
Cross-Layer Automated Hardware Design for
Accuracy-Configurable Approximate Computing

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwisssenschaften

von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Tanfer Alan

Tag der mündlichen Prüfung: 22 Juli 2021

Referent: Prof. Dr.-Ing. Jörg Henkel
Karlsruher Institut für Technologie

Korreferent: Prof. Dr. Andreas Gerstlauer
The University of Texas at Austin

Korreferent: Prof. Dr. rer. nat. Wolfgang Karl
Karlsruher Institut für Technologie

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit — einschließlich Tabellen, Karten und Abbildungen — die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

—————————————————
Tanfer Alan

Acknowledgements

First of all, I would like to share my sincere gratitude to my advisor Prof. Dr.-Ing. Jörg Henkel for
accepting me to his research group, investing his time, efforts, and resources in me to become an
independent scientist to the high standards he set.

I want to thank Prof. Dr. Andreas Gerstlauer and Dr.-Ing Lars Bauer for their continuous feedback,
discussions, and questions that helped me to define my ideas in a concrete manner. Their contributions
were immensely important for my development and the outcome of this dissertation. All this
support has required a significant amount of their time and effort, to which I am very grateful.

I thank my co-examiner Prof. Dr. rer. nat. Wolfgang Karl for taking this role and the collaborative
environment he provided with his research group. Additionally, I would like to thank Jun.-Prof.
Dr. Pascal Friederich and Prof. Dr.-Ing. Rüdiger Dillmann for accepting the invitation for my oral
defense; and Prof. Dr. Mehdi B. Tahoori and Prof. Dr. rer. nat. Peter Sanders for being members of
the doctoral committee in my oral defense.

My colleagues at KIT - CES and the neighboring chairs CDNC and CAPP have contributed to an
intellectually cultivating environment. Especially, I want to thank Dr.-Ing. Jorge Castro-Godinez,
Dr.-Ing. Farzad Samie, Dr.-Ing. Dennis Gnad, and Dr.-Ing. Michael Bromberger for inspiring and
challenging discussions.

It takes a lot of perseverance to do a Ph.D. Towards that, I would like to thank Prof. Dr.-Ing. Christian
Hochberger for his guidance and support prior to starting my Ph.D. and my former colleagues
at Intel Labs. Such good examples have given me the motivation to pursue this difficult yet very
rewarding path.

Finally, I consider myself very lucky to have parents who have throughout my life given me
unconditional support and continuous motivation towards reaching my full potential. Thank you!

Karlsruhe, July 2021 Tanfer Alan

Abstract

Approximate Computing trades off computation accuracy against performance or energy efficiency.
It is a design paradigm that arose in the last decade as an answer to diminishing returns from
Dennard’s scaling and a shift in the prominent workloads. A range of modern workloads, categorized
mainly as recognition, mining, and synthesis, features an inherent tolerance to approximations.
Their characteristics, such as redundancies in their input data and robust-to-noise algorithms,
allow them to produce outputs of acceptable quality, despite an approximation in some of their
computations. Approximate Computing leverages the application tolerance by relaxing the exactness
in computation towards primary design goals of increasing performance or improving energy
efficiency. Existing techniques span across the abstraction layers of computer systems where
cross-layer techniques are shown to offer a larger design space and yield higher savings. Currently,
the majority of the existing work aims at meeting a single accuracy. The extent of approximation
tolerance, however, significantly varies with a change in input characteristics and applications.

In this dissertation, methods and implementations are presented for cross-layer and automated
design of accuracy-configurable Approximate Computing to maximally exploit the performance and
energy benefits. In particular, this dissertation addresses the following challenges and introduces
novel contributions:

• A main Approximate Computing category in hardware is to scale either voltage or frequency
beyond the safe limits for power or performance benefits, respectively. The rationale is that
timing errors would be gradual and for an initial range tolerable. This scaling enables a fine-
grain accuracy-configurability by varying the timing error occurrence. However, conventional
synthesis tools aim at meeting a single delay for all paths within the circuit. Subsequently,
with voltage or frequency scaling, either all paths succeed, or a large number of paths fail
simultaneously, with a steep increase in error rate and magnitude. This dissertation presents
an automated method for minimizing path delays by individually constraining the primary
outputs of combinational circuits. As a result, it reduces the number of failing paths and
makes the timing errors significantly more gradual, and also rarer and smaller on average.
Additionally, it reveals that delays can be significantly reduced towards the least significant
bit and which allows operating at a higher frequency when small operands are computed.

• Precision scaling, i.e., reducing the representation of data and its accuracy is widely used
in multiple abstraction layers in Approximate Computing. Reducing data precision also
reduces the transistor toggles, and therefore the dynamic power consumption. Application and
architecture level precision scaling results in using only LSBs of the circuit. Arithmetic circuits
often have less complexity and logic depth in LSBs compared to MSBs. To take advantage of
this circuit property, a delay-altering synthesis methodology is proposed. The method finds

v

energy-optimal delay values under configurable precision usage and assigns them to primary
outputs used for different precisions. Thereby, it enables dynamic frequency-precision scalable
circuits for energy efficiency.

• Within the hardware architecture, it is possible to instantiate multiple units with the same
functionality with different fixed approximation levels, where each block benefits from having
fewer transistors and also synthesis relaxations. These blocks can be selected dynamically and
thus allow to configure the accuracy during runtime. Instantiating such approximate blocks
can be a lower dynamic power but higher area and leakage cost alternative to the current
state-of-the-art gating mechanisms which switch off a group of paths in the circuit to reduce
the toggling activity. Jointly, instantiating multiple blocks and gating mechanisms produce
a large design space of accuracy-configurable hardware, where energy-optimal solutions
require a cross-layer search in architecture and circuit levels. To that end, an approximate
hardware synthesis methodology is proposed with joint optimizations in architecture and
circuit for dynamic accuracy scaling, and thereby it enables energy vs. area trade-offs.

Kurzfassung

Approximate Computing wägt ab zwischen der Rechengenauigkeit und der Leistung oder En-
ergieeffizienz. Es ist ein Design-Paradigma, das im letzten Jahrzehnt als Antwort auf die sinkenden
Verbesserungen durch Dennards Skalierung und eine Verschiebung der wichtigen Anwendungen
entstanden ist. Eine Reihe moderner Anwendungen, die hauptsächlich als Erkennung, Mining und
Synthese kategorisiert werden, weisen eine inhärente Toleranz gegenüber Approximationen auf.
Ihre Eigenschaften, wie Redundanzen in ihren Eingabedaten und Algorithmen, die robust gegen
Rauschen sind, ermöglichen es ihnen, trotz einer Approximation in einigen ihrer Berechnungen
Ergebnisse von akzeptabler Qualität zu erzeugen. Approximate Computing nutzt die Anwen-
dungstoleranz, indem die Genauigkeit der Berechnung in Richtung der primären Entwurfsziele der
Leistungssteigerung oder Verbesserung der Energieeffizienz gelockert wird. Bestehende Techniken
erstrecken sich über die Abstraktionsschichten von Computersystemen, wobei gezeigt wird, dass
Cross-Layer-Techniken einen größeren Entwurfsraum bieten und höhere Einsparungen erzielen.
Derzeit zielt der Großteil der vorhandenen Arbeiten darauf ab, eine einzige Genauigkeit zu erre-
ichen. Das Ausmaß der Approximationstoleranz variiert jedoch erheblich mit einer Änderung der
Eingabeeigenschaften und -anwendungen.

In dieser Dissertation werden Methoden und Implementierungen für das schichtübergreifende und
automatisierte Design von genau konfigurierbarem Approximate Computing vorgestellt, um die
Leistung und die Energievorteile maximal zu nutzen. Diese Dissertation befasst sich insbesondere
mit folgenden Herausforderungen und stellt neue Beiträge vor:

• Eine Hauptkategorie von Approximate Computing in der Hardware besteht darin, entweder
die Spannung oder die Frequenz über die sicheren Grenzen hinaus zu skalieren, um
Leistungsverbrauchs- bzw. Rechenleistungsvorteile zu erhalten. Das Grundprinzip ist, dass
Zeitsteuerungsfehler allmählich eintreten und für einen Anfangsbereich tolerierbar sein
können. Diese Skalierung ermöglicht eine feinkörnige Genauigkeitskonfigurierbarkeit durch
Variieren des Auftretens von Zeitsteuerungsfehlern. Herkömmliche Synthesewerkzeuge zielen
jedoch darauf ab, eine einzige Verzögerungszeit für alle Pfade innerhalb der Schaltung zu
erreichen. Anschließend sind bei der Spannungs- oder Frequenzskalierung entweder alle Pfade
erfolgreich oder eine große Anzahl von Pfaden fällt gleichzeitig aus, wobei die Fehlerrate und
-größe stark ansteigen. Diese Dissertation stellt eine automatisierte Methode zur Minimierung
von Pfadverzögerungen vor, indem die primären Ausgänge von kombinatorischen Schaltungen
individuell eingeschränkt werden. Infolgedessen wird die Anzahl der fehlerhaften Pfade
verringert und die Zeitsteuerungsfehler werden wesentlich abgestufter und im Durchschnitt
auch seltener und kleiner. Darüber hinaus zeigt sich, dass Verzögerungen in Richtung des
niedrigstwertigen Bits erheblich reduziert werden können und dass bei Berechnungen mit
kleinen Operanden mit einer höheren Frequenz gearbeitet werden kann.

vii

• Präzisionsskalierung, d.h. Reduzieren der Darstellung von Daten und ihrer Genauigkeit, wird
in Approximate Computing häufig in mehreren Abstraktionsschichten verwendet. Durch
Verringern der Datengenauigkeit werden auch die Transistorumschaltungen und damit der
dynamische Stromverbrauch verringert. Die Präzisionsskalierung auf Anwendungs- und
Architekturebene führt dazu, dass nur LSBs der Schaltung verwendet werden. Arithmetische
Schaltungen weisen in LSBs im Vergleich zu MSBs häufig eine geringere Komplexität und Logik-
tiefe auf. Um diese Schaltungseigenschaft auszunutzen, wird eine verzögerungsverändernde
Synthesemethode vorgeschlagen. Das Verfahren ermittelt energieoptimale Verzögerungswerte
unter konfigurierbarer Präzisionsnutzung und weist sie primären Ausgängen zu, die für
verschiedene Präzisionen verwendet werden. Dadurch werden dynamische, frequenzpräzise
skalierbare Schaltungen für Energieeffizienz ermöglicht.

