13,907 research outputs found

    Adaptive Low-Complexity Sequential Inference for Dirichlet Process Mixture Models

    Full text link
    We develop a sequential low-complexity inference procedure for Dirichlet process mixtures of Gaussians for online clustering and parameter estimation when the number of clusters are unknown a-priori. We present an easily computable, closed form parametric expression for the conditional likelihood, in which hyperparameters are recursively updated as a function of the streaming data assuming conjugate priors. Motivated by large-sample asymptotics, we propose a novel adaptive low-complexity design for the Dirichlet process concentration parameter and show that the number of classes grow at most at a logarithmic rate. We further prove that in the large-sample limit, the conditional likelihood and data predictive distribution become asymptotically Gaussian. We demonstrate through experiments on synthetic and real data sets that our approach is superior to other online state-of-the-art methods.Comment: 25 pages, To appear in Advances in Neural Information Processing Systems (NIPS) 201

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    Full text link
    Probabilistic graphical models are a central tool in AI; however, they are generally not as expressive as deep neural models, and inference is notoriously hard and slow. In contrast, deep probabilistic models such as sum-product networks (SPNs) capture joint distributions in a tractable fashion, but still lack the expressive power of intractable models based on deep neural networks. Therefore, we introduce conditional SPNs (CSPNs), conditional density estimators for multivariate and potentially hybrid domains which allow harnessing the expressive power of neural networks while still maintaining tractability guarantees. One way to implement CSPNs is to use an existing SPN structure and condition its parameters on the input, e.g., via a deep neural network. This approach, however, might misrepresent the conditional independence structure present in data. Consequently, we also develop a structure-learning approach that derives both the structure and parameters of CSPNs from data. Our experimental evidence demonstrates that CSPNs are competitive with other probabilistic models and yield superior performance on multilabel image classification compared to mean field and mixture density networks. Furthermore, they can successfully be employed as building blocks for structured probabilistic models, such as autoregressive image models.Comment: 13 pages, 6 figure

    Small-variance asymptotics for Bayesian neural networks

    Get PDF
    Bayesian neural networks (BNNs) are a rich and flexible class of models that have several advantages over standard feedforward networks, but are typically expensive to train on large-scale data. In this thesis, we explore the use of small-variance asymptotics-an approach to yielding fast algorithms from probabilistic models-on various Bayesian neural network models. We first demonstrate how small-variance asymptotics shows precise connections between standard neural networks and BNNs; for example, particular sampling algorithms for BNNs reduce to standard backpropagation in the small-variance limit. We then explore a more complex BNN where the number of hidden units is additionally treated as a random variable in the model. While standard sampling schemes would be too slow to be practical, our asymptotic approach yields a simple method for extending standard backpropagation to the case where the number of hidden units is not fixed. We show on several data sets that the resulting algorithm has benefits over backpropagation on networks with a fixed architecture.2019-01-02T00:00:00
    • …
    corecore