708,528 research outputs found

    Formally Real Fields

    Get PDF
    Summary We extend the algebraic theory of ordered fields [7, 6] in Mizar [1, 2, 3]: we show that every preordering can be extended into an ordering, i.e. that formally real and ordered fields coincide.We further prove some characterizations of formally real fields, in particular the one by Artin and Schreier using sums of squares [4]. In the second part of the article we define absolute values and the square root function [5].Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdansk Wita Stwosza 57, 80-308 Gdansk, PolandGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: 10.1007/978-3-319-20615-8 17.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi: 10.1007/s10817-015-9345-1.Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Infor mation Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363-371, 2016. doi: 10.15439/2016F520.Nathan Jacobson. Lecture Notes in Abstract Algebra, III. Theory of Fields and Galois Theory. Springer-Verlag, 1964.Manfred Knebusch and Claus Scheiderer. Einf¨uhrung in die reelle Algebra. Vieweg-Verlag, 1989.Alexander Prestel. Lectures on Formally Real Fields. Springer-Verlag, 1984.Knut Radbruch. Geordnete K¨orper. Lecture Notes, University of Kaiserslautern, Germany, 1991.Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.Christoph Schwarzweller. Ordered rings and fields. Formalized Mathematics, 25(1):63-72, 2017. doi: 10.1515/forma-2017-0006.Christoph Schwarzweller. On roots of polynomials and algebraically closed fields. Formalized Mathematics, 25(3):185-195, 2017. doi: 10.1515/forma-2017-0018.Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333-349, 2015. doi: 10.1515/forma-2015-0027.25424925