• Innerhalb der Hardwarearchitektur ist es möglich, mehrere Einheiten mit derselben Funktion-
alität mit unterschiedlichen festen Approximationspegeln zu instanziieren, wobei jeder Block
von weniger Transistoren und auch Syntheserelaxationen profitiert. Diese Blöcke können
dynamisch ausgewählt werden und ermöglichen so die Konfiguration der Genauigkeit zur
Laufzeit. Das Instanziieren solcher approximierter Blöcke kann eine geringere dynamische
Leistungs-, aber höhere Flächen- und Leckstromkostenalternative zu den gegenwärtigen
Gating-Mechanismen nach dem Stand der Technik sein, die eine Gruppe von Pfaden in
der Schaltung abschalten, um die Umschaltaktivität zu verringern. Durch das gemeinsame
Instanziieren mehrerer Blöcke und Gating-Mechanismen entsteht ein großer Entwurfsraum
für genau konfigurierbare Hardware, bei dem energieoptimale Lösungen eine schichtüber-
greifende Suche in Architektur und Schaltungsebenen erfordern. Zu diesem Zweck wird
eine approximierte Hardwaresynthesemethode mit gemeinsamen Optimierungen in Ar-
chitektur und Schaltung für die dynamische Genauigkeitsskalierung vorgeschlagen, die einen
Kompromiss zwischen Energie und Fläche ermöglicht.

Contents

Acknowledgements . iii

Abstract . v

Kurzfassung . vii

1 Introduction . 1
1.1 Approximate Computing . 2
1.2 Accuracy-Configurable Approximations . 3
1.3 Dissertation Contribution . 3

2 Background . 5
2.1 Research at KIT - Chair for Embedded Systems . 6
2.2 Approximate Computing Across the Stack . 8
2.3 Dynamic Accuracy Reconfiguration . 12

2.3.1 Accuracy-Configurable System . 12
2.3.2 Case Study: Edge Detection in Video Frames 13
2.3.3 Case Study: DNN Inference . 15
2.3.4 Accuracy-Configurable Hardware . 17

2.4 Logic Synthesis . 19
2.4.1 Synthesis of Approximate Units . 22
2.4.2 Impact of Critical Path Length on Circuit Trade-offs 23

2.5 Summary . 26

3 Synthesis for Graceful Timing Violations . 27
3.1 SlackHammer: Preliminaries and Approach . 28

3.1.1 Traditional Logic Synthesis . 29
3.1.2 Non-Critical Path Optimization . 30
3.1.3 Synthesis for Graceful Errors . 30
3.1.4 Path Analysis in Isolation . 31
3.1.5 Constraining Path Delays . 31

3.2 Design Methodology . 32
3.3 Experimental Methodology . 35
3.4 Results . 36

ix

Contents

3.4.1 Accuracy-Frequency Trade-Off . 37
3.4.2 Delay Distribution Comparison . 39
3.4.3 Cross-Layer Effectiveness . 40

3.5 Summary . 40

4 Synthesis of Frequency-Precision Scalable Circuits . 43
4.1 Logic Synthesis with Multiple Delay Constraints . 44

4.1.1 Delay Variations in Circuit Topology . 44
4.1.2 Exploiting Delay Variations for Energy Gains 45
4.1.3 Dynamic Frequency-Precision Scaling System 46

4.2 Design Methodology . 46
4.2.1 Energy Optimization with a Throughput Target 46
4.2.2 Leverage & Distance . 47
4.2.3 Design Space Exploration . 48

4.3 Experiments . 50
4.3.1 Evaluation of DSE Iterations . 50
4.3.2 Circuit Level Trade-Offs . 51
4.3.3 Energy vs. Leverage . 52

4.4 Summary . 53

5 Architecture and Circuit Co-Synthesis . 55
5.1 Background . 56
5.2 Accuracy-Configurable Hardware Architecture . 57

5.2.1 Gating Groups of Paths in Circuit . 57
5.2.2 Instantiating Approximate Circuits with Different Accuracies 57
5.2.3 Cross-Layer Design Approach . 59
5.2.4 Runtime Accuracy Management . 60

5.3 Exploration Methodology . 60
5.4 Experiments and Results . 64

5.4.1 Design Space Exploration . 66
5.4.2 Comparison of Pareto-Optimal Solutions . 68
5.4.3 Analysis of Integration and Control Overhead 68
5.4.4 Area vs. Energy Trade-offs . 69
5.4.5 Energy Cost of Runtime Accuracy Reconfiguration 70
5.4.6 Input Dependency of Cross-Layer Design Space 71
5.4.7 Leakage Energy Analysis and Technology Independence 73

5.5 Summary . 74

6 Conclusion . 75

Bibliography . 77

List of Publications . 87

List of Figures . 89

List of Tables . 91

x

1
Introduction

Computer hardware is evolving with changes in workloads and confronted physical limitations.
Ever-increasing computational demands under thermal dissipation constraints and limited battery
capacities require us to reduce energy consumption for both high-performance and low-power
systems. Previous shifts in the workloads have led to the introduction of alternative computing
platforms to central processing units (CPUs), such as graphics processing units (GPUs) and
accelerators to address the changing characteristics. Similarly, modern applications have different
characteristics than before: an inherent resilience to a varying degree of inaccuracies, i.e., errors in
their computations.

Workloads of today differ from the past. If we look at the history of computers, the earlier examples
were designed to solve complex differential equations for workloads of military, scientific, and
financial domains [117]. Later, with the popularization of graphical user interface (GUI), a large
fraction of the operations became graphics-related, which led to the invention of GPUs. Today, a
classification of modern workloads is recognition (R), mining (M), and synthesis (S) [24]. The set of
RMS workloads include graphics, gaming, media-mining (e.g., image classification), unstructured
information management (e.g., internet / semantic search), financial analytics, among others. These
workloads have characteristics such as redundancies in their input data, robust-to-noise algorithms,
or being used in applications that only need to produce an acceptable output rather than a unique
golden result [23]. Thus, they possess an inherent error resilience, producing outputs of acceptable
quality, despite an error in some of their computations.

At the same time, physical limits in technology scaling have given us diminishing returns from newer
technologies. There is a deceleration in the scaling of transistor dimensions which has in the past
led to a continuous increase in performance and energy efficiency and addressed increasingly more
demanding workloads [30, 91]. Over the last decade ,this scaling has led to reliability challenges.
Moreover, in advanced technology nodes, supply and threshold voltages have scaled down at a lesser
factor than transistor dimensions. This has led to trends, in which we have less energy budget than
the area budget in our chips. With decreasing gains from technology node scaling, alternative and
orthogonal ways to improve efficiency without sacrificing generality have become very desirable.
For instance, at the circuit level reliability is traditionally ensured by providing sufficient timing
guardbands. However, alternative approaches have emerged to reduce the increasingly high safety
margins due to process and runtime variations in advanced technology nodes [44]. As an alternative,
the idea of recovery-based computing depends on detecting and recovering from timing errors, but
which has high recovery overheads [34]. On the other hand, Approximate Computing relaxes the
correct execution strictness for application domains that possess intrinsic error resilience.

1

1 Introduction

1.1 Approximate Computing

Approximate Computing leverages the application error resilience by relaxing exactness in
computation towards primary design goals: improving the performance and energy efficiency [23].
As previously introduced, several modern and prominent application domains such as machine
learning, big data processing, semantic search, gaming & multimedia, the datapath computation
accuracy is dispensible to some degree [23, 24, 26, 99, 109, 114, 115]. This inherent application
tolerance to inaccuracies can be attributed to iteratively or statistically self-correcting algorithms, lack
of a single golden answer, and limits of human visual perception. Hence, an accuracy compromise
can be made through intentionally introducing approximations, without a significant compromise
on application quality. The impact of approximations on energy facilitates solving larger problems
at both ends of the computing spectrum [26]. It has become an enabling factor for workloads such
as multimedia, gaming, and object recognition with a limited energy budget as in mobile devices
[75]. Also, it is a recent and major driver of machine learning at both embedded edge devices [19,
116, 119] and high-performance servers [39, 50, 58] through precision scaling, i.e., quantization in
machine learning terms.

The application space of Approximate Computing is bound with computation where accuracy
trade-offs can be made. To give a counterexample, an approximation-sourced difference in state
machines can lead to a wrong control flow rather than an approximation. Therefore, a notion of
disciplined approximations is required to isolate the tolerant part from the sensitive and bound the
error rate and magnitude to the tolerable degree. To achieve that, a significant amount of work is
proposed across the abstraction layers, such as searching the approximation tolerant parts and
degree of tolerance in the algorithm, marking the tolerant code in software, quality checks in runtime
system, approximate-aware instruction set architecture (ISA) extensions to utilize underlying
hardware, architecture-level modifications, functional approximations, and circuit-level timing
speculations by voltage or delay starvation of transistors. A detailed overview can be found in
Section 2.2

In hardware, the focus of this dissertation, functional approximations and circuit-level timing
speculation make up the two main disjoint categories of Approximate Computing. Several previous
efforts utilized both hardware categories together with software in a cross-layer fashion and reported
a larger design space and more favorable trade-offs than techniques from any single category [23,
27, 120].

Traditionally, a large class of research explored Approximate Computing at the hardware level
targeting a single accuracy in manual [124, 132] and automated design [21, 73, 86, 110] of functionally
approximate circuits. The hardware is designed to have fewer transistors and shorter critical paths,
where boolean functionality deviates from an exact specification to a limited extent. Instantiating
such approximate hardware has a two-fold effect on energy: fewer transistors cause less toggling
activity and shorter paths allow for voltage scaling or synthesis relaxations, i.e., circuits can be
composed of smaller transistors that require less power at the same performance. In this way, the
slack in shorter paths can be exploited by the synthesis tool. The evident disadvantage is that
the approximations on these circuits are fixed and hardwired. It is not possible to configure their
accuracy at runtime.

Circuit-level timing speculations scale either voltage or frequency aggressively, and beyond
guardbands, inducing timing errors upon activation of critical paths [8, 42, 62, 89]. The motivation
behind introducing timing speculations is that most input combinations do not invoke the critical
path and can be accomplished in a shorter time. In exchange, increasing the frequency improves the
performance or we can reduce the voltage, resulting in a quadratic reduction in dynamic power

2

1.2 Accuracy-Configurable Approximations

consumption. Thus, scaling of frequency or voltage and introducing timing errors creates a knob
on accuracy. However, unless the delay constraints are exceedingly large, traditional synthesis
algorithms result in circuits that contain a large number of near-critical paths. In consequence,
circuits synthesized by traditional tools possess a characteristic in which under aggressive scaling
either no error occurs, or a very large number of paths fail at the same time. Although this is
desirable for area and power reductions to exact computation, it hinders the benefits of timing
speculations and prohibits gradual configuration of the accuracy.

1.2 Accuracy-Configurable Approximations

Accuracy configurability is essential in practice for two main reasons: (i) Output quality of
approximate hardware strongly depends on its inputs, and (ii) A workload may tolerate significantly
different levels of approximation depending on its context and environment [128]. These reasons for
accuracy configuration are further detailed in Section 2.3. Runtime methods have shown that a fixed
accuracy may be too conservative and accuracy configuration is necessary to maximally exploit the
opportunities of approximate computing for energy efficiency improvement [11, 64, 72, 128]. In
particular, an offline profiler in [128] has shown that there is a significant variation in precision
requirements between different applications and also between different phases of an application.

