517,072 research outputs found

    A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach

    Full text link
    [EN] Duct junctions play a major role in the operation and design of most piping systems. The objective of this paper is to establish the potential of a staggered mesh finite volume model as a way to improve the description of the effect of simple duct junctions on an otherwise one-dimensional flow system, such as the intake or exhaust of an internal combustion engine. Specific experiments have been performed in which different junctions have been characterized as a multi-port, and that have provided precise and reliable results on the propagation of pressure pulses across junctions. The results obtained have been compared to simulations performed with a staggered mesh finite volume method with different flux limiters and different meshes and, as a reference, have also been compared with the results of a more conventional pressure loss- based model. The results indicate that the staggered mesh finite volume model provides a closer description of wave dynamics, even if further work is needed to establish the optimal calculation settings.Manuel Hernandez is partially supported through contract FPI-S2-2015-1064 of Programa de Apoyo para la Investigacin y Desarrollo (PAID) of Universitat Politecnica de Valencia.Torregrosa, AJ.; Broatch, A.; García-Cuevas González, LM.; Hernández-Marco, M. (2017). A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach. Applied Sciences. 7(5):1-25. https://doi.org/10.3390/app7050480S12575Payri, F., Reyes, E., & Galindo, J. (2000). Analysis and Modeling of the Fluid-Dynamic Effects in Branched Exhaust Junctions of ICE. Journal of Engineering for Gas Turbines and Power, 123(1), 197-203. doi:10.1115/1.1339988Tang, S. K. (2004). Sound transmission characteristics of Tee-junctions and the associated length corrections. The Journal of the Acoustical Society of America, 115(1), 218-227. doi:10.1121/1.1631830Harrison, M. F., De Soto, I., & Rubio Unzueta, P. L. (2004). A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle. Journal of Sound and Vibration, 278(4-5), 975-1011. doi:10.1016/j.jsv.2003.12.009Karlsson, M., & Åbom, M. (2011). Quasi-steady model of the acoustic scattering properties of a T-junction. Journal of Sound and Vibration, 330(21), 5131-5137. doi:10.1016/j.jsv.2011.05.012Karlsson, M., & Åbom, M. (2010). Aeroacoustics of T-junctions—An experimental investigation. Journal of Sound and Vibration, 329(10), 1793-1808. doi:10.1016/j.jsv.2009.11.024Corberán, J. M. (1992). A New Constant Pressure Model for N-Branch Junctions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 206(2), 117-123. doi:10.1243/pime_proc_1992_206_167_02Schmandt, B., & Herwig, H. (2015). The head change coefficient for branched flows: Why «losses» due to junctions can be negative. International Journal of Heat and Fluid Flow, 54, 268-275. doi:10.1016/j.ijheatfluidflow.2015.06.004Shaw, C. T., Lee, D. J., Richardson, S. H., & Pierson, S. (2000). Modelling the Effect of Plenum-Runner Interface Geometry on the Flow Through an Inlet System. SAE Technical Paper Series. doi:10.4271/2000-01-0569Pérez-García, J., Sanmiguel-Rojas, E., Hernández-Grau, J., & Viedma, A. (2006). Numerical and experimental investigations on internal compressible flow at T-type junctions. Experimental Thermal and Fluid Science, 31(1), 61-74. doi:10.1016/j.expthermflusci.2006.02.001Naeimi, H., Domiry, G., Gorji, M., Javadirad, G., & Keshavarz, M. (2011). A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD. Thermal Science, 15(4), 1023-1033. doi:10.2298/tsci100417041nSakowitz, A., Mihaescu, M., & Fuchs, L. (2014). Turbulent flow mechanisms in mixing T-junctions by Large Eddy Simulations. International Journal of Heat and Fluid Flow, 45, 135-146. doi:10.1016/j.ijheatfluidflow.2013.06.014Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2001). Calculation of steady flow pressure loss coefficients for pipe junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8), 861-881. doi:10.1177/095440620121500801Hager, W. H. (1984). An Approximate Treatment of Flow in Branches and Bends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 198(1), 63-69. doi:10.1243/pime_proc_1984_198_088_02Paul, J., Selamet, A., Miazgowicz, K. D., & Tallio, K. V. (2007). Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface. SAE Technical Paper Series. doi:10.4271/2007-01-0649Pérez-García, J., Sanmiguel-Rojas, E., & Viedma, A. (2010). New coefficient to characterize energy losses in compressible flow at T-junctions. Applied Mathematical Modelling, 34(12), 4289-4305. doi:10.1016/j.apm.2010.05.005Wang, W., Lu, Z., Deng, K., & Qu, S. (2014). An experimental study of compressible combining flow at 45° T-junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), 1600-1610. doi:10.1177/0954406214546678Peters, B., & Gosman, A. D. (1993). Numerical Simulation of Unsteady Flow in Engine Intake Manifolds. SAE Technical Paper Series. doi:10.4271/930609Bingham, J. F., & Blair, G. P. (1985). An Improved Branched Pipe Model for Multi-Cylinder Automotive Engine Calculations. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 199(1), 65-77. doi:10.1243/pime_proc_1985_199_140_01William-Louis, M. J. P., Ould-El-Hadrami, A., & Tournier, C. (1998). On the calculation of the unsteady compressible flow through an N-branch junction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212(1), 49-56. doi:10.1243/0954406981521033Bassett, M. D., Pearson, R. J., Fleming, N. P., & Winterbone, D. E. (2003). A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations. SAE Technical Paper Series. doi:10.4271/2003-01-0370Pearson, R. J., Bassett, M. D., Batten, P., Winterbone, D. E., & Weaver, N. W. E. (1999). Multi-Dimensional Wave Propagation in Pipe Junctions. SAE Technical Paper Series. doi:10.4271/1999-01-1186Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2000). Modelling Engines with Pulse Converted Exhaust Manifolds Using One-Dimensional Techniques. SAE Technical Paper Series. doi:10.4271/2000-01-0290Montenegro, G., Onorati, A., Piscaglia, F., & D’Errico, G. (2007). Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2007-01-0495Onorati, A., Montenegro, G., D’Errico, G., & Piscaglia, F. (2010). Integrated 1D-3D Fluid Dynamic Simulation of a Turbocharged Diesel Engine with Complete Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2010-01-1194Montenegro, G., Onorati, A., & Della Torre, A. (2013). The prediction of silencer acoustical performances by 1D, 1D–3D and quasi-3D non-linear approaches. Computers & Fluids, 71, 208-223. doi:10.1016/j.compfluid.2012.10.016Morel, T., Silvestri, J., Goerg, K.-A., & Jebasinski, R. (1999). Modeling of Engine Exhaust Acoustics. SAE Technical Paper Series. doi:10.4271/1999-01-1665Sapsford, S. M., Richards, V. C. M., Amlee, D. R., Morel, T., & Chappell, M. T. (1992). Exhaust System Evaluation and Design by Non-Linear Modeling. SAE Technical Paper Series. doi:10.4271/920686Montenegro, G., Della Torre, A., Onorati, A., Fairbrother, R., & Dolinar, A. (2011). Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2011-01-1526Payri, F., Desantes, J. M., & Broatch, A. (2000). Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations. The Journal of the Acoustical Society of America, 107(2), 731-738. doi:10.1121/1.428256Torregrosa, A. J., Broatch, A., Fernández, T., & Denia, F. D. (2006). Description and measurement of the acoustic characteristics of two-tailpipe mufflers. The Journal of the Acoustical Society of America, 119(2), 723. doi:10.1121/1.2159228Torregrosa, A. J., Broatch, A., Arnau, F. J., & Hernández, M. (2016). A non-linear quasi-3D model with Flux-Corrected-Transport for engine gas-exchange modelling. Journal of Computational and Applied Mathematics, 291, 103-111. doi:10.1016/j.cam.2015.03.034Montenegro, G., Della Torre, A., Onorati, A., & Fairbrother, R. (2013). A Nonlinear Quasi-3D Approach for the Modeling of Mufflers with Perforated Elements and Sound-Absorbing Material. Advances in Acoustics and Vibration, 2013, 1-10. doi:10.1155/2013/546120CMT—Motores Térmicos, Universitat Politècnica de Valènciahttp://www.openwam.org/Ikeda, T., & Nakagawa, T. (1979). On the SHASTA FCT Algorithm for the Equation ∂ρ ∂t + ∂ ∂x (υ(ρ)ρ) = 0. Mathematics of Computation, 33(148), 1157. doi:10.2307/2006453Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629Van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101-136. doi:10.1016/0021-9991(79)90145-

    Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach

    Full text link
    [EN] Adaptation of stilling basins to higher discharges than those considered for their design implies deep knowledge of the flow developed in these structures. To this end, the hydraulic jump occurring in a typified United States Bureau of Reclamation Type II (USBR II) stilling basin was analyzed using a numerical and experimental modeling approach. A reduced-scale physical model to conduct an experimental campaign was built and a numerical computational fluid dynamics (CFD) model was prepared to carry out the corresponding simulations. Both models were able to successfully reproduce the case study in terms of hydraulic jump shape, velocity profiles, and pressure distributions. The analysis revealed not only similarities to the flow in classical hydraulic jumps but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographical information, despite some slight differences. Furthermore, the void fraction distribution was analyzed, showing satisfactory performance of the physical model, although the numerical approach presented some limitations to adequately represent the flow aeration mechanisms, which are discussed herein. Overall, the presented modeling approach can be considered as a useful tool to address the analysis of free surface flows occurring in stilling basins.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; García-Bartual, R.; Huber, B.; Bayón, A.; Vallés-Morán, FJ. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water. 12(1):1-20. https://doi.org/10.3390/w12010227S120121Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Chanson, H. (2008). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125-142. doi:10.1007/s10652-008-9078-3Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1), 141-154. doi:10.1016/j.ijmultiphaseflow.2004.09.004Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Houichi, L., Ibrahim, G., & Achour, B. (2006). Experiments for the Discharge Capacity of the Siphon Spillway Having the Creager-Ofitserov Profile. International Journal of Fluid Mechanics Research, 33(5), 395-406. doi:10.1615/interjfluidmechres.v33.i5.10Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Pope, S. B. (2001). Turbulent Flows. Measurement Science and Technology, 12(11), 2020-2021. doi:10.1088/0957-0233/12/11/705Harlow, F. H. (1967). Turbulence Transport Equations. Physics of Fluids, 10(11), 2323. doi:10.1063/1.1762039Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Li, S., & Zhang, J. (2018). Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water, 10(10), 1478. doi:10.3390/w10101478Zhang, W., Wang, J., Zhou, C., Dong, Z., & Zhou, Z. (2018). Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft. Water, 10(10), 1393. doi:10.3390/w10101393Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Cartellier, A., & Achard, J. L. (1991). Local phase detection probes in fluid/fluid two‐phase flows. Review of Scientific Instruments, 62(2), 279-303. doi:10.1063/1.1142117Cartellier, A., & Barrau, E. (1998). Monofiber optical probes for gas detection and gas velocity measurements: conical probes. International Journal of Multiphase Flow, 24(8), 1265-1294. doi:10.1016/s0301-9322(98)00032-9Boyer, C., Duquenne, A.-M., & Wild, G. (2002). Measuring techniques in gas–liquid and gas–liquid–solid reactors. Chemical Engineering Science, 57(16), 3185-3215. doi:10.1016/s0009-2509(02)00193-8Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Homogenization of plain weave composites with imperfect microstructure: Part II--Analysis of real-world materials

    Full text link
    A two-layer statistically equivalent periodic unit cell is offered to predict a macroscopic response of plain weave multilayer carbon-carbon textile composites. Falling-short in describing the most typical geometrical imperfections of these material systems the original formulation presented in (Zeman and \v{S}ejnoha, International Journal of Solids and Structures, 41 (2004), pp. 6549--6571) is substantially modified, now allowing for nesting and mutual shift of individual layers of textile fabric in all three directions. Yet, the most valuable asset of the present formulation is seen in the possibility of reflecting the influence of negligible meso-scale porosity through a system of oblate spheroidal voids introduced in between the two layers of the unit cell. Numerical predictions of both the effective thermal conductivities and elastic stiffnesses and their comparison with available laboratory data and the results derived using the Mori-Tanaka averaging scheme support credibility of the present approach, about as much as the reliability of local mechanical properties found from nanoindentation tests performed directly on the analyzed composite samples.Comment: 28 pages, 14 figure
    corecore