905,007 research outputs found

    Evaluation of Clustering Algorithms on GPU-Based Edge Computing Platforms

    Get PDF
    [EN] Internet of Things (IoT) is becoming a new socioeconomic revolution in which data and immediacy are the main ingredients. IoT generates large datasets on a daily basis but it is currently considered as "dark data", i.e., data generated but never analyzed. The efficient analysis of this data is mandatory to create intelligent applications for the next generation of IoT applications that benefits society. Artificial Intelligence (AI) techniques are very well suited to identifying hidden patterns and correlations in this data deluge. In particular, clustering algorithms are of the utmost importance for performing exploratory data analysis to identify a set (a.k.a., cluster) of similar objects. Clustering algorithms are computationally heavy workloads and require to be executed on high-performance computing clusters, especially to deal with large datasets. This execution on HPC infrastructures is an energy hungry procedure with additional issues, such as high-latency communications or privacy. Edge computing is a paradigm to enable light-weight computations at the edge of the network that has been proposed recently to solve these issues. In this paper, we provide an in-depth analysis of emergent edge computing architectures that include low-power Graphics Processing Units (GPUs) to speed-up these workloads. Our analysis includes performance and power consumption figures of the latest Nvidia's AGX Xavier to compare the energy-performance ratio of these low-cost platforms with a high-performance cloud-based counterpart version. Three different clustering algorithms (i.e., k-means, Fuzzy Minimals (FM), and Fuzzy C-Means (FCM)) are designed to be optimally executed on edge and cloud platforms, showing a speed-up factor of up to 11x for the GPU code compared to sequential counterpart versions in the edge platforms and energy savings of up to 150% between the edge computing and HPC platforms.This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5 and by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18.Cecilia-Canales, JM.; Cano, J.; Morales-García, J.; Llanes, A.; Imbernón, B. (2020). Evaluation of Clustering Algorithms on GPU-Based Edge Computing Platforms. Sensors. 20(21):1-19. https://doi.org/10.3390/s20216335S1192021Gebauer, H., Fleisch, E., Lamprecht, C., & Wortmann, F. (2020). Growth paths for overcoming the digitalization paradox. Business Horizons, 63(3), 313-323. doi:10.1016/j.bushor.2020.01.005Guillén, M. A., Llanes, A., Imbernón, B., Martínez-España, R., Bueno-Crespo, A., Cano, J.-C., & Cecilia, J. M. (2020). Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. The Journal of Supercomputing, 77(1), 818-840. doi:10.1007/s11227-020-03288-wWang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144-156. doi:10.1016/j.jmsy.2018.01.003Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: foundations and developments. Electronic Markets, 25(3), 179-188. doi:10.1007/s12525-015-0196-8Pramanik, M. I., Lau, R. Y. K., Demirkan, H., & Azad, M. A. K. (2017). Smart health: Big data enabled health paradigm within smart cities. Expert Systems with Applications, 87, 370-383. doi:10.1016/j.eswa.2017.06.027Weber, M., & Podnar Žarko, I. (2019). A Regulatory View on Smart City Services. Sensors, 19(2), 415. doi:10.3390/s19020415Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218. doi:10.1049/trit.2018.1008Monti, L., Vincenzi, M., Mirri, S., Pau, G., & Salomoni, P. (2020). RaveGuard: A Noise Monitoring Platform Using Low-End Microphones and Machine Learning. Sensors, 20(19), 5583. doi:10.3390/s20195583Kumar, P., Sinha, K., Nere, N. K., Shin, Y., Ho, R., Mlinar, L. B., & Sheikh, A. Y. (2020). A machine learning framework for computationally expensive transient models. Scientific Reports, 10(1). doi:10.1038/s41598-020-67546-wMittal, S., & Vetter, J. S. (2015). A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Computing Surveys, 47(4), 1-35. doi:10.1145/2788396Singh, D., & Reddy, C. K. (2014). A survey on platforms for big data analytics. