1,861 research outputs found

    Distributed Opportunistic Scheduling for MIMO Ad-Hoc Networks

    Full text link
    Distributed opportunistic scheduling (DOS) protocols are proposed for multiple-input multiple-output (MIMO) ad-hoc networks with contention-based medium access. The proposed scheduling protocols distinguish themselves from other existing works by their explicit design for system throughput improvement through exploiting spatial multiplexing and diversity in a {\em distributed} manner. As a result, multiple links can be scheduled to simultaneously transmit over the spatial channels formed by transmit/receiver antennas. Taking into account the tradeoff between feedback requirements and system throughput, we propose and compare protocols with different levels of feedback information. Furthermore, in contrast to the conventional random access protocols that ignore the physical channel conditions of contending links, the proposed protocols implement a pure threshold policy derived from optimal stopping theory, i.e. only links with threshold-exceeding channel conditions are allowed for data transmission. Simulation results confirm that the proposed protocols can achieve impressive throughput performance by exploiting spatial multiplexing and diversity.Comment: Proceedings of the 2008 IEEE International Conference on Communications, Beijing, May 19-23, 200

    Open-Loop Spatial Multiplexing and Diversity Communications in Ad Hoc Networks

    Full text link
    This paper investigates the performance of open-loop multi-antenna point-to-point links in ad hoc networks with slotted ALOHA medium access control (MAC). We consider spatial multiplexing transmission with linear maximum ratio combining and zero forcing receivers, as well as orthogonal space time block coded transmission. New closed-form expressions are derived for the outage probability, throughput and transmission capacity. Our results demonstrate that both the best performing scheme and the optimum number of transmit antennas depend on different network parameters, such as the node intensity and the signal-to-interference-and-noise ratio operating value. We then compare the performance to a network consisting of single-antenna devices and an idealized fully centrally coordinated MAC. These results show that multi-antenna schemes with a simple decentralized slotted ALOHA MAC can outperform even idealized single-antenna networks in various practical scenarios.Comment: 51 pages, 19 figures, submitted to IEEE Transactions on Information Theor

    Cross-layer schemes for performance optimization in wireless networks

    Get PDF
    Wireless networks are undergoing rapid progress and inspiring numerous applications. As the application of wireless networks becomes broader, they are expected to not only provide ubiquitous connectivity, but also support end users with certain service guarantees. End-to-end delay is an important Quality of Service (QoS) metric in multihop wireless networks. This dissertation addresses how to minimize end-to-end delay through joint optimization of network layer routing and link layer scheduling. Two cross-layer schemes, a loosely coupled cross-layer scheme and a tightly coupled cross-layer scheme, are proposed. The two cross-layer schemes involve interference modeling in multihop wireless networks with omnidirectional antenna. In addition, based on the interference model, multicast schedules are optimized to minimize the total end-to-end delay. Throughput is another important QoS metric in wireless networks. This dissertation addresses how to leverage the spatial multiplexing function of MIMO links to improve wireless network throughput. Wireless interference modeling of a half-duplex MIMO node is presented. Based on the interference model, routing, spatial multiplexing, and scheduling are jointly considered in one optimization model. The throughput optimization problem is first addressed in constant bit rate networks and then in variable bit rate networks. In a variable data rate network, transmitters can use adaptive coding and modulation schemes to change their data rates so that the data rates are supported by the Signal to Noise and Interference Ratio (SINR). The problem of achieving maximum throughput in a millimeter-wave wireless personal area network is studied --Abstract, page iv

    Performance optimisation of the MAC protocol with multiple contention slots in MIMO ad hoc networks

    Get PDF
    The multiple-input multiple-output (MIMO) technique can be used to improve the performance of ad hoc networks. Various medium access control (MAC) protocols with multiple contention slots have been proposed to exploit spatial multiplexing for increasing the transport throughput of MIMO ad hoc networks. However, the existence of multiple request-to-send/clear-to-send (RTS/CTS) contention slots represents a severe overhead that limits the improvement on transport throughput achieved by spatial multiplexing. In addition, when the number of contention slots is fixed, the efficiency of RTS/CTS contention is affected by the transmitting power of network nodes. In this study, a joint optimisation scheme on both transmitting power and contention slots number for maximising the transport throughput is presented. This includes the establishment of an analytical model of a simplified MAC protocol with multiple contention slots, the derivation of transport throughput as a function of both transmitting power and the number of contention slots, and the optimisation process based on the transport throughput formula derived. The analytical results obtained, verified by simulation, show that much higher transport throughput can be achieved using the joint optimisation scheme proposed, compared with the non-optimised cases and the results previously reported
    • …
    corecore