24,039 research outputs found

    Learning to Navigate the Energy Landscape

    Full text link
    In this paper, we present a novel and efficient architecture for addressing computer vision problems that use `Analysis by Synthesis'. Analysis by synthesis involves the minimization of the reconstruction error which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy of our approach on the challenging problem of RGB Camera Relocalization. To make the RGB camera relocalization problem particularly challenging, we introduce a new dataset of 3D environments which are significantly larger than those found in other publicly-available datasets. Our experiments reveal that the proposed method is able to achieve state-of-the-art camera relocalization results. We also demonstrate the generalizability of our approach on Hand Pose Estimation and Image Retrieval tasks

    autoAx: An Automatic Design Space Exploration and Circuit Building Methodology utilizing Libraries of Approximate Components

    Full text link
    Approximate computing is an emerging paradigm for developing highly energy-efficient computing systems such as various accelerators. In the literature, many libraries of elementary approximate circuits have already been proposed to simplify the design process of approximate accelerators. Because these libraries contain from tens to thousands of approximate implementations for a single arithmetic operation it is intractable to find an optimal combination of approximate circuits in the library even for an application consisting of a few operations. An open problem is "how to effectively combine circuits from these libraries to construct complex approximate accelerators". This paper proposes a novel methodology for searching, selecting and combining the most suitable approximate circuits from a set of available libraries to generate an approximate accelerator for a given application. To enable fast design space generation and exploration, the methodology utilizes machine learning techniques to create computational models estimating the overall quality of processing and hardware cost without performing full synthesis at the accelerator level. Using the methodology, we construct hundreds of approximate accelerators (for a Sobel edge detector) showing different but relevant tradeoffs between the quality of processing and hardware cost and identify a corresponding Pareto-frontier. Furthermore, when searching for approximate implementations of a generic Gaussian filter consisting of 17 arithmetic operations, the proposed approach allows us to identify approximately 10310^3 highly important implementations from 102310^{23} possible solutions in a few hours, while the exhaustive search would take four months on a high-end processor.Comment: Accepted for publication at the Design Automation Conference 2019 (DAC'19), Las Vegas, Nevada, US

    Cross-Layer Automated Hardware Design for Accuracy-Configurable Approximate Computing

    Get PDF
    Approximate Computing trades off computation accuracy against performance or energy efficiency. It is a design paradigm that arose in the last decade as an answer to diminishing returns from Dennard\u27s scaling and a shift in the prominent workloads. A range of modern workloads, categorized mainly as recognition, mining, and synthesis, features an inherent tolerance to approximations. Their characteristics, such as redundancies in their input data and robust-to-noise algorithms, allow them to produce outputs of acceptable quality, despite an approximation in some of their computations. Approximate Computing leverages the application tolerance by relaxing the exactness in computation towards primary design goals of increasing performance or improving energy efficiency. Existing techniques span across the abstraction layers of computer systems where cross-layer techniques are shown to offer a larger design space and yield higher savings. Currently, the majority of the existing work aims at meeting a single accuracy. The extent of approximation tolerance, however, significantly varies with a change in input characteristics and applications. In this dissertation, methods and implementations are presented for cross-layer and automated design of accuracy-configurable Approximate Computing to maximally exploit the performance and energy benefits. In particular, this dissertation addresses the following challenges and introduces novel contributions: A main Approximate Computing category in hardware is to scale either voltage or frequency beyond the safe limits for power or performance benefits, respectively. The rationale is that timing errors would be gradual and for an initial range tolerable. This scaling enables a fine-grain accuracy-configurability by varying the timing error occurrence. However, conventional synthesis tools aim at meeting a single delay for all paths within the circuit. Subsequently, with voltage or frequency scaling, either all paths succeed, or a large number of paths fail simultaneously, with a steep increase in error rate and magnitude. This dissertation presents an automated method for minimizing path delays by individually constraining the primary outputs of combinational circuits. As a result, it reduces the number of failing paths and makes the timing errors significantly more gradual, and also rarer and smaller on average. Additionally, it reveals that delays can be significantly reduced towards the least significant bit (LSB) and allows operating at a higher frequency when small operands are computed. Precision scaling, i.e., reducing the representation of data and its accuracy is widely used in multiple abstraction layers in Approximate Computing. Reducing data precision also reduces the transistor toggles, and therefore the dynamic power consumption. Application and architecture level precision scaling results in using only LSBs of the circuit. Arithmetic circuits often have less complexity and logic depth in LSBs compared to most significant bits (MSB). To take advantage of this circuit property, a delay-altering synthesis methodology is proposed. The method finds energy-optimal delay values under configurable precision usage and assigns them to primary outputs used for different precisions. Thereby, it enables dynamic frequency-precision scalable circuits for energy efficiency. Within the hardware architecture, it is possible to instantiate multiple units with the same functionality with different fixed approximation levels, where each block benefits from having fewer transistors and also synthesis relaxations. These blocks can be selected dynamically and thus allow to configure the accuracy during runtime. Instantiating such approximate blocks can be a lower dynamic power but higher area and leakage cost alternative to the current state-of-the-art gating mechanisms which switch off a group of paths in the circuit to reduce the toggling activity. Jointly, instantiating multiple blocks and gating mechanisms produce a large design space of accuracy-configurable hardware, where energy-optimal solutions require a cross-layer search in architecture and circuit levels. To that end, an approximate hardware synthesis methodology is proposed with joint optimizations in architecture and circuit for dynamic accuracy scaling, and thereby it enables energy vs. area trade-offs

    ReBNet: Residual Binarized Neural Network

    Full text link
    This paper proposes ReBNet, an end-to-end framework for training reconfigurable binary neural networks on software and developing efficient accelerators for execution on FPGA. Binary neural networks offer an intriguing opportunity for deploying large-scale deep learning models on resource-constrained devices. Binarization reduces the memory footprint and replaces the power-hungry matrix-multiplication with light-weight XnorPopcount operations. However, binary networks suffer from a degraded accuracy compared to their fixed-point counterparts. We show that the state-of-the-art methods for optimizing binary networks accuracy, significantly increase the implementation cost and complexity. To compensate for the degraded accuracy while adhering to the simplicity of binary networks, we devise the first reconfigurable scheme that can adjust the classification accuracy based on the application. Our proposition improves the classification accuracy by representing features with multiple levels of residual binarization. Unlike previous methods, our approach does not exacerbate the area cost of the hardware accelerator. Instead, it provides a tradeoff between throughput and accuracy while the area overhead of multi-level binarization is negligible.Comment: To Appear In The 26th IEEE International Symposium on Field-Programmable Custom Computing Machine
    corecore