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0008-6Khayyat, M., Elgendy, I. A., Muthanna, A., Alshahrani, A. S., Alharbi, S., & Koucheryavy, A. (2020). Advanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing Networks. IEEE Access, 8, 137052-137062. doi:10.1109/access.2020.3011705Satyanarayanan, M. (2017). The Emergence of Edge Computing. Computer, 50(1), 30-39. doi:10.1109/mc.2017.9Capra, M., Peloso, R., Masera, G., Roch, M. R., & Martina, M. (2019). Edge Computing: A Survey On the Hardware Requirements in the Internet of Things World. Future Internet, 11(4), 100. doi:10.3390/fi11040100Lu, H., Gu, C., Luo, F., Ding, W., & Liu, X. (2020). Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems, 102, 847-861. doi:10.1016/j.future.2019.07.019Mimmack, G. M., Mason, S. J., & Galpin, J. S. (2001). Choice of Distance Matrices in Cluster Analysis: Defining Regions. Journal of Climate, 14(12), 2790-2797. doi:10.1175/1520-0442(2001)0142.0.co;2Gimenez, C. (2006). Logistics integration processes in the food industry. International Journal of Physical Distribution & Logistics Management, 36(3), 231-249. doi:10.1108/09600030610661813Chang, P.-C., Liu, C.-H., & Fan, C.-Y. (2009). Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry. Knowledge-Based Systems, 22(5), 344-355. doi:10.1016/j.knosys.2009.02.005Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476-1482. doi:10.1016/j.eswa.2013.08.044Woodley, A., Tang, L.-X., Geva, S., Nayak, R., & Chappell, T. (2019). Parallel K-Tree: A multicore, multinode solution to extreme clustering. Future Generation Computer Systems, 99, 333-345. doi:10.1016/j.future.2018.09.038Kwedlo, W., & Czochanski, P. J. (2019). A Hybrid MPI/OpenMP Parallelization of KK -Means Algorithms Accelerated Using the Triangle Inequality. IEEE Access, 7, 42280-42297. doi:10.1109/access.2019.2907885Liu, B., He, S., He, D., Zhang, Y., & Guizani, M. (2019). A Spark-Based Parallel Fuzzy cc -Means Segmentation Algorithm for Agricultural Image Big Data. IEEE Access, 7, 42169-42180. doi:10.1109/access.2019.2907573Baydoun, M., Ghaziri, H., & Al-Husseini, M. (2018). CPU and GPU parallelized kernel K-means. The Journal of Supercomputing, 74(8), 3975-3998. doi:10.1007/s11227-018-2405-7Li, Y., Zhao, K., Chu, X., & Liu, J. (2013). Speeding up k-Means algorithm by GPUs. Journal of Computer and System Sciences, 79(2), 216-229. doi:10.1016/j.jcss.2012.05.004Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., & Toraldo, G. (2019). A GPU-accelerated parallel K-means algorithm. Computers & Electrical Engineering, 75, 262-274. doi:10.1016/j.compeleceng.2017.12.002Al-Ayyoub, M., Abu-Dalo, A. M., Jararweh, Y., Jarrah, M., & Sa’d, M. A. (2015). A GPU-based implementations of the fuzzy C-means algorithms for medical image segmentation. The Journal of Supercomputing, 71(8), 3149-3162. doi:10.1007/s11227-015-1431-yAit Ali, N., Cherradi, B., El Abbassi, A., Bouattane, O., & Youssfi, M. (2018). GPU fuzzy c-means algorithm implementations: performance analysis on medical image segmentation. Multimedia Tools and Applications, 77(16), 21221-21243. doi:10.1007/s11042-017-5589-6Timón, I., Soto, J., Pérez-Sánchez, H., & Cecilia, J. M. (2016). Parallel implementation of fuzzy minimals clustering algorithm. Expert Systems with Applications, 48, 35-41. doi:10.1016/j.eswa.2015.11.011Cebrian, J. M., Imbernón, B., Soto, J., García, J. M., & Cecilia, J. M. (2020). High-throughput fuzzy clustering on heterogeneous architectures. Future Generation Computer Systems, 106, 401-411. doi:10.1016/j.future.2020.01.022Cecilia, J. M., Timon, I., Soto, J., Santa, J., Pereniguez, F., & Munoz, A. (2018). High-Throughput Infrastructure for Advanced ITS Services: A Case Study on Air Pollution Monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2246-2257. doi:10.1109/tits.2018.2816741Sriramakrishnan, P., Kalaiselvi, T., & Rajeswaran, R. (2019). Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine. Biocybernetics and Biomedical Engineering, 39(2), 470-487. doi:10.1016/j.bbe.2019.02.002Fang, Y., Chen, Q., & Xiong, N. (2019). A multi-factor monitoring fault tolerance model based on a GPU cluster for big data processing. Information Sciences, 496, 300-316. doi:10.1016/j.ins.2018.04.053Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R., Costa, L. da F., & Rodrigues, F. A. (2019). Clustering algorithms: A comparative approach. PLOS ONE, 14(1), e0210236. doi:10.1371/journal.pone.0210236Pandove, D., Goel, S., & Rani, R. (2018). Systematic Review of Clustering High-Dimensional and Large Datasets. ACM Transactions on Knowledge Discovery from Data, 12(2), 1-68. doi:10.1145/3132088Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203. doi:10.1016/0098-3004(84)90020-7Soto, J., Flores-Sintas, A., & Palarea-Albaladejo, J. (2008). Improving probabilities in a fuzzy clustering partition. Fuzzy Sets and Systems, 159(4), 406-421. doi:10.1016/j.fss.2007.08.016Kolen, J. F., & Hutcheson, T. (2002). Reducing the time complexity of the fuzzy c-means algorithm. IEEE Transactions on Fuzzy Systems, 10(2), 263-267. doi:10.1109/91.99512

    Competent Differentiation Between Indonesia and Thai Students

    Get PDF
    There are two kinds of articles, the first article is Kesulitan Mahasiswa dalam Mencapai Pembelajaran Bahasa Inggris Secara Efektif which the Volume is 5, no. 2, August 2016 and the second article is ertiary Level Exchange students’ Perspective on Self-efficacy: Toward EFL Writing which the Volume is 1, no. 2, October 2016. The content at the first article is about the Importance of English for students in University specially for the Indonesian students, the difficulties problems in learning English and the method for resolve that problems. Based on the text, Indonesian students think that the most difficult subject in English is speaking. It occurs because most of the students have minimum vocabulary and they are rarely to practice about speaking. The second article is about the problems in learning English for foreign students and the method for resolve that problems especially Thai student. The Thai students think that the most difficulties subject in English is writing. It occurs because they are limited exposure and language materials, they also must big adaption with a new language and situation such as a teacher, and friends, they must imagine change the sentences from Thailand to Indonesia and the last change to English, It makes them get low in learning. The teacher or lecturer has different ways to resolving their problems, The teacher will give a questionnaire, recording and observation to identify the abilities of Indonesian student. After that, the lecturer who teach an Indonesian students will give them a task form a describe their idol. On the other hand, the lecturer will give a questionnaire and an interview for the Thailand students to identify their abilities of writing skills. The teacher will give an assignment form a writing something. I think the Jees journal is complete than pedagogy’s journal. Because Jees journal there are some variable to improvement a data than pedagogy’s journal. So, based on the text, we can take a value that problem in happen due to difference proficiency level of the student

    An Empirical Analysis of Predictive Machine Learning Algorithms on High-Dimensional Microarray Cancer Data

    Get PDF
    This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space p is much larger than the number of observations n. Seven gene-expression microarray cancer datasets, where the ratio κ = n/p is less than one, were chosen for evaluation. The statistical and computational challenges inherent with this type of high-dimensional low sample size (HDLSS) data were explored. The capability and performance of a diverse set of machine learning algorithms is presented and compared. The sparsity and collinearity of the data being employed, in conjunction with the complexity of the algorithms studied, demanded rigorous and careful tuning of the hyperparameters and regularization parameters. This necessitated several extensions of cross-validation to be investigated, with the purpose of culminating in the best predictive performance. For the techniques evaluated in this thesis, regularization or kernelization, and often both, produced lower classification error rates than randomized ensemble for all datasets used in this research. However, no one technique evaluated for classifying HDLSS microarray cancer data emerged as the universally best technique for predicting the generalization error.1 From the empirical analysis performed in this thesis, the following fundamentals emerged as being instrumental in consistently resulting in lower error rates when estimating