Considering the size and complexity of modern computing systems, automated and general methods
are necessary to benefit from approximate computing at scale. Ideally, this automation should
span across the abstraction layers and components to enable system-level trade-offs. The currently
established, well-proven, and powerful electronic design automation (EDA) flow has a rich set of
optimizations. However, it does not consider the varying accuracy requirements. Therefore, it does
not yield optimal results when used for accuracy-configurable approximate computing.

1.3 Dissertation Contribution

This dissertation aims at steering computer hardware and EDA towards accuracy-configurable
approximate computing goals and optimizations. The methodologies proposed in this dissertation
automate and design hardware for runtime variable accuracy with exposing knobs for accuracy
configurability, and optimize the hardware for accuracy-configurable use towards maximally
exploiting the approximation benefits while maintaining quality targets. They utilize the existing
hardware techniques, functional approximations and timing speculations, previously described in
Section 1.1 They are general in terms of circuit, application, and required accuracies as they are built
on commercially available logic synthesis that is used for all circuits. Additionally, the methods
developed in the scope of this dissertation analyze and utilize the underlying circuit properties,
such as gate-level topology, to maximally exploit approximate computing benefits. In particular, the
novel contributions of this dissertation are as follows:

• First, this dissertation introduces a novel methodology to automatically synthesize circuits
with enhanced timing-error resilience under aggressive frequency scaling. This methodology
identifies primary outputs with a remaining timing slack margin, given any arbitrary circuit.
The key idea is to optimize non-critical paths for the delay. Consequently, it reduces the
probability of timing errors and thus improves the accuracy with frequency scaling. It also
makes the timing errors occur more gradually compared to the conventional tools. It extends
the design space to higher frequencies and finding favorable trade-offs between performance

3

1 Introduction

and accuracy for both standalone and cross-layer techniques that utilize timing speculations
for approximate computation.

• To optimize circuits for energy under varying accuracy use, a throughput-constrained circuit
synthesis methodology is proposed. Uneven complexities of circuit topologies lead to most
critical path delay dominated circuit delay, power, and area requirements, while achieving
limited, best-effort improvements on low-complexity paths. The second contribution in
Chapter 4 alters delays of primary outputs during logic synthesis. It relaxes the delay
constraints that apply to the majority of the circuit while tightening it for a smaller part used
for reduced precision operations. Consequently, the resulting circuits require less area and
average energy, when used for accuracy-configurable approximate computing, while being
able to maintain the initial average throughput. These circuits possess the property of dynamic
frequency-precision scalability as they can operate at high precision with a slow clock and at a
low precision with a fast clock.

• Chapter 5 addresses the necessity of accuracy-configurable hardware systems with the
exploration of applying gating mechanisms to existing circuits together with instantiating
more efficient circuits into the architecture. Jointly, the architecture and circuit layer together
present a larger design space where non-trivial cross-layer decisions are necessary to find
optimal solutions. In this chapter, a methodology is proposed to ensure Pareto-optimal
combinations towards minimizing energy consumption under given workload and area
constraints. The cross-layer design space offers dynamic accuracy configurable hardware with
significantly reduced energy compared to existing gating solutions when more area can be
utilized.

4

2
Background

Definitions

In the scope of this dissertation, the following definitions are used:

Approximate Computing: given the algorithm, the set of generic computing techniques that produce
different but acceptable results. Approximate computing trades accuracy against a design point such
as accuracy vs. energy, performance, area, or economic cost. The approximate computing techniques
are generic in the sense that they can be applied to any approximation tolerant application without
the application expertise, to a varying degree that is acceptable by the defined quality metric.

Quality: an application demand to satisfy an application-relevant metric. Therefore, it should be
defined accordingly by an application expert. For instance, PSNR 30 dB or SSIM 0.9 for multimedia,
70 % Top-1 classification accuracy for deep neural network (DNN) applications, 10 % magnitude
difference to the exact result can be all considered appropriate results for different applications.

Accuracy: correctness of the underlying computation, independent of the application. It can
be defined as mean relative error distance (MRED), absolute error distance, or another similar
mathematical metric.

Error: a difference between the exact and approximate output.

Disciplined Approximate Computing: Clear partitioning of approximation tolerant part of the
application, defining acceptable limits of error rate and magnitude.

Means of Approximation: Techniques that directly apply approximations.

Means for Utilization of Approximations: Techniques that define approximation tolerant parts of
an application and map it to techniques that are means of approximation.

5

2 Background

2.1 Research at KIT - Chair for Embedded Systems

The research outcome of this dissertation is, in part, emerged through the expertise and focus of the
research projects presented in the following.

Hardware/Software Co-Design

Hardware/Software partitioning of applications is a widely used approach for optimizing system-
level design metrics, such as performance, and satisfying design constraints, e.g., chip area. Chair
for Embedded Systems (CES) has a history of research on this topic [35], spanning from adaptive
estimation of the costs [48] to design techniques to optimize for power and energy [43] with a case
study [46], and to flexible application-specific processors with runtime reconfiguration capability
[12, 13].

Low Power Design

Advances in technology scaling in the nano-CMOS era have steadily increased the consumed
power per chip area (i.e. power density). High power densities and thus elevated temperatures
seriously jeopardize the chip’s reliability. CES has focused on thermal-awareness [32, 33] and
energy-minimization [78] topics and developed novel techniques to mitigate the related problems.

Network-on-Chip (NoC)

With the emergence of manycore computing systems, communication has taken a key role in
defining system performance and energy-efficiency. Prior research of CES on this topic [47] had a
special focus on runtime adaptations [2, 3].

Approximate Computing

In the last decade, approximate computing has emerged to improve energy-efficiency and per-
formance by trading them against computational accuracy. Early examples from CES include an
accuracy-delay configurable adder [111] and a multiplier [14].

DFG SPP 1500 Dependable Embedded Systems

Under SPP 1500 project, the research on dependable embedded systems aims at developing new
methods and architectures to eliminate the effects associated when migrating to new technology
nodes, such as malfunctions, performance degradation, and increase power consumption at the
system level. This project is composed of five research areas: technology abstraction, dependable
hardware architectures, dependable embedded systems, design methods, and operation, observation,
adaptation [63].

The contributions of this dissertation particularly relate to dependable architecture and methods
research areas. Approximate Computing applies to the approximation tolerant part of the applica-
tions. The degree of tolerable approximations, however, varies with multiple factors. The methods
proposed in this dissertation aim at designing hardware for accuracy configurability and exposing
knobs. Therefore, they allow keeping the hardware accuracy within tolerable approximations,
making the computation dependable and approximate, by benefiting from approximations while
maintaining a quality constraint.

6

2.1 Research at KIT - Chair for Embedded Systems

DFG Transregio TR89 – Invasive Computing

"The Transregional Collaborative Research Center Invasive Computing (abbr. InvasIC), is inves-
tigating the design and resource-aware programming of future parallel computing systems. For
systems with 1000 and more cores on a chip, resource-aware programming is of utmost importance
to obtain high utilization as well as computational and energy efficiency numbers. InvasIC is funded
by the Deutsche Forschungsgemeinschaft in its third period of four years (July 2018 - June 2022),
aggregating researchers from three excellent sites in Germany (Friedrich-Alexander-Universität
Erlangen-Nürnberg, Karlsruher Institut für Technologie, Technische Universität München). This
scientific team includes specialists in algorithm engineering for parallel algorithm design, hardware
architects for reconfigurable MPSoC development as well as language, tool and application, and
operating system designers" (InvasIC, described on its website [55]). Prominent research outcome
of InvasIC[45] include distributed resource management [67] and parallel operating systems [96],
among many other related contributions.

7

2 Background

2.2 Approximate Computing Across the Stack

This section briefly summarizes Approximate Computing techniques in different abstraction layers
of a computer system with some prominent examples of prior work. Given a problem that can
tolerate approximations in some part of its calculations, a variety of techniques are proposed to
approximate in different ways and also to utilize the approximation techniques.

Approximation Tolerant Problems

Problem

Analysis and Characterization, Code Perforation, Memoization,
Algorithmic Transformation

Algorithm

Approximation Aware Programming Languages: EnerJ, Rely, Chisel

Program

Quality Control and Accuracy Management (Periodic/ Continuous)

Runtime

Approximate-Aware Instructions, Precision Scaling, Multiple Instantiations

ISA & Microarchitecture

Functional Approximations, Precision Scaling, Netlist Pruning

Circuit

Voltage/ Frequency Scaling, Approximate Memory & Interconnect

Transistor/ Device

Figure 2.1: Approximate Computing across the computing stack. My classification of existing work to the
abstraction layers of a computer system, as defined in [100]. Upright techniques represent different means of
approximation, Italics represent means for utilization of underlying approximations.

Algorithm

A fundamental challenge is to benefit from approximations while maintaining the correct execution
of the application. Addressing this challenge requires isolating the approximation tolerant part from
the sensitive part. This can be done by manually marking the kernels or the code, or automatically at
the algorithm level by systematically dissecting kernels, injecting errors, and testing the application.
Application Resilience Characterization (ARC) Framework [26] partitions an application into
resilient and sensitive parts. It uses a dynamic binary instrumentation tool (valgrind) to dominant
kernels that require more than 1% of the run time. It injects unconstrained random errors to the
dominant kernels and classifies them as sensitive if the application crashes, hangs, or produces an
unacceptable output. Otherwise, it classifies the kernel as resilient. Hence, it automatically separates
the approximation tolerant part of the program.

8

2.2 Approximate Computing Across the Stack

Approximations can also be applied directly at the algorithm level by skipping loops, data fetches, or
transforming kernels. These techniques can be applied to a pseudo-code, before using a programming
language. A prominent example is loop perforation [49, 88, 113]. Aiming at iteratively refining
algorithms, it is shown that reducing the number of loops can offer a favorable trade-off for accuracy
vs. compute time. The loops to be perforated can be found in a similar way to the ARC framework:
by testing perforated code against crashes, hangs, or producing unacceptable output. This is a
general technique that applies to any loop to a varying degree. A practical way to utilize this
technique is to combine it with a compiler such as LLVM.

Similarly, data extrapolation by predicting its value from the previous data is proposed. In this
method, data fetches on cache misses can be perforated for approximate workloads and can be
predicted to mitigate the limited off-chip bandwidth bottleneck and reduce the effective memory
latency [126]. This idea is shown to apply in SIMD load instructions with significant value similarity
across accesses of adjacent threads.

Finally, algorithmic transformations are proposed to mimic a region of the imperative code [37]. At
compile time, the code is used to train a neural network and the output binary can be separated
for the CPU and the accelerator. This way, a neural network hardware accelerator can be used as a
generic and flexible approximate accelerator.

Programming Language

Several programming languages are proposed to manually mark the approximation tolerant
code and isolate it from the sensitive part. Two main marking strategies are variable annotation
and operation annotation. EnerJ [107] extends Java with approximate data types. It enables type
checking in compilers to ensure correctness where needed by defining variables as approximate
or precise. By limiting the exact operations to which all of its variables are precise, and inferring
approximate operations when at least one variable is approximate, it ensures exactness for the
critical, approximation intolerant part of the code. Thus, it offers a mean for utilizing approximations
in lower layers: The annotated approximated variables can be calculated with approximate units.

