengage Learning.Skinner, B. F. (1958). Teaching machines. Science. https://doi.org/10.1126/science.128.3330.969Werbach, K., & Hunter, D. (2012a). For the win: How game thinking can revolutionize your business. Wharton Digital Press.Werbach, K., & Hunter, D. (2012b). The Gamification Toolkit Game Elements. In For the Win: How Game Thinking Can Revolutionize Your Business. https://doi.org/10.1017/CBO9781107415324.004Zichermann, G. (2011). Intrinsic and extrinsic motivation in Gamification. Retrieved from https://www.gamification.co/2011/10/27/intrinsic-and-extrinsic-motivation-in-gamification
    • 

    corecore