    On potential cognitive abilities in the machine kingdom

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11023-012-9299-6Animals, including humans, are usually judged on what they could become, rather than what they are. Many physical and cognitive abilities in the ‘animal kingdom’ are only acquired (to a given degree) when the subject reaches a certain stage of development, which can be accelerated or spoilt depending on how the environment, training or education is. The term ‘potential ability’ usually refers to how quick and likely the process of attaining the ability is. In principle, things should not be different for the ‘machine kingdom’. While machines can be characterised by a set of cognitive abilities, and measuring them is already a big challenge, known as ‘universal psychometrics’, a more informative, and yet more challenging, goal would be to also determine the potential cognitive abilities of a machine. In this paper we investigate the notion of potential cognitive ability for machines, focussing especially on universality and intelligence. We consider several machine characterisations (non-interactive and interactive) and give definitions for each case, considering permanent and temporal potentials. From these definitions, we analyse the relation between some potential abilities, we bring out the dependency on the environment distribution and we suggest some ideas about how potential abilities can be measured. Finally, we also analyse the potential of environments at different levels and briefly discuss whether machines should be designed to be intelligent or potentially intelligent.We thank the anonymous reviewers for their comments, which have helped to significantly improve this paper. This work was supported by the MEC-MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT. Finally, we thank three pioneers ahead of their time(s). We thank Ray Solomonoff (1926-2009) and Chris Wallace (1933-2004) for all that they taught us, directly and indirectly. And, in his centenary year, we thank Alan Turing (1912-1954), with whom it perhaps all began.Hernández-Orallo, J.; Dowe, DL. (2013). On potential cognitive abilities in the machine kingdom. Minds and Machines. 23(2):179-210. https://doi.org/10.1007/s11023-012-9299-6S179210232Amari, S., Fujita, N., Shinomoto, S. (1992). Four types of learning curves. Neural Computation 4(4), 605–618.Aristotle (Translation, Introduction, and Commentary by Ross, W.D.) (1924). Aristotle’s Metaphysics. Oxford: Clarendon Press.Barmpalias, G. & Dowe, D. L. (2012). Universality probability of a prefix-free machine. Philosophical transactions of the Royal Society A [Mathematical, Physical and Engineering Sciences] (Phil Trans A), Theme Issue ‘The foundations of computation, physics and mentality: The Turing legacy’ compiled and edited by Barry Cooper and Samson Abramsky, 370, pp 3488–3511.Chaitin, G. J. (1966). On the length of programs for computing finite sequences. Journal of the Association for Computing Machinery, 13, 547–569.Chaitin, G. J. (1975). A theory of program size formally identical to information theory. Journal of the ACM (JACM), 22(3), 329–340.Dowe, D. L. (2008, September). Foreword re C. S. Wallace. Computer Journal, 51(5):523–560, Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L. (2011). MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: P. S. Bandyopadhyay, M. R. Forster (Eds), Handbook of the philosophy of science—Volume 7: Philosophy of statistics (pp. 901–982). Amsterdam: Elsevier.Dowe, D. L. & Hajek, A. R. (1997a). A computational extension to the turing test. Technical report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp, http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html .Dowe, D. L. & Hajek, A. R. (1997b, September). A computational extension to the Turing Test. in Proceedings of the 4th conference of the Australasian Cognitive Science Society, University of Newcastle, NSW, Australia, 9 pp.Dowe, D. L. & Hajek, A. R. (1998, February). A non-behavioural, computational extension to the Turing Test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106.Dowe, D. L., Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: Implications of a quantitative analysis. In Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13124–13131.Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(4), 120–123.Goertzel, B. & Bugaj, S. V. (2009). AGI preschool: A framework for evaluating early-stage human-like AGIs. In Proceedings of the second international conference on artificial general intelligence (AGI-09), pp 31–36.Hernández-Orallo, J. (2000a). Beyond the Turing Test. Journal of Logic, Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000b). On the computational measurement of intelligence factors. In A. Meystel (Ed), Performance metrics for intelligent systems workshop (pp 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2010). On evaluating agent performance in a fixed period of time. In M. Hutter et al. (Eds.), Proceedings of 3rd international conference on artificial general intelligence (pp. 25–30). New York: Atlantis Press.Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J. & Dowe, D. L. (2011, April). Mammals, machines and mind games. Who’s the smartest?. The conversation, http://theconversation.edu.au/mammals-machines-and-mind-games-whos-the-smartest-566 .Hernández-Orallo J., Dowe D. L., España-Cubillo S., Hernández-Lloreda M. V., & Insa-Cabrera J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In: J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), Artificial general intelligence 2011, volume 6830, LNAI series, pp. 82–91. New York: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2012a, March). Measuring cognitive abilities of machines, humans and non-human animals in a unified way: towards universal psychometrics. Technical report 2012/267, Faculty of Information Technology, Clayton School of I.T., Monash University, Australia.Hernández-Orallo, J., Insa, J., Dowe, D. L., & Hibbard, B. (2012b). Turing tests with Turing machines. In A. Voronkov (Ed.), The Alan Turing centenary conference, Turing-100, Manchester, volume 10 of EPiC Series, pp 140–156.Hernández-Orallo, J., & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of the international symposium of engineering of intelligent systems (EIS’98) (pp 146–163). Switzerland: ICSC Press.Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 1360–1366.Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21(1), 102–110.Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of educational psychology, 57(5), 253.Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer.Insa-Cabrera, J., Dowe, D. L., España, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011a). Comparing humans and AI agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp 122–132. Springer, New York.Insa-Cabrera, J., Dowe, D. L., & Hernández-Orallo, J. (2011b). Evaluating a reinforcement learning algorithm with a general intelligence test. In CAEPIA—Lecture Notes in Artificial Intelligence (LNAI), volume 7023, pages 1–11. Springer, New York.Kearns, M. & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning, 49(2), 209–232.Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7.Legg, S. (2008, June). Machine super intelligence. Department of Informatics, University of Lugano.Legg, S. & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Legg, S., & Veness, J. (2012). An approximation of the universal intelligence measure. In Proceedings of Solomonoff 85th memorial conference. New York: Springer.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Li, M., Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed). New York: Springer.Little, V. L., & Bailey, K. G. (1972). Potential intelligence or intelligence test potential? A question of empirical validity. Journal of Consulting and Clinical Psychology, 39(1), 168.Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In Proceedings of the national conference on artificial intelligence, AAAI (pp. 486–502). New Jersey: Wiley.Mahrer, A. R. (1958). Potential intelligence: A learning theory approach to description and clinical implication. The Journal of General Psychology, 59(1), 59–71.Oppy, G., & Dowe, D. L. (2011). The Turing Test. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford University. http://plato.stanford.edu/entries/turing-test/ .Orseau, L. & Ring, M. (2011). Self-modification and mortality in artificial agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pages 1–10. Springer, New York.Ring, M. & Orseau, L. (2011). Delusion, survival, and intelligent agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp. 11–20. Springer, New York.Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., et al. (2007). Checkers is solved. Science, 317(5844), 1518.Solomonoff, R. J. (1962). Training sequences for mechanized induction. In M. Yovits, G. Jacobi, & G. Goldsteins (Eds.), Self-Organizing Systems, 7, 425–434.Solomonoff, R. J. (1964). A formal theory of inductive inference. Information and Control, 7(1–22), 224–254.Solomonoff, R. J. (1967). Inductive inference research: Status, Spring 1967. RTB 154, Rockford Research, Inc., 140 1/2 Mt. Auburn St., Cambridge, Mass. 02138, July 1967.Solomonoff, R. J. (1978). Complexity-based induction systems: comparisons and convergence theorems. IEEE Transactions on Information Theory, 24(4), 422–432.Solomonoff, R. J. (1984). Perfect training sequences and the costs of corruption—A progress report on induction inference research. Oxbridge research.Solomonoff, R. J. (1985). The time scale of artificial intelligence: Reflections on social effects. Human Systems Management, 5, 149–153.Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: The MIT press.Thorp, T. R., & Mahrer, A. R. (1959). Predicting potential intelligence. Journal of Clinical Psychology, 15(3), 286–288.Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.Veness, J., Ng, K. S., Hutter, M., & Silver, D. (2011). A Monte Carlo AIXI approximation. Journal of Artificial Intelligence Research, JAIR, 40, 95–142.Wallace, C. S. (2005). Statistical and inductive inference by minimum message length. New York: Springer.Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computer Journal, 11, 185–194.Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283.Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4), 330–337.Woergoetter, F., & Porr, B. (2008). Reinforcement learning. Scholarpedia, 3(3), 1448.Zvonkin, A. K., & Levin, L. A. (1970). The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys, 25, 83–124