the generalization error in this HDLSS microarray cancer data: • Thoroughly investigate and understand the data • Stratify during all sampling due to the uneven classes and extreme sparsity of this data. • Perform 3 to 5 replicates of stratified cross-validation, implementing an adaptive K-fold, to determine the optimal tuning parameters. • To estimate the generalization error in HDLSS data, replication is paramount. Replicate R=500 or R=1000 times with training and test sets of 2/3 and 1/3, respectively, to get the best generalization error estimate. • Whenever possible, obtain an independent validation dataset. • Seed the data for a fair and unbiased comparison among techniques. • Define a methodology or standard set of process protocols to apply to machine learning research. This would prove very beneficial in ensuring reproducibility and would enable better comparisons among techniques. _____ 1A predominant portion of this research was published in the Serdica Journal of Computing (Volume 8, Number 2, 2014) as proceedings from the 2014 Flint International Statistical Conference at Kettering University, Michigan, USA

    Mediatisation in Twitter: an exploratory analysis of the 2015 Spanish general election

    Full text link
    [EN] The mediatisation model in politics assumes that media conveys political messages between parties and citizenship, with the risk of promoting issues that frame the electoral content in terms of competition. These dynamics could distract from the debate of ideas and political policies. However, digital media like Twitter provide direct communication channels between parties, candidates and users. The present research explores Twitter content during an electoral campaign focused on the four issues proposed by Patterson (1980) to assess mediatisation: political, policy, campaign and personal (regarding the candidate). The goal of this research study is to evaluate the degree of mediatisation on Twitter using this typology. The research also evaluates the influence of the issue on retweet volume. The study¿s basis was a 15.8 million-tweet corpus obtained during the 2015 Spanish General Election pre-campaign and campaign. This dataset was analysed using an automatic classification system. The results highlighted a predominance of policy issues during both the pre- campaign and campaign, except for the two televised debates, during which campaign issues were the most prevalent. On the election night, users commented much more on political issues. Finally, the kind of issue most likely to be retweeted was policy issues.This research was supported by the Spanish Ministry of Economy and Competitiveness, with Grants CSO2013-43960-R (Los flujos de comunicación en los procesos de movilización política: medios, blogs y líderes de opinión) and CSO2016-77331-C2-1-R (Estrategias, agendas y discursos en las cibercampañas electorales: medios de comunicación y ciudadanos).Baviera, T.; Calvo, D.; Llorca-Abad, G. (2019). Mediatisation in Twitter: an exploratory analysis of the 2015 Spanish general election. Journal of International Communication. 25(2):275-300. https://doi.org/10.1080/13216597.2019.1634619S275300252Antonakaki, D., Spiliotopoulos, D., V. Samaras, C., Pratikakis, P., Ioannidis, S., & Fragopoulou, P. (2017). Social media analysis during political turbulence. PLOS ONE, 12(10), e0186836. doi:10.1371/journal.pone.0186836Barberá, P. (2015). Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data. Political Analysis, 23(1), 76-91. doi:10.1093/pan/mpu011Bartholomé, G., Lecheler, S., & de Vreese, C. (2017). Towards A Typology of Conflict Frames. Journalism Studies, 19(12), 1689-1711. doi:10.1080/1461670x.2017.1299033Batrinca, B., & Treleaven, P. C. (2014). Social media analytics: a survey of techniques, tools and platforms. AI & SOCIETY, 30(1), 89-116. doi:10.1007/s00146-014-0549-4Baviera, T., Peris, À., & Cano-Orón, L. (2017). Political candidates in infotainment programmes and their emotional effects on Twitter: an analysis of the 2015 Spanish general elections pre-campaign season. Contemporary Social Science, 14(1), 144-156. doi:10.1080/21582041.2017.1367833BLUMLER, J. G., & KAVANAGH, D. (1999). The Third Age of Political Communication: Influences and Features. Political Communication, 16(3), 209-230. doi:10.1080/105846099198596Bor, S. E. (2013). Using Social Network Sites to Improve Communication Between Political Campaigns and Citizens in the 2012 Election. American Behavioral Scientist, 58(9), 1195-1213. doi:10.1177/0002764213490698Brants, K., & Neijens, P. (1998). The Infotainment of Politics. Political Communication, 15(2), 149-164. doi:10.1080/10584609809342363Burnap, P., Gibson, R., Sloan, L., Southern, R., & Williams, M. (2016). 