Rely [18] annotates approximate arithmetic, logic, and memory operations. It assumes the underlying
hardware unreliable with a known error rate and unbound error magnitude. Given the error rate
of the individual operations, it finds the error rate of the application, allowing the programmer
to choose between approximate or exact operations in order to meet the quality target manually.
Chisel [87] proposes automating this search for a given reliability specification.

Runtime

The output quality of an approximated application depends on its inputs. A static approximation
may be too conservative, leaving benefits of further approximations untapped, or too aggressive
and violate the quality target. Runtime systems with periodic and continuous quality monitoring
capabilities are proposed. These systems run a periodic or a smaller sized (canary) exact computation
in parallel to the approximate one and compare the results to monitor the quality. In case the quality
deviates from the target, they make the necessary accuracy adjustments to maintain it. They do
not offer a guarantee on the application quality but rather some control over it by responding to
changes in input characteristics. Despite the monitoring overheads of parallel exact computations,
previous works have reported significant energy savings directly or through computation speed-up
over conservative static approximations.

9

2 Background

Green [11] and SAGE [106] propose periodic monitoring and adjustment of general and parallel
approximate computations, respectively. The monitoring period offers a fine-grained trade-off
between the energy overhead and control for accuracy adjustments.

Rumba [64] and the input responsive system in [72] propose continuous monitoring, by running a
smaller circuit and using smaller, canary inputs, respectively. The quality with the smaller circuit
and the canary inputs are taken as representatives in setting approximation degree for the larger
computation. Similarly, Topaz [1] detects unacceptable outputs of a task to re-execute in exact
computation.

ISA & Microarchitecture

Several architecture-level techniques are proposed to utilize hardware approximations. Some
hardware architectures are designed to enable approximations: A vector processor involving
first-in-first-out buffers (FIFOs) is designed with data precision scaling capability to reduce the
data bitwidth in its systolic array [25, 27]. The FIFOs propagate an adjustable number of bits,
which can reduce the toggles in the datapath and thereby reduce the dynamic power consumption.
The processor is designed with a proportional-integral-derivative controller (PID controller) to
self-adjust the data precision. Later, this processor is extended to a custom instuction set architecture
(ISA) with approximate-aware instructions and thus exposed accuracy knobs to higher layers [120].

Multiple instantiations of datapath units are explored for CPUs [36] and CGRAs [16]. Having
such instantiations in the architecture benefit from circuit-level approximations to reduce energy
consumption beyond data precision scaling, as these hardwired static-accuracy instantiations
require less energy per operation.

Alternatively, the idea of having concise loads and stores maintains the datapath precision of the
functional units and reduces the data precision that is loaded or stored. Consequently, it can hold
more variables in the caches, increase the cache-hit rate, and reduce the computation time [56].

Finally, together with algorithmic transformation, utilizing a neural network hardware accelerator
as an approximation of other kernels is proposed in [92].

Circuit

Circuit-level techniques focused on manual design [14, 133] and automation [80, 103, 112, 122, 123]
of functionally approximate circuits. The techniques in this class aim to reduce logic complexity
within certain quality bounds. Many fundamental units such as adders [85, 124, 132, 133] and
multipliers [71, 77, 129] are manually optimized for accuracy vs. energy or performance trade-offs.
Additionally, using underlying circuit properties, such as data packing by multiple simultaneous
lower-precision operations using disjoints parts of the adders and multipliers is proposed [90].

Accuracy increases the design space of circuit synthesis by one dimension. This challenge can be
tackled in 2 different subcategories. First, given many known manually-optimized approximate
fundamental circuits, a question arises on how to use them optimally to build larger circuits such
as accelerators. By propagating the error distribution of individual units such as adders, their
compiler-driven design space exploration and selection is proposed to build larger circuits [20]. A
similar design space exploration is integrated into high-level synthesis flows in [22, 73, 74].

Alternatively, another subcategory is automated techniques that are general, i.e., not specific to a
certain circuit structure or functionality. For instance, modifying the boolean function realized by the
circuit is proposed in [86, 112]. Removing gates with low toggling probability, probabilistic pruning, is

10

2.2 Approximate Computing Across the Stack

proposed in [80]. Synthesis of a simplified combinational circuit via setting some output bits to don’t
cares for a given quality function is proposed in [123]. This technique is used for sequential logic
synthesis in [103]. Simplifying circuits by finding gates that have high correlation and removing one
of them is proposed in [122]. This technique finds gates that produce the same output for a majority
of the time and substitutes the output of one with another, making the other gate redundant and
remove it together with the logic in its fan-in cone.

Transistor & Device

To change state between conducting and not (i.e., to toggle), the gate of the transistor requires an
amount of charge to be collected as a function of transistor dimensions. This state change requires a
certain time at a certain voltage, previously measured and characterized by the producers, and it is
subject to process, voltage, temperature (PVT), and aging variations which are all considered [44].
Techniques at the transistor level utilize charge starvation in the sense that some set of transistors
cannot operate exactly and switch their state too late. Traditionally, frequency is determined
conservatively, by giving sufficient time plus a guardband to transistors to ensure sufficient charge
build-up at the transistor and correctness at the circuit and higher levels. Static timing analysis
tools set circuit delays for the worst case, i.e., the longest paths in the circuit (most critical path) and
maximum amount of toggles. Approximate computing reduces the delay or voltage and induces
timing errors to a degree tolerable by the application. The motivation behind charge starvation
is that timing errors occur rarely and gradually with scaling the delay or voltage. Most paths are
not critical, often only a subset of gates toggle each cycle, and PVT and aging variations are most
probably not the absolute worst-case, leaving the delay and voltage values very conservative.

General techniques that apply to logic are reducing the voltage [42], increasing the frequency [8].
Fine-grained scaling of the timing violations to the criticality of sub-operations is proposed in [62].
Additionally, there are custom techniques that take advantage of the underlying technology. For
instance, DRAM holds data in leaky capacitors, and it needs to be periodically refreshed [65, 81, 82].
Approximate DRAMs are proposed that reduce the refresh frequency [59, 84, 101]. Phase change
memory and resistive random access memory register distinct analog values to store digital data.
the margin and distance between values create a trade-off between density vs. accuracy [95]. To
write, the data is checked and corrected multiple times. Also, they eventually age and wear out.
These checks during the write process can be reduced at the cost of increased error possibility and
the worn-out blocks can be used to store approximation tolerant data [108].

11

2 Background

2.3 Dynamic Accuracy Reconfiguration

Dynamic accuracy reconfiguration, as interpreted in the scope of this dissertation, aims to maximally
exploit the performance or energy efficiency benefits of approximate computing while meeting
a given quality target at runtime. This section gives the background information for a runtime
accuracy configurable system and argues for its necessity. The next part gives two motivational case
study examples and discusses the background on accuracy configurability.

2.3.1 Accuracy-Configurable System

An ideal accuracy-configurable system would monitor the quality and react by adjusting the
computation accuracy for power or performance benefits. Accuracy of such hardware can be
adjusted by an internal control mechanism [25, 27], or it can expose knobs to higher levels, such as
runtime and software and knobs can be driven through ISA extensions [120].

Figure 2.2: An application example targeting a quality, while input characteristics change over time.

Figure 2.2 shows a handwritten digit recognition example in which the input stream characteristics
change in handwriting style and noise. A monitoring runtime management system reacts to
maintain the application quality at a target. It switches the hardware to a different accuracy at
a different power requirement and minimizes the energy consumption when possible. Runtime
accuracy management is orthogonal to and out of the scope of this dissertations. Such runtime
systems are detailed in Section 2.2. As previously defined, the quality and accuracy terms are
distinguished as follows: quality is an application demand, for instance, a classification error rate of
≤ 1%. Accuracy is the correctness of the underlying hardware and software, with metrics such as
95% correctness in mean magnitude (5% mean relative error distance). Hence, quality changes with
input characteristics and also with hardware accuracy. Accuracy can be changed by, e.g., changing
the input data precision.

Apart from the input characteristics, there are several other drivers of the accuracy configuration
necessity. Different applications, application parameters, quality targets all require a re-configuration
of computation accuracy [106, 128]. Additionally, there can be hardware-sourced reasons, such as
changes in maximum power and latency constraints.

Accuracy increases the hardware design space by one dimension. Apart from the question of which
unit or accelerator to instantiate, it opens up which accuracy. These reasons make approximate
hardware extremely specialized, not only in terms of the application but also the accuracy, and hence
significantly limit the utilization and energy or performance benefits of fixed accuracy systems.

12

2.3 Dynamic Accuracy Reconfiguration

2.3.2 Case Study: Edge Detection in Video Frames

Image and video processing are among application domains of approximate computing. Often, it is
difficult to distinguish between the raw and compressed or approximated image due to limitations
in human perception. A widely accepted quality metric for images and videos is the structural
similarity index measure (SSIM). It measures the perceived similarity to the original reference. Sobel
Filter is a common image processing kernel and used for edge detection. It works on 8-bit grayscale
images. Approximations of the Sobel Filter can be obtained by discarding the least significant
bits (LSBs) of image pixels. A higher number of discarded LSBs result in higher dynamic power
savings. In Figure 2.3, exact and approximate Sobel Filters are applied to the first 4000 frames of a
video 1. The exact output is taken as the reference in SSIM calculation. The Sobel Filters have the
corresponding hardware accuracy given in parentheses in the legend in terms of 1-MRED (mean
relative error distance).

0.5

0.6

0.7

0.8

0.9

1

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

SS
IM

(Q
ua

lit
y)

#Frame (Input)

8 bit (100%)
7 bit (98%)
6 bit (96%)
5 bit (90%)

Figure 2.3: Edge detection on Big Buck Bunny [105] with exact (8 bit) and approximate Sobel Filters (7 bit, 6
bit, and 5 bit). Only the first 4000 frames are drawn for space reasons. Accuracy values are shared in the
legend in parentheses in terms of ’1−MRED’, (Mean Relative Error Distance). 8-bit filter represents the
exact computation on grayscale frames. The approximate filters are taken from [5, 6].

Notice that, the input frames with the same hardware accuracy result in a large variation in output
quality. In other words, to satisfy a given quality constraint such as SSIM 0.9, using any of the units
with a fixed hardware accuracy either violates this quality constraint or gives only sub-optimal
dynamic power savings, or both. In order to maximally exploit the approximate computing benefits
while maintaining the quality constraints, different frames need to be processed with a different
accuracy hardware. Thus, the computation accuracy is input dependent.

There is no single, universally accepted quality constraint. Application developers may choose
a higher or lower quality, depending on the approximation tolerance of the outputs or the next

1 This experiment is done in collaboration with Dr.-Ing Jorge Castro-Godínez at KIT-CES.

13

2 Background

computation stages. In Figure 2.4, three different quality constraints are considered, such that
the application quality should meet or surpass the constraint. The processed frames are the same
among the subfigures (a,b, and c) and also Figure 2.3. Figure 2.4 shows that according to the quality
constraint, the same frames require a different accuracy.