    On environment difficulty and discriminating power

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-014-9257-1This paper presents a way to estimate the difficulty and discriminating power of any task instance. We focus on a very general setting for tasks: interactive (possibly multiagent) environments where an agent acts upon observations and rewards. Instead of analysing the complexity of the environment, the state space or the actions that are performed by the agent, we analyse the performance of a population of agent policies against the task, leading to a distribution that is examined in terms of policy complexity. This distribution is then sliced by the algorithmic complexity of the policy and analysed through several diagrams and indicators. The notion of environment response curve is also introduced, by inverting the performance results into an ability scale. We apply all these concepts, diagrams and indicators to two illustrative problems: a class of agent-populated elementary cellular automata, showing how the difficulty and discriminating power may vary for several environments, and a multiagent system, where agents can become predators or preys, and may need to coordinate. Finally, we discuss how these tools can be applied to characterise (interactive) tasks and (multi-agent) environments. These characterisations can then be used to get more insight about agent performance and to facilitate the development of adaptive tests for the evaluation of agent abilities.I thank the reviewers for their comments, especially those aiming at a clearer connection with the field of multi-agent systems and the suggestion of better approximations for the calculation of the response curves. The implementation of the elementary cellular automata used in the environments is based on the library 'CellularAutomaton' by John Hughes for R [58]. I am grateful to Fernando Soler-Toscano for letting me know about their work [65] on the complexity of 2D objects generated by elementary cellular automata. I would also like to thank David L. Dowe for his comments on a previous version of this paper. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT, and the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).José Hernández-Orallo (2015). On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems. 29(3):402-454. https://doi.org/10.1007/s10458-014-9257-1S402454293Anderson, J., Baltes, J., & Cheng, C. T. (2011). Robotics competitions as benchmarks for ai research. The Knowledge Engineering Review, 26(01), 11–17.Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. In Proceedings of the National Conference on Artificial Intelligence (pp. 119–125). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Antunes, L., Fortnow, L., van Melkebeek, D., & Vinodchandran, N. V. (2006). Computational depth: Concept and applications. Theoretical Computer Science, 354(3), 391–404. Foundations of Computation Theory (FCT 2003), 14th Symposium on Fundamentals of Computation Theory 2003.Arai, K., Kaminka, G. A., Frank, I., & Tanaka-Ishii, K. (2003). Performance competitions as research infrastructure: Large scale comparative studies of multi-agent teams. Autonomous Agents and Multi-Agent Systems, 7(1–2), 121–144.Ashcraft, M. H., Donley, R. D., Halas, M. A., & Vakali, M. (1992). Chapter 8 working memory, automaticity, and problem difficulty. In Jamie I.D. Campbell (Ed.), The nature and origins of mathematical skills, volume 91 of advances in psychology (pp. 301–329). North-Holland.Ay, N., Müller, M., & Szkola, A. (2010). Effective complexity and its relation to logical depth. IEEE Transactions on Information Theory, 56(9), 4593–4607.Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35(10), 1373–1380.Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak using Jason. London: Wiley. com.Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S. et al. (2000). Decision-theoretic, high-level agent programming in the situation calculus. In Proceedings of the National Conference on Artificial Intelligence (pp. 355–362). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(2), 156–172.Chaitin, G. J. (1977). Algorithmic information theory. IBM Journal of Research and Development, 21, 350–359.Chedid, F. B. (2010). Sophistication and logical depth revisited. In 2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA) (pp. 1–4). IEEE.Cheeseman, P., Kanefsky, B. & Taylor, W. M. (1991). Where the really hard problems are. In Proceedings of IJCAI-1991 (pp. 331–337).Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and Multi-agent Systems, 16(3), 214–248.Delahaye, J. P. & Zenil, H. (2011). Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation, 219(1), 63–77Dowe, D. L. (2008). Foreword re C. S. Wallace. Computer Journal, 51(5), 523–560. Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L., & Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Du, D. Z., & Ko, K. I. (2011). Theory of computational complexity (Vol. 58). London: Wiley-Interscience.Elo, A. E. (1978). The rating of chessplayers, past and present (Vol. 3). London: Batsford.Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. London: Lawrence Erlbaum.Fatès, N. & Chevrier, V. (2010). How important are updating schemes in multi-agent systems? an illustration on a multi-turmite model. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1 (pp. 533–540). International Foundation for Autonomous Agents and Multiagent Systems.Ferber, J. & Müller, J. P. (1996). Influences and reaction: A model of situated multiagent systems. In Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96) (pp. 72–79).Ferrando, P. J. (2009). Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Applied Psychological Measurement, 33(1), 9–24.Ferrando, P. J. (2012). Assessing the discriminating power of item and test scores in the linear factor-analysis model. Psicológica, 33, 111–139.Gent, I. P., & Walsh, T. (1994). Easy problems are sometimes hard. Artificial Intelligence, 70(1), 335–345.Gershenson, C. & Fernandez, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.Gruner, S. (2010). Mobile agent systems and cellular automata. Autonomous Agents and Multi-agent Systems, 20(2), 198–233.Hardman, D. K., & Payne, S. J. (1995). Problem difficulty and response format in syllogistic reasoning. The Quarterly Journal of Experimental Psychology, 48(4), 945–975.He, J., Reeves, C., Witt, C., & Yao, X. (2007). A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evolutionary Computation, 15(4), 435–443.Hernández-Orallo, J. (2000). Beyond the turing test. Journal of Logic Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000). On the computational measurement of intelligence factors. In A. Meystel (Ed.), Performance metrics for intelligent systems workshop (pp. 