140 characters to victory?: Using Twitter to predict the UK 2015 General Election. Electoral Studies, 41, 230-233. doi:10.1016/j.electstud.2015.11.017Campos-Domínguez, E. (2017). Twitter y la comunicación política. El Profesional de la Información, 26(5), 785. doi:10.3145/epi.2017.sep.01Campos-Domínguez, E., & Calvo, D. (2017). Electoral campaign on the Internet: Planning, impact and viralization on Twitter during the Spanish general election, 2015. Comunicación y Sociedad, 0(29), 93-116. doi:10.32870/cys.v0i29.6423Ceron, A., & Splendore, S. (2016). From contents to comments: Social TV and perceived pluralism in political talk shows. New Media & Society, 20(2), 659-675. doi:10.1177/1461444816668187Chadwick, A. (2013). The Hybrid Media System. doi:10.1093/acprof:oso/9780199759477.001.0001Conway, B. A., Kenski, K., & Wang, D. (2015). The Rise of Twitter in the Political Campaign: Searching for Intermedia Agenda-Setting Effects in the Presidential Primary. Journal of Computer-Mediated Communication, 20(4), 363-380. doi:10.1111/jcc4.12124Couldry, N., & Hepp, A. (2013). Conceptualizing Mediatization: Contexts, Traditions, Arguments. Communication Theory, 23(3), 191-202. doi:10.1111/comt.12019Dang-Xuan, L., Stieglitz, S., Wladarsch, J., & Neuberger, C. (2013). AN INVESTIGATION OF INFLUENTIALS AND THE ROLE OF SENTIMENT IN POLITICAL COMMUNICATION ON TWITTER DURING ELECTION PERIODS. Information, Communication & Society, 16(5), 795-825. doi:10.1080/1369118x.2013.783608D’heer, E., & Verdegem, P. (2014). Conversations about the elections on Twitter: Towards a structural understanding of Twitter’s relation with the political and the media field. European Journal of Communication, 29(6), 720-734. doi:10.1177/0267323114544866Díaz-Parra, I., & Jover-Báez, J. (2016). Social movements in crisis? From the 15-M movement to the electoral shift in Spain. International Journal of Sociology and Social Policy, 36(9/10), 680-694. doi:10.1108/ijssp-09-2015-0101DiGrazia, J., McKelvey, K., Bollen, J., & Rojas, F. (2013). More Tweets, More Votes: Social Media as a Quantitative Indicator of Political Behavior. PLoS ONE, 8(11), e79449. doi:10.1371/journal.pone.0079449Felt, M. (2016). Social media and the social sciences: How researchers employ Big Data analytics. Big Data & Society, 3(1), 205395171664582. doi:10.1177/2053951716645828Filer, T., & Fredheim, R. (2016). Popular with the Robots: Accusation and Automation in the Argentine Presidential Elections, 2015. International Journal of Politics, Culture, and Society, 30(3), 259-274. doi:10.1007/s10767-016-9233-7Freelon, D., & Karpf, D. (2014). Of big birds and bayonets: hybrid Twitter interactivity in the 2012 Presidential debates. Information, Communication & Society, 18(4), 390-406. doi:10.1080/1369118x.2014.952659Giglietto, F., & Selva, D. (2014). Second Screen and Participation: A Content Analysis on a Full Season Dataset of Tweets. Journal of Communication, 64(2), 260-277. doi:10.1111/jcom.12085Gil de Zúñiga, H., Garcia-Perdomo, V., & McGregor, S. C. (2015). What Is Second Screening? Exploring Motivations of Second Screen Use and Its Effect on Online Political Participation. Journal of Communication, 65(5), 793-815. doi:10.1111/jcom.12174Grover, P., Kar, A. K., Dwivedi, Y. K., & Janssen, M. (2019). Polarization and acculturation in US Election 2016 outcomes – Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145, 438-460. doi:10.1016/j.techfore.2018.09.009Jensen, K. B. (2013). Definitive and Sensitizing Conceptualizations of Mediatization. Communication Theory, 23(3), 203-222. doi:10.1111/comt.12014Jungherr, A. (2014). The Logic of Political Coverage on Twitter: Temporal Dynamics and Content. Journal of Communication, 64(2), 239-259. doi:10.1111/jcom.12087Kalsnes, B., Krumsvik, A. H., & Storsul, T. (2014). Social media as a political backchannel. Aslib Journal of Information Management, 66(3), 313-328. doi:10.1108/ajim-09-2013-0093Lee, K., Palsetia, D., Narayanan, R., Patwary, M. M. A., Agrawal, A., & Choudhary, A. (2011). Twitter Trending Topic Classification. 