0.9

0.95

1

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

SS
IM

#Frame

8 bit (100%) 7 bit (98%) 6 bit (96%) 5 bit (90%)

(a) SSIM >= 0.9

0.8

0.85

0.9

0.95

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

SS
IM

#Frame
(b) SSIM >= 0.8

0.7

0.75

0.8

0.85

0.9

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

SS
IM

#Frame
(c) SSIM >= 0.7

Figure 2.4: Required accuracy for edge detection with different quality constraints. (a) SSIM ≥ 0.9 (b) SSIM ≥
0.8 (c) SSIM ≥ 0.7

Comparing the figures, while Figure 2.4a, requiring mostly 7 and 6-bit units, Figure 2.4c requires 6
and 5-bit units for most of the frames. In other words, Figure 2.4 shows that as the quality constraint
is reduced, the lower accuracy units can be used more often. Consequently, more approximation
benefits can be expected.

This case study has shown the input and quality constraint dependency of the required computation
accuracy. Next, the required computation accuracy for different applications, i.e., application
dependency of computation accuracy is analyzed.

14

2.3 Dynamic Accuracy Reconfiguration

2.3.3 Case Study: DNN Inference

Workloads of deep neural networks (DNNs), especially inference tasks can be significantly quantized
without sacrificing the application quality. Table 2.1, shows a motivational case study. It is a summary
of the results of [130], showing Top-1 and Top-5 accuracies for several deep neural network models
at varying complexity (ResNet-18, ResNet-34, etc.) with ImageNet input set.

Table 2.1: A brief comparison of state-of-the-art quantization methods on ImageNet. “FP” denotes “Full
Precision”; the “W/A” values are the bitwidths of weights/activations. Summarized from Table 6 in [130].

Methods
Bitwidth Accuracy (%)
(W/A) Top-1 Top-5

ResNet-18
FP [41] 32/32 69.6 89.2

XNOR-Net [104] 1/1 51.2 73.2
ABC-Net [79] 3/3 61.0 83.2
ABC-Net [79] 5/5 65.0 85.9
LQ-Nets [130] 1/2 62.6 84.3
LQ-Nets [130] 2/2 64.9 85.9
LQ-Nets [130] 3/3 68.2 87.9
LQ-Nets [130] 4/4 69.3 88.8
LQ-Nets [130] 32/32 70.3 89.5

ResNet-34
FP [41] 32/32 73.3 91.3

ABC-Net [79] 3/3 66.7 87.4
ABC-Net [79] 5/5 68.4 88.2
LQ-Nets [130] 1/2 66.6 86.9
LQ-Nets [130] 2/2 69.8 89.1
LQ-Nets [130] 3/3 71.9 90.2
LQ-Nets [130] 32/32 73.8 91.4

ResNet-50
FP [41] 32/32 76 93

ABC-Net [79] 5/5 70.1 89.7
LQ-Nets [130] 1/2 68.7 88.4
LQ-Nets [130] 2/2 71.5 90.3
LQ-Nets [130] 3/3 74.2 91.6
LQ-Nets [130] 4/4 75.1 92.4
LQ-Nets [130] 32/32 76.4 93.2

AlexNet
FP [70] 32/32 57.1 80.2

BNN [53] 1/1 41.8 67.1
ABC-Net [79] 5/5 70.1 76.3
LQ-Nets [130] 1/2 55.7 78.7
LQ-Nets [130] 2/2 57.4 80.1

DenseNet-121
FP [52] 32/32 75.0 92.3

DoReFa-Net [131] 2/2 67.7 88.4
LQ-Nets [130] 2/2 69.6 89.1

VGG-Variant
FP-HWGQ [17] 32/32 69.8 89.3
FP-HWGQ [17] 1/2 64.1 85.6
LQ-Nets [130] 1/2 67.1 87.6
LQ-Nets [130] 2/2 68.8 88.6
LQ-Nets [130] 32/32 72.0 92.5

GoogLeNet-Variant
FP-HWGQ [17] 32/32 71.4 90.5
FP-HWGQ [17] 1/2 63.0 84.9
LQ-Nets [130] 1/2 65.6 86.4
LQ-Nets [130] 2/2 68.2 88.1
LQ-Nets [130] 32/32 72.9 91.3

15

2 Background

Quantization of DNN weights and activation values can be considered as precision scaling, a
general approximate computing technique, applied to the neural network domain. Quantizing the
values to a smaller bitwidth reduces the computation accuracy lower, and consequently higher
approximate computing benefits can be expected. The table shows a large variation between the
required bitwidths for a variety of reasons analyzed below.

• There is no single universally accepted classification accuracy (i.e., DNN application quality)
target. An application developer may choose a higher or lower target accuracy with the
incurring computation costs or savings.

• For a fixed accuracy target, the required precision depends on the model and the learning
method:

– In Table 2.1, a 3-bit implementation of ResNet-34 and 2-bit implementation of ResNet-50
both achieve over 70% Top-1 classification accuracy with LQ-Nets. Alternatively, the
same quality target is achieved using ABC-Net with 5-bit precision. In fact, the table
represents a large variation of bitwidths and resulting classification accuracy.

– These state-of-the-art DNN models are from the last 5 years. Due to the recent and active
nature of this domain, we can extrapolate that a future, improved model or training
method would require a different precision.

• Apart from the DNN application designer’s targets, hardware design targets such as latency
and power limits can define the required precision. Microarchitectural decisions such as the
size of the systolic MAC array can determine the MAC accumulator size to avoid overflow.

• DNN classification accuracy is input-dependent. Unlike these test scenarios on a known input
dataset (ImageNet), in real-life we do not have control over the input. Depending on the input
complexity, noise, resolution, the required precision would reduce or increase.

Thus, for the reasons listed above, a general and fixed quantization solution cannot be optimal: It
either violates the accuracy target or delivers sub-optimal classification-accuracy or energy benefits.
Considering the currently massive scale of effort for gradual improvement of DNNs, violating
classification accuracy targets or sub-optimal trade-offs are very much undesirable.

Different DNN models can be considered as different applications, that can use the same hardware
accelerator. NPUs can be considered as multi-purpose hardware accelerators. The same hardware
can be used for multiple different applications and DNN models. Similarly, DNN weights can be
considered as application parameters. Given a model, different learning methods set different
weights. This case study has shown that apart from the input and the quality constraint, computation
accuracy depends on the applications and application parameters.

In summary, the two case studies show that the required computation accuracy depends on
application, application parameters, quality target, and input characteristics.

16

2.3 Dynamic Accuracy Reconfiguration

2.3.4 Accuracy-Configurable Hardware

Although approximate computing has received significant interest, the majority of the hardware
research efforts explored targeting a single accuracy in manual [124, 132] and automated design
[21, 73, 86, 110] of functionally approximate circuits. Runtime monitoring techniques, however,
have shown that with temporal variations in input characteristics, the optimal accuracy to meet an
application quality target also changes [11, 64, 72]; the single accuracy circuit delivers suboptimal
benefits or violates the quality targets [128].

Several runtime methods and strategies for accuracy configurations are discussed in Section 2.2.
Next is a discussion of background on hardware methods that realize and benefit from runtime
accuracy configurations.

Transistor/ Device

Scaling either voltage lower or frequency higher and thus introducing timing violations is a fine-grain
accuracy configuration technique. More number of transistors and paths fail with more aggressive
scaling and produce an incorrect signal. The failing paths lead to an error rate depending on their
activation probability. A higher error rate leads to an error magnitude depending on the significance
of the failing signal. Due to variations in path delays, each path is expected to have a different
minimum delay before failing. Thus, scaling voltage or frequency beyond safe limits is a fine-grain
technique for introducing errors and thus reducing the accuracy. Timing speculation has received
considerable interest in better than worst case design and approximate computing fields.

Graceful error under scaling has been investigated under better than worst-case design, primarily
to target recovery based architectures [34]. For instance, Blueshift [38] utilizes a commercial design
flow to optimize dynamically critical paths using forward body biasing. DynaTune [125] analyzes a
circuit and then improves timing for dynamic critical paths assigning low-Vt cells. The proposed
approach in Chapter 3 improves timing on hidden non-critical paths of circuit topologies, which
removes the necessity to resort to such physical techniques and can be applied more generally. Cell
sizing is proposed to redistribute the slack of frequently exercised near-critical timing paths [61].
This is a subset of standard delay optimizations that may require upsizing the fan-in cone as well to
achieve speedups. It is also limited within the boundaries of design rules, such as maximum fan-out
and capacitance. This technique occurs in post-layout and miss the opportunities in synthesis.
Additionally, they are application dependent on selecting which paths they speed-up, which limits
their circuits generality.

Several efforts have exercised timing speculations in the field of approximate computing to find
trade-offs between accuracy and energy. Previous work in this class took advantage of applications
with known input distribution such as low pass filters [42] and different significance of the paths on
the result [62]. Cross-layer techniques [23, 27, 120] utilized timing speculations together with other
methods to achieve more favorable trade-offs. Techniques from other abstraction layers such as
software [18, 107] and architecture [36] have relied on timing speculations to showcase their benefits.
The trade-off for all these techniques rely on error characteristics of the underlying circuit under
timing speculations. Additionally, retiming is proposed in [102], a technique to improve timing
with moving flip-flops earlier or later in between stages. A widespread delay distribution between
outputs in a stage is a prerequisite for this technique which traditional synthesis optimizations
eliminate. Timing speculations are often performed by voltage scaling [90, 98]. Although voltage
scaling reduces the energy when designs are analyzed in isolation, it comes at often ignored
system-level costs of multiple additional voltage supplies, rails, and switches.

17

2 Background

In contrast to the better than worst-case design techniques, SlackHammer in Chapter 3 takes a logic
synthesis approach for graceful errors under timing speculations. This methodology transforms
the problem on a well-studied traditional synthesis problem. Unlike And-Inverter-Graph specific
techniques [28, 83], it casts the problem on existing commercial synthesis tools hence it leverages a
vastly enhanced scope of optimizations and remains compatible with traditional EDA flows. The
above distinguishing features make SlackHammer promising in synthesis for graceful errors under
aggressive scaling.

Circuit & Architecture

To utilize the temporal variations with approximations, accuracy-configurable hardware [25, 27, 51,
56, 120], and generic design methodologies are proposed [57, 66, 93]. The de facto method to configure
accuracy is data precision scaling, i.e., not propagating the LSBs of data. In general, precision can
be scaled by gating the signals and thus blocking their propagation in the combinational paths.
Energy-aware precision scaling of floating-point data is proposed in [51]. Data packing: using
non-interfering paths of a circuit for simultaneous calculation is proposed in [90]. At the system level,
precision scaling is applied in the memory controller [56]. A vector co-processor with data precision
reducing FIFO input buffers is proposed in [27]. It is extended with an internal PID controller [25]
and later with accuracy-aware ISA extensions [120]. All of these designs apply precision scaling
on data, and by doing so, they reduce the dynamic power consumption of the existing circuit.
Moreover, function-specific ways are proposed for configurable approximate units [54, 60, 77, 127].
which also benefit from the reduced toggling activity. In contrast to gating existing circuits, when
new circuits are synthesized with specific precisions (or accuracy in general), synthesis tools can
simplify and optimize them to be more energy-efficient than the existing circuits for the given
accuracy, giving up on configurability. A system with energy-efficiency of such static-accuracy
approximate hardware and also the accuracy configurability is very desirable to achieve a low
energy consumption and retain generality at the same time.