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2000). Thesis: Computational measures of information gain and reinforcement in inference processes. AI Communications, 13(1), 49–50.Hernández-Orallo, J. (2010). A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In M. Hutter et al. (Ed.), 3rd International Conference on Artificial General Intelligence (pp. 182–183). Atlantis Press Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf .Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Insa-Cabrera, J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 82–91). Berlin: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2014). Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research, 27, 50–74.Hernández-Orallo, J., Insa, J., Dowe, D. L. & Hibbard, B. (2012). Turing tests with turing machines. In A. Voronkov (Ed.), The Alan Turing Centenary Conference, Turing-100, Manchester, 2012, volume 10 of EPiC Series (pp. 140–156).Hernández-Orallo, J. & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of International Symposium of Engineering of Intelligent Systems (EIS’98) (pp. 146–163). ICSC Press.Hibbard, B. (2009). Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence, 1(1), 54–61.Hoos, H. H. (1999). Sat-encodings, search space structure, and local search performance. In 1999 International Joint Conference on Artificial Intelligence (Vol. 16, pp. 296–303).Insa-Cabrera, J., Benacloch-Ayuso, J. L., & Hernández-Orallo, J. (2012). On measuring social intelligence: Experiments on competition and cooperation. In J. Bach, B. Goertzel, & M. Iklé (Eds.), AGI, volume 7716 of lecture notes in computer science (pp. 126–135). Berlin: Springer.Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011). Comparing humans and AI agents. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 122–132). Berlin: Springer.Knuth, D. E. (1973). Sorting and searching, volume 3 of the art of computer programming. Reading, MA: Addison-Wesley.Kotovsky, K., & Simon, H. A. (1990). What makes some problems really hard: Explorations in the problem space of difficulty. Cognitive Psychology, 22(2), 143–183.Legg, S. (2008). Machine super intelligence. PhD thesis, Department of Informatics, University of Lugano, June 2008.Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Leonetti, M. & Iocchi, L. (2010). Improving the performance of complex agent plans through reinforcement learning. In Proceedings of the 2010 International Conference on Autonomous Agents and Multiagent Systems (Vol. 1, pp. 723–730). International Foundation for Autonomous Agents and Multiagent Systems.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Levin, L. A. (1986). Average case complete problems. SIAM Journal on Computing, 15, 285.Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). Berlin: Springer.Low, C. K., Chen, T. Y., & Rónnquist, R. (1999). Automated test case generation for bdi agents. Autonomous Agents and Multi-agent Systems, 2(4), 311–332.Madden, M. G., & Howley, T. (2004). Transfer of experience between reinforcement learning environments with progressive difficulty. Artificial Intelligence Review, 21(3), 375–398.Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological Bulletin, 115(2), 300.Michel, F. (2004). Formalisme, outils et éléments méthodologiques pour la modélisation et la simulation multi-agents. PhD thesis, Université des sciences et techniques du Languedoc, Montpellier.Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.Orponen, P., Ko, K. I., Schöning, U., & Watanabe, O. (1994). Instance complexity. Journal of the ACM (JACM), 41(1), 96–121.Simon, H. A., & Kotovsky, K. (1963). Human acquisition of concepts for sequential patterns. Psychological Review, 70(6), 534.Team, R., et al. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Whiteson, S., Tanner, B., & White, A. (2010). The reinforcement learning competitions. The AI Magazine, 31(2), 81–94.Wiering, M., & van Otterlo, M. (Eds.). (2012). Reinforcement learning: State-of-the-art. Berlin: Springer.Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.Zatuchna, Z., & Bagnall, A. (2009). Learning mazes with aliasing states: An LCS algorithm with associative perception. Adaptive Behavior, 17(1), 28–57.Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1–28.Zenil, H. (2011). Une approche expérimentale à la théorie algorithmique de la complexité. PhD thesis, Dissertation in fulfilment of the degree of Doctor in Computer Science, Université de Lille.Zenil, H., Soler-Toscano, F., Delahaye, J. P. & Gauvrit, N. (2012). Two-dimensional kolmogorov complexity and validation of the coding theorem method by compressibility. arXiv, preprint arXiv:1212.6745

    Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Full text link
    In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional nearinfrared spectroscopy (fNIRS) and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made

    IMPROVING THE DEPENDABILITY OF DESTINATION RECOMMENDATIONS USING INFORMATION ON SOCIAL ASPECTS

    Get PDF
    Prior knowledge of the social aspects of prospective destinations can be very influential in making travel destination decisions, especially in instances where social concerns do exist about specific destinations. In this paper, we describe the implementation of an ontology-enabled Hybrid Destination Recommender System (HDRS) that leverages an ontological description of five specific social attributes of major Nigerian cities, and hybrid architecture of content-based and case-based filtering techniques to generate personalised top-n destination recommendations. An empirical usability test was conducted on the system, which revealed that the dependability of recommendations from Destination Recommender Systems (DRS) could be improved if the semantic representation of social attributes information of destinations is made a factor in the destination recommendation process
    corecore