2011 IEEE 11th International Conference on Data Mining Workshops. doi:10.1109/icdmw.2011.171López García, G., Llorca Abad, G., Valera Ordaz, L., & Peris Blanes, A. (2018). Los debates electorales, ¿el último reducto frente la mediatización? Un estudio de caso de las elecciones generales españolas de 2015. Palabra Clave - Revista de Comunicación, 21(3), 772-797. doi:10.5294/pacla.2018.21.3.6López-Rico, C.-M., & Peris-Blanes, À. (2017). Agenda e imagen de los candidatos de las elecciones generales de 2015 en España en programas televisivos de infoentretenimiento. El Profesional de la Información, 26(4), 611. doi:10.3145/epi.2017.jul.05MAZZOLENI, G., & SCHULZ, W. (1999). «Mediatization» of Politics: A Challenge for Democracy? Political Communication, 16(3), 247-261. doi:10.1080/105846099198613Murthy, D. (2015). Twitter and elections: are tweets, predictive, reactive, or a form of buzz? Information, Communication & Society, 18(7), 816-831. doi:10.1080/1369118x.2015.1006659Russell Neuman, W., Guggenheim, L., Mo Jang, S., & Bae, S. Y. (2014). The Dynamics of Public Attention: Agenda-Setting Theory Meets Big Data. Journal of Communication, 64(2), 193-214. doi:10.1111/jcom.12088Orriols, L., & Cordero, G. (2016). The Breakdown of the Spanish Two-Party System: The Upsurge of Podemos and Ciudadanos in the 2015 General Election. South European Society and Politics, 21(4), 469-492. doi:10.1080/13608746.2016.1198454References to the IBEREVAL Workshop ProceedingsRill, S., Reinel, D., Scheidt, J., & Zicari, R. V. (2014). PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowledge-Based Systems, 69, 24-33. doi:10.1016/j.knosys.2014.05.008Rogstad, I. (2016). Is Twitter just rehashing? Intermedia agenda setting between Twitter and mainstream media. Journal of Information Technology & Politics, 13(2), 142-158. doi:10.1080/19331681.2016.1160263Sampedro, V., & Lobera, J. (2014). The Spanish 15-M Movement: a consensual dissent? Journal of Spanish Cultural Studies, 15(1-2), 61-80. doi:10.1080/14636204.2014.938466Shah, D. V., Hanna, A., Bucy, E. P., Lassen, D. S., Van Thomme, J., Bialik, K., … Pevehouse, J. C. W. (2016). Dual Screening During Presidential Debates. American Behavioral Scientist, 60(14), 1816-1843. doi:10.1177/0002764216676245Shao, C., Ciampaglia, G. L., Varol, O., Yang, K.-C., Flammini, A., & Menczer, F. (2018). The spread of low-credibility content by social bots. Nature Communications, 9(1). doi:10.1038/s41467-018-06930-7Stella, M., Ferrara, E., & De Domenico, M. (2018). Bots increase exposure to negative and inflammatory content in online social systems. Proceedings of the National Academy of Sciences, 115(49), 12435-12440. doi:10.1073/pnas.1803470115Stier, S., Bleier, A., Lietz, H., & Strohmaier, M. (2018). Election Campaigning on Social Media: Politicians, Audiences, and the Mediation of Political Communication on Facebook and Twitter. Political Communication, 35(1), 50-74. doi:10.1080/10584609.2017.1334728Vaccari, C., Chadwick, A., & O’Loughlin, B. (2015). Dual Screening the Political: Media Events, Social Media, and Citizen Engagement. Journal of Communication, 65(6), 1041-1061. doi:10.1111/jcom.12187Vaccari, C., & Nielsen, R. K. (2013). What Drives Politicians’ Online Popularity? An Analysis of the 2010 U.S. Midterm Elections. Journal of Information Technology & Politics, 10(2), 208-222. doi:10.1080/19331681.2012.758072Vargo, C. J., Guo, L., McCombs, M., & Shaw, D. L. (2014). Network Issue Agendas on Twitter During the 2012 U.S. Presidential Election. Journal of Communication, 64(2), 296-316. doi:10.1111/jcom.12089Vergeer, M., & Franses, P. H. (2015). Live audience responses to live televised election debates: time series analysis of issue salience and party salience on audience behavior. Information, Communication & Society, 19(10), 1390-1410. doi:10.1080/1369118x.2015.1093526Xu, W. W., Sang, Y., Blasiola, S., & Park, H. W. (2014). Predicting Opinion Leaders in Twitter Activism Networks. American Behavioral Scientist, 58(10), 1278-1293. doi:10.1177/000276421452709
    corecore