Generic design methodologies can offer improving performance by synthesizing partially faster
circuits [8, 90, 98] or energy efficiency by means of disabling low significance logic groups in
hardware [57, 66, 93]. Two gating mechanisms are utilized in [57]: (1) Masking logic groups by
inserting control gates to their combinational path and (2) power gating the logic groups to partially
switch off the hardware. To group the gated logic, a genetic programming search is proposed in
[93]. In [66] clock gating for approximations, clock overgating, is proposed. By disabling the clock
signal of flip-flops, power savings are achieved in their fan-out cone. Similar to existing accuracy
configurable hardware designs, gating mechanisms reduce the energy via reducing the toggling
activity only.

Several previous works have proposed using the instantiation of distinct circuits that can benefit from
synthesis relaxations. In [15], two instantiations of adders and multipliers are used for reliability
purposes, targeting circuit delay. The results are shown to even increase the energy, contrary to our
primary goal. Multiple instantiations of floating-point units with different accuracies are used in
[119]. Some of the exact processing elements of a CGRA are replaced with approximate ones in
[16].These architectural solutions may not always be beneficial when leakage power is considered
and they make a subset of the architectural proposal in Chapter 5 of this dissertation.

18

2.4 Logic Synthesis

2.4 Logic Synthesis

Logic synthesis is the process of mapping the hardware described in a human-readable language
(e.g., Verilog, VHDL) into a netlist, i.e., a description of connected cells that exist in the fabrication
technology library. This process involves multiple steps for satisfying constraints, such as maximum
capacitance, drive strength, etc., and also optimizations prioritizing delay and afterward area and
leakage power [31]. An analogy can be made between hardware compiling and software compiling.
Many optimizations, such as dead code elimination, constant propagation, common sub-expression
elimination, are done during this process.

The goal of logic synthesis can be defined as an optimization problem of meeting delay constraints
for every output bit while minimizing area and power. The synthesis algorithm takes delay and
area constraints as inputs of a cost function and goes through iterative steps of cost minimization.
Delay optimization steps pick the path with the worst timing violation (i.e. negative slack) and
apply the speed-up techniques until none of the primary outputs (single output bits) violate the
timing constraint. Combinational circuit synthesis is done in 4 phases: mapping, gate-level delay
optimization, design rule fix, and area recovery [31]. Particularly the first 2 phases, boolean mapping
and gate-level delay optimization determine the circuit delay.

Boolean Mapping

This phase maps the human-readable hardware description to a suitable circuit topology, using
gates in the technology library. There can be multiple different representations of the same boolean
function, corresponding to different circuit topologies. For example, a boolean function can be
mapped directly to the circuit as given in Figure 2.5a. In case inverted A and B are available in the
circuit, the not gates can be eliminated as in Figure 2.5b. The circuit given in Figure 2.5c is a boolean
optimized topology of the same function with less delay and area.

A

B

C
D

Z

(a) Original

A

B

C
D

Z

(b) Optimization 1

A
B

C
D

Z

(c) Optimization 2

Figure 2.5: Synthesis and optimizations of the function Z = A(B(C + D)) (a) Original, (b) Common
sub-expression elimination, and (c) Boolean Optimization.

For common circuits, the synthesis tool can contain a variety of topologies in its library. For instance,
the tool contains multiple adder topologies, designed with different optimizations in focus [40, 69].
A common issue among them is that they suffer from long carry chains. These carry chains form a
critical path and limit the maximum achievable frequency. A simple Ripple Carry Adder (RCA)
has a carry chain that is in linear relation with its bit-width (O(n)) resulting in limited maximum
frequency. Faster topologies such as Parallel Prefix Adders generally have a logarithmic relation
between their critical path and bit-width at increased hardware requirements and, as a result,
increased power consumption. Given a delay constraint, the synthesis tool picks the most suitable
circuit topology in its circuit library and creates an initial netlist that roughly meets the constraints.
The following phases do the fine-tuning.

19

2 Background

Gate-Level Delay Optimizations

Circuit topologies chosen in the boolean mapping phase have varying delays between their paths.
The paths violating the circuit delay constraint can be corrected with gate-level delay optimizations.
At each iteration, the algorithm finds the slowest path, i.e., the most critical path, and performs delay
optimizations to meet this circuit delay.

There are three different gate-level delay optimization methods: upsizing, load isolation, and load
splitting. These methods speed up the circuit by increasing fan-out or decreasing load on critical
paths.

1X

1X
2X

critical

(a) Original

2X

2X
4X

critical

(b) Upsizing

critical

(c) Load Isolation

critical

(d) Load Splitting

Figure 2.6: Gate-level delay optimizations to reduce the most critical path delay [31]

Upsizing (Fig.2.6b) increases cell size, enables higher output current and faster transition of
consequent cells. However, it increases the capacitance and transition time of the upsized cell itself.
To achieve speedups on a path, the entire fan-in cone needs to be considered for upsizing within
a certain range of cell sizes in the technology library. Load isolation (Fig.2.6c) and load splitting
(Fig.2.6d) decrease the load of a gate which drives the critical path among others, by driving the
other, non-critical paths via a buffer or another equivalent gate respectively. All 3 methods increase
the area by increasing cell size in upsizing or placing additional buffers in load isolation and
equivalent gates in load splitting.

Tracing the gate-level delay optimizations backward, these optimizations can reduce the critical path
delay further at an increasing logic, area, and power cost. In Figure 2.7, the possible cost of iterative
delay improvements is shown. The synthesis tool first chooses the minimum cost, maximum delay
reduction option (shown as ’1’). In case improving the delay by load splitting on one gate is not
sufficient in the next iterations, an increasing number of gates may need to become faster. This
can lead to significant costs. The example shows an exponential increase in iterations 1-2-3 as a
worst-case scenario.

20

2.4 Logic Synthesis

Figure 2.7: Iterative critical path improvements at increasing cost. After load splitting in iteration 1, two gates
need to be faster in iteration 2 and four gates need to be faster in iteration 3.

Synthesis with Zero Delay Constraint

To maximize the delay improvement effort, a delay constraint of ’0ns’ can be set. The delay constraint
of ’0ns’ cannot be realized as a circuit cannot have such delay. In this case, the synthesis tool chooses
the fastest circuit topology and applies a maximum amount of gate-level delay optimizations. To
obtain the fastest circuit, these optimizations extend from the output to the input of the combinational
part. The tool eventually stops when it is unable to improve the worst delay any further, but still
produces an output circuit, reporting a negative timing slack.

During synthesis, in every iteration, the tool picks the most critical path and searches for maximum
delay improvements with minimum cost. If the optimizations are successful, the most critical
path can change between the iterations. The second slowest path can become the most critical.
This iterative optimization of only the most critical paths results in a high number of paths with
near-identical delays.

Synthesis with Minimum Delay Constraint

Circuits can be synthesized to the minimum delay by setting a constraint that can be obtained as the
negative slack in the previously explained zero delay case. Upon meeting the delay constraint, the
synthesis tool proceeds to the next phases: design rule fix and area recovery. Briefly, design rule fix
checks if the circuit complies to design constraints, such as maximum capacitance or fan-in, fan-out
of the inputs and outputs. Area recovery phase can be considered as the inverse of gate-level delay
optimizations. After the delay optimizations, some paths will remain to have timing slack. This
phase searches for opportunities to undo gate-level optimizations wherever possible. For instance,
in Figure 2.7, the region above gate ’1’ separating from the critical path can be area optimized. Thus,
an ideal and successful traditional logic synthesis results in evenly distributed path delays.

It is a powerful tool, boolean mapping and gate-level delay optimizations together offer a big range
for the delay, area, and power. Therefore, any circuit-level comparison should be made considering
the synthesis impacts. when considering circuit-level trade-offs, synthesis impacts should be a
prime concern.

21

2 Background

2.4.1 Synthesis of Approximate Units

Accuracy as a design metric increases the design space by one dimension. One main category of
approximate computing in hardware is functional approximations, where the boolean functionality
of approximate units deviates from the exact to a limited extent. Functional approximations in
general reduce the size of the logic and also shorten the critical path. Therefore, the energy benefits
of functional approximations are two-folds: The reduced logic results in less area, leakage, and fewer
transistor toggles and dynamic power. The shorter critical path allows for synthesis relaxations. The
circuits can be synthesized more energy efficiently. However, there can be many different ways
of functional approximations of the same unit and with the same accuracy, differing in circuit
implementation, and hence in critical path length.

This subsection shows that, for the same accuracy, the critical path length is a dominating factor for
circuit metrics such as delay, power, area, and leakage with a case study on lower-part approximate
adders.

Lower-Part Approximate Adders 2

As a fundamental building block for integrated circuits, adders have grabbed a lot of attention
to showcase approximation methods. Particularly, lower-part approximation has become a major
category. Methods in this category approximate a number of LSBs while they compute the MSBs
exactly. Considering the exponential reduction of significance from MSB to LSB, a large number of
bits can be approximated without a big loss of accuracy. Thus, the lower-part approximation can
address the common issue of adders by reducing the length of the carry chain significantly. Here,
the approximation method used on LSBs has a direct impact on computation accuracy. In other
words, for the same inaccuracy tolerance, the number of approximated bits and the length of the
carry chain can change significantly between the methods.

Accurate
Adder

/
A(k : n− 1)

/
B(k : n− 1) /

Sum
(k : n− 1)

/0 Sum(0 : k− 1)

(a) Truncate

Accurate
Adder

/
A(k : n− 1)

/
B(k : n− 1) /

Sum
(k : n− 1)

/A(0 : k− 1) Sum(0 : k− 1)

(b) Copy

Accurate
Adder

Inaccurate
Adder

/
A(k : n− 1)

/
B(k : n− 1) /

Sum
(k : n− 1)

Cin

A(k− 1)

B(k− 1)

A(k− 1)

B(k− 1)

A(0)

B(0)

/

≈ Sum
(0 : k− 1)

(c) LOA [85]

Figure 2.8: An abstracted circuit-level comparison of lower-part approximate adders (a) Truncation, (b) Copy,
and (c) Lower-Part OR-Gating Adder [85].

Figure 2.8 shows three different lower-part approximation methods. Truncation simply provides
a zero value instead of adding the lower part of operands. Copy method propagates the lower
part of an operand to the output. Lower-Part OR-Gating Adder (LOA) [85], uses OR gates as an

2 The content of this subsection is based on work originally published in [7].

22

2.4 Logic Synthesis

approximate unit and an AND gate to provide carry to the accurate part. OR gating is a good
approximation of bitwise addition. It provides the correct result when there is no carry and when
there is carry, it fails small. Using information entropy of both operands, LOA is expected to show
better accuracy than truncation and copy methods. For all three circuits shown in Figure 2.8, the
critical path is in the exact adder part. The critical path of a single OR gate for the approximated
unit also translates as relaxed timing constraints and can be synthesized with slower cells that
characteristically have a small area and leakage current for the lower, approximate part.

Impact of Approximations on Critical Path Length

Figure 2.9 shows a comparison of lower-part approximation methods using behavioral models of
each adder in MATLAB, for a varying number of approximated bits with 100.000 uniform random
values as operands. In this figure, each approximated bit reduces the exact part. It shows two key
insights. First, for each method, there is an accuracy vs. critical path trade-off. Second, the arrow
shows a significant difference in critical path length between the methods at the same accuracy.
For the same error tolerance, the truncation method can approximate 4 LSBs while LXOA [9] can
approximate 7. As another example, a 16-bit approximate adder with the truncation method requires
a 12-bit exact part while with LXOA requiring only 9-bit.

0.2

102

103

104

1

10

2 4 8 12 16

E
rr

or
M

ag
ni

tu
d

e

#Approximated Bits

Truncation
Copy
ETA
LOA

LXOA

shorter
critical path

longer
critical path

Figure 2.9: Error magnitude comparison of lower-part approximate adders, comparing the truncation, copy,
and LOA [85] methods previously described in Section 2.4.1, and also ETA [132] and LXOA [9]. The arrow
shows that, for the same accuracy, a significantly different number of bits can be approximated where each
approximated bit reduces the carry chain, and hence the critical path in the exact part.

2.4.2 Impact of Critical Path Length on Circuit Trade-offs

As shown above, accuracy is proportional to the critical path length for all of the shared approximation
methods. The critical path length directly impacts circuit trade-offs such as area and power, as
discussed in detail below.

23

2 Background

0.6

0.7

0.8

0.9

1

0 102 103 1041 10

N
or

m
al

iz
ed

A
re

a

Expected Error Magnitude

Truncation
Copy
ETA
LOA
LXOA

(a) CLA at 125 MHz

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 102 103 1041 10

N
or

m
al

iz
ed

A
re

a
Expected Error Magnitude

(b) KSA at 2 GHz

0.2

0.4

0.6

0.8

1

0 102 103 1041 10

N
or

m
al

iz
ed

A
re

a

Expected Error Magnitude

(c) DWA at 4.5 GHz

Figure 2.10: Area comparisons of lower-part approximate adders. (a) 32-bit Carry-lookahead Adder. (b) 32-bit
Kogge-Stone Adder with radixes 4-4-2. (c) 32-bit DesignWare Adder.

Area vs. Accuracy

The area plots in Figure 2.10 start with and normalized to the same accurate adder, at 0 expected
error magnitude. We synthesized the adders with lower-part approximation by increasing the
approximate LSBs by 2 at each sample point (k = 0, 2, 4, ...).

As a corner case, Figure 2.10a shows a very low-frequency design where the critical path length
does not become a design concern. A clock period is enough to synthesize the circuits with the
smallest and slowest gates in the technology library. The area of the accurate part of the adder
reduces linearly. LOA and LXOA methods add gates to the lower part at linear cost. The additional
gate costs of the ETA are the highest. Here, methods without gate-costs offer better area vs error
trade-offs with a small difference.

Critical path becomes a prime design concern at higher frequencies than the previous example. We
implemented 2 high-frequency adders. Figure 2.10b shows Kogge-Stone adders [68] with radixes
4-4-2 (2 at last level) and synthesized for 2 GHz. Our implementations combine the Kogge-Stone
adder for the higher part with approximation methods for the lower part. In Figure 2.10c, we use the
fastest adder in Synopsys DesingWare library and optimize with compile_ultra option. Figures 2.10b
and 2.10c show that the methods with higher accuracy relax the critical path further and lead to
better area vs. error trade-offs.

24

2.4 Logic Synthesis

Power vs. Frequency vs. Accuracy

0
1

10
102

103

104
2 3 4 5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0
1

10
102

103

104
2 3 4 5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0
1

10
102

103

104
2 3 4 5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0
1

10
102

103

104
2 3 4 5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Erro
r M

ag
nitu

de

Frequency [GHz]

Power [mW]

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Erro
r M

ag
nitu

de

Frequency [GHz]

Power [mW]

Erro
r M

ag
nitu

de

Frequency [GHz]

Power [mW]

Erro
r M

ag
nitu

de

Frequency [GHz]

Power [mW]

Figure 2.11: 32 bit Adder with varying lower-part approximation
Truncation in green tints, LXOA in purple tints

In Figure 2.11, we present power vs. frequency vs. error for the implementations of truncation and
LXOA methods under varying approximation. Starting with the same, accurate DesingWare adder,
we synthesized both methods with increasing approximated LSBs one by one. We ran gate-level
power simulations using Synopsys PrimeTime and .vcd files with 333 MHz frequency increments
from 2 GHz until getting timing errors. Each corner of a shaded rectangle is a value from the power
simulation. Both designs synthesized to be accurate at 4.5 GHz managed to reach 5.66 GHz in
our tests with 16-bit approximation, however, with an 8× difference in average error magnitude.
When the other parameters are the same, LXOA achieves up to 10% power savings or ∼300 MHz
higher performance. For both methods, power is inversely linear with approximation. With 16
approximated bits, at any frequency, the power consumption reduces to 52% with truncation (with
relatively higher error magnitude) and to 53% with LXOA, however, at different accuracies. We can
observe that the purple LXOA plane is consistently under the truncation plane. In other words, the
method that results in the shortest critical path has better power, frequency, or accuracy metrics
than the method with a longer critical path.

25

2 Background

2.5 Summary

This chapter described the necessary background to convey the contributions of this dissertation in
technical depth. There is a necessity of disciplined approximate computing to isolate approximation
tolerant and sensitive parts of an application. Section 2.2 details the prior work across the stack to
realize and benefit from approximate computing.

Although exactness is relaxed, to maintain the quality constraints of an application with changing
input characteristics, to generalize the computing system and support multiple applications, or
to support different quality needs of the same application Section 2.3 has shown that accuracy
configuration is essential. Furthermore, this accuracy configuration necessity can be driven
completely externally, with a change in the complexity of the inputs. Therefore, the configuration
needs to be addressed at runtime. This runtime accuracy configuration necessity is highlighted by
two case studies.

Accuracy increases the design space by one dimension and makes it significantly larger for hardware
synthesis. As discussed in Section 2.4, critical paths are a dominating factor for circuit metrics such
as delay, power, area, and leakage. Circuit-level approximate computing techniques can shorten the
critical path by reducing the accuracy and, as a result, significantly improve the circuit metrics.

Outline

Following the analyses shared in this chapter, this dissertation makes the following novel contribu-
tions:

Chapter 3 introduces a novel combinational circuit synthesis methodology that aims at delay
optimizing the non-critical paths so that a minimum number of paths fail when frequency is scaled
beyond safe limits. Consequently, it makes the accuracy vs. frequency trade-off more gradual.

Chapter 4 introduces a novel circuit synthesis methodology that relaxes the critical paths to improve
the overall circuit energy efficiency, and tightens the delay constraints on non-critical paths, making
it possible to run low precision operations at a faster frequency to meet an average throughput.

Chapter 5 introduces a novel hardware synthesis methodology that instantiates multiple hardware
blocks with the same functionality at different accuracies. The approximate instantiations have
shorter critical paths, and hence significantly less dynamic power and area cost than the exact
hardware.

26

3
Synthesis for Graceful TimingViolations

Motivation 1

Traditionally, error resilience is ensured by providing sufficient guardbands on the circuit level.
However, alternative approaches have emerged, to reduce the increasingly high safety margins due
to process and runtime variations in advanced technology nodes [44]. For instance, the idea of
recovery-based computing depends on detecting and recovering from timing errors, but which
has high recovery overheads [34]. On the other hand, approximate computing relaxes the correct
execution strictness for application domains that possess intrinsic error resilience. One of the main
hardware approximation category is circuit-level timing speculations, where voltage or frequency
is scaled aggressively, and beyond guardbands, inducing timing errors upon activation of critical
paths [42, 62, 89]. Several previous efforts utilized both hardware techniques together with software
in a cross-layer fashion and reported more favorable trade-offs than any singular technique [23, 27,
120].

The motivation behind introducing timing speculations is that most input combinations do not
invoke the critical path and can be accomplished in a shorter time. A frequency increase or voltage
reduction while introducing timing errors creates a trade-off. Given an error tolerance, energy and
performance improvements depend on the error resilience of the underlying circuit. If the circuit
produces rare or insignificant errors under aggressive voltage or frequency scaling, bigger energy
and performance improvements are possible. However, unless the delay constraints are exceedingly
large, traditional synthesis algorithms result in circuits that contain a large number of near-critical
paths. In consequence, these circuits possess a characteristic in which under aggressive scaling either
no error occurs, or a very large number of paths fail at the same time. Although this is desirable for
area and power reductions in exact computation, it hinders the benefits of timing speculation.

Figure 3.1 showcases traditional syntheses vs. a motivational example. We synthesized a 32-bit
adder and a 16-bit adder which operate completely independently but with the same clock cycle
time. Characteristically adders have their critical path at MSB because of the carry chain. The figure
shows that most primary outputs (PO) have an almost identical delay to MSB, despite that logic
depth and complexity to produce them are different. Majority of their paths having identical delays
prevent graceful errors under aggressive scaling. Previous work [61] has called this phenomenon as
wall of slack and several efforts proposed modifications on the circuit to redistribute path slack [38,
61, 125]. Although they are promising, since they perform after synthesis, they are limited in the
scope of optimizations.

1 The content of this chapter is based on the work originally published in [8].

27

3 Synthesis for Graceful Timing Violations

0.12

0.14

0.16

0.18

0.2

048121620242832

D
el

ay
[n

s]

Primary Output

32-bit Adder
16-bit Adder
32-bit Adder (motivational)

Figure 3.1: Circuits synthesized with a constraint: tckt = 0.21ns. Most primary outputs have almost identical
delays.

In this chapter, we present a novel systematic synthesis methodology to enhance circuit-level error
resilience under timing speculations. Given any circuit in RTL description, our method finds and
applies tighter constraints in synthesis towards minimizing timing violation when frequency is
overscaled. It works in 2 phases. First is an assessment of path delay values in isolation, i.e., without
considering the rest of the paths. This phase exposes potential delay improvements in the circuit
topology. Second is an iterative synthesis phase based on the the delay values in isolation. In this
way, for the first time, delay optimizations in the traditional synthesis tools target non-critical paths
which also violate timing under aggressive scaling. The key advantages of this work are as follows:

• The proposed methodology minimizes the number of near-critical paths, thus facilitates
circuits with more favorable accuracy and performance trade-offs in the presence of timing
induced errors.

• Topology based delay optimization that we introduce can be applied to any circuit, independent
of the application which makes our approach general.

• Our methodology maps synthesis for timing speculations to a well-studied traditional logic
synthesis problem hence it leverages the entire scope of optimizations in commercial tools
and remains compatible with traditional EDA flows.

We evaluated our methodology in the synthesis of a wide range of simple and complex arithmetic
circuits. The experimented circuits have shown up to 93% reduction in the number of near-critical
paths, i.e., paths within 5% of the circuit delay. In consequence, error under aggressive frequency
scaling is reduced up to 7x in magnitude and 15x in rate. Additionally, we observed carry chains
that exist in many arithmetic circuits confine the biggest speedup margins to LSBs paths. We
demonstrate utilizing these margins with precision scaling, as it is commonly used together in
cross-layer techniques [23, 27, 120], an additional 27% frequency increase is possible. The area
and power overheads of the circuits synthesized with our methodology are up to 14% and 12%
respectively.

3.1 SlackHammer: Preliminaries and Approach

The problem statement for synthesis of circuits for timing speculations can be described as follows.
The large number of near-critical paths in circuits synthesized with a traditional algorithm prevent
graceful occurrence of errors under aggressive voltage or frequency scaling. Given any hardware in
RTL description, SlackHammer aims at synthesizing circuits with tighter delay constraints towards

28

3.1 SlackHammer: Preliminaries and Approach

Path A

t=0 t=0 t=tckt

Path B

t=tckt

Path C

Path D

Figure 3.2: Path delay optimizations in traditional synthesis aim at meeting the single, worst case circuit
delay tckt

Path A

t=0 t=0 t=tckt

Path B

t=tckt

Path C

Path D

Figure 3.3: Our non-critical path delay optimizations aim at meeting individual path delays, e.g. path C,
better than tckt

minimizing the path delays. This section gives an overview of a traditional synthesis algorithm,
standard delay optimizations and our approach utilizing them in addressing the problem.

3.1.1 Traditional Logic Synthesis

The goal of logic synthesis is to solve an optimization problem of meeting delay constraints for
each primary output while minimizing area and power. Synthesis algorithm takes delay and area
constraints as inputs of a cost function and goes through iterative steps of cost minimization.
Traditionally, circuits are synthesized with a circuit delay to meet a clock cycle. At each iteration,
the algorithm finds the worst violator, i.e., the most critical path, and performs delay optimizations
to meet this circuit delay.

In case the synthesis cannot meet the delay constraint for the most critical path, it does not spend
effort on reducing the delay of other, less critical paths. We also observe that existing synthesis
options such as setting a critical delay range do not optimize the less critical paths to the extend
where their delays become unbalanced, despite an unbalanced depth in the circuits topology. As a
result, some paths never become the worst violator and receive delay optimizations. The synthesis
proceeds to a consequent phase such as area recovery: for the paths with positive slack, it searches
for opportunities to reduce area via undoing delay optimizations on non-critical paths, while still
meeting delay constraints.

Figure 3.2 gives an example on how the traditional optimizations result. This circuit contains 4
independent paths with varying depths and delays. It is constrained with the minimum delay (tckt)
limited by the path A. Paths A and B receive delay optimizations to meet the circuit delay. Paths
C and D receive area optimizations. In this example, D is a short path for which the circuit delay
is exceedingly large. It is composed of the smallest available gates of the technology library and
cannot be any slower to recover any further area. This example shows how the traditional synthesis
algorithms result in almost identical path delays despite that example circuits topology has varying
depth and delays.

29

3 Synthesis for Graceful Timing Violations

As a side note, our observation is that reducing delay of a path has increasing area costs. For
example, in Figure 3.2 a unit speedup on path A has a higher area cost than path B or C. This can be
accounted to diminishing returns from the delay optimizations as speedups need to be applied to
the fan-in cone, to an increasing number of gates. On the other hand, it reveals an opportunity to
speedup the non-critical paths with lesser area overhead than paths that are already highly delay
optimized.

3.1.2 Non-Critical Path Optimization

In this work, we propose applying delay optimizations on non-critical paths, as shown in Figure 3.3.
Timing errors occur when a long path is invoked without sufficient time to propagate the correct
values. Traditional synthesis algorithms, by maximizing the number of near-critical paths, produce
circuits that have high probability of timing errors. For example in Figure 3.2, error probability of
the circuit after optimizations PE(Ckt) is error probability on any of the paths A, B and C since they
are synthesized with the same delay.

PE(Ckt) = PE(A ∪ B ∪ C) ≥ PE(A) (3.1)

Path A being the longest, it may not be possible to optimize it any further due to technology
limitations. But the remaining paths B and C could be further optimized for delay to reduce the
probability of timing errors. This limited example scales up significantly as most circuits have a large
number of near-critical paths with the potential to reduce their delay. For example in Figure 2.6, cells
that are not marked critical and their entire fan-out cone is not considered for delay optimizations.
We call these paths whose delay could be reduced further hidden non-critical paths as in traditional
synthesis tools it is not possible to identify them and assess their margin for further delay reductions.

In order to reduce a circuits error probability, PE(Ckt), we need to minimize the number of hidden
non-critical paths. The blackbox nature of commercial EDA tools makes identifying them and their
improvement margin a non-trivial task.

3.1.3 Synthesis for Graceful Errors

We next describe our strategy to transform the graceful error degradation problem into a traditional
logic synthesis problem. As mentioned, the synthesis tool optimizes only the worst timing violator
of each iteration. Our solution is to individually constrain non-critical paths as tightly as possible,
so they become the worst violator during the iterations of synthesis as many times as possible.
Timing violation can be defined as the difference between the constrained value and the signal
arrival time according to static timing analysis. By finding the right path delay constraints, we can
transform the non-critical paths to critical.

The question that arises is how to find right delay constraints for all paths of a given circuit. The
constraints must be tight to maximize the delay optimizations on the path and yet, they should
not create a bottleneck which causes the synthesis to fail and discard the delay optimizations on
other paths. We tackle this question in 2 steps. First we find a good estimate of the constraints by
composing the boolean functions of primary outputs (PO) individually, in isolation. We detail this
in Section 3.1.4. Second, we iterate over the estimates until we find a successful constrain set, taking
cell sharing effects within the topology into account which we detail in Section 3.1.5.

30

3.1 SlackHammer: Preliminaries and Approach

Granularity of Primary Outputs: Our approach is suitable for the synthesis of independent logic
blocks to achieve the minimum path delays in each circuit. When multiple logic are encapsulated
such as a simple ALU that consists of an adder, a shifter, constraining them together on the primary
outputs of the ALU with the same, tightest, yet worst case delays may lead to suboptimal trade-offs
for the simpler logic. In such a case, after synthesizing the logic independently, the resulting netlists
can be encapsulated. A compiler level technique can be used in their joint error analysis [20].

3.1.4 Path Analysis in Isolation

Non-critical paths receive limited delay optimizations when the circuit delay is determined by a
critical path. To find out path delays in the absence of circuits critical path, we propose path isolation.

We isolate the circuit at the granularity of primary outputs, i.e. the single output bits of the logic,
and synthesize this path group separately to find a minimum delay value for each primary output
(PO). Path isolation exposes the minimum delay to implement the boolean function of a single
output bit by virtue of: (i) targeting the delay optimization only on the subset of paths with the
designated output and (ii) eliminating load from the other POs on shared cells which may slow
down both paths. This minimum delay value roughly correlates with the logic depth but more
accurate as different logic gates would have a different gate delay.

We obtain the isolated delay values this way, through synthesis, for all primary outputs, and
heuristically understand the PO with biggest isolated delay value constitute the critical path. By
comparison, we assess the non-critical paths delay improvement margin: The margin between a PO
delay and the critical PO reveals how much delay improvement is possible on the paths leading to
this non-critical PO. This way we utilize the synthesis tool for the analysis of path delays in isolation.
As explained, we use path analysis in isolation for the purpose of finding good estimates of PO
delays of a given circuit. The resulting isolated circuits, despite being faster, are not really feasible
because of very large area and power overheads. For instance, for the 64-bit Kogge-Stone adder that
we later use in our experiments, these overheads are 22.7x in area and 20.6x in power.

Most circuit topologies share a significant portion of the logic in computation of their primary
outputs. In other words, intermediate values (signals) of a PO are used in computation of many
other POs. Common subexpression elimination in synthesis avoids duplication of these logic when
possible. Sharing the intermediate values increase the fanout of shared cells and cause them to slow
down to a small degree.

3.1.5 Constraining Path Delays

To take load increases on shared cells into account, delay constraints of POs must be larger than the
isolated delay values from Section 3.1.4. But exactly how much larger remains as a question. The
degree of cell sharing and consequent slow down effect differ for each path. We use an agnostic
approach to solve this problem. Initially we increase the isolated delay values conservatively, using
a constraining function (detailed in Section 3.2). This function estimates delay values smaller than
synthesizable constraints. Following that, we iteratively increase the delay constraint of worst
violating PO with a small value until reaching a successful synthesis. Such iterative process enables
a rigorous search for delay optimizations.

In Figure 3.4 we compare primary output delays of circuits synthesized with iteratively updated
constraints vs. direct (non-iterative) constraints. Our baseline is PO delays of synthesis with circuit
delay constraint tckt = 0ns. Setting relaxed delay constraints such as slightly higher than our baseline:

31

3 Synthesis for Graceful Timing Violations

70

80

90

100

110

120

48121620242832

R
el

at
iv

e
P

O
D

el
ay

(%
)

Primary Output (PO)
delay= 0ns
delay= 95%
delay= 105%

delay= iso
delay= iso+0.1ns
iterative(iso)

minimum delay
iso

Figure 3.4: Synthesis of 16-bit multiplier circuits with different PO delay constraints, relative to the synthesis
with circuit delay constraint tckt = 0ns

delay= 105% or minimum delay (min(tckt)) leads to a successful synthesis where all delay constraints
are met with slow POs. Setting tighter delay constraints such as slightly lower than our baseline:
delay= 95% or the isolated delay values: delay= iso or relaxed isolated values: delay= iso +0.1ns leads
to a failed synthesis; delay optimizations stop when the worst violator cannot be improved further,
before meeting the constraints, leaving many POs delays sub-optimized. In contrast iteratively
constraining based on isolated values: iterative(iso) converges to a successful synthesis by iteratively
relaxing the worst violators delay values and achieving lower PO delays than comparison.

3.2 Design Methodology

This section presents a systematic methodology for synthesizing circuits using isolated path analysis
and iterative constraining as previously explained.

Algorithm 1 describes the SlackHammer methodology for circuit synthesis with delay optimizations
on non-critical paths. Given a hardware design described in RTL (RTLorig), the algorithm finds the
minimum timing constraints on primary outputs (POi) and produces a circuit in netlist form (Cktout)
with widespread delay distribution towards minimizing timing violations under aggressive scaling.
For baseline comparison, we synthesize the circuit with a standard approach, ‘0’ delay constraint on
all primary outputs (lines 3-4).

Phase 1: We obtain the minimum delay values (Di) for all outputs with isolated path analysis. This
process is explained in Algorithm 2. Using these isolated delay values we calculate our output delay
constraints (CN.Oiso) for each individual POi with a constraining function (line 8). This function
reshapes delay distribution of primary outputs. We employ a simple constraining function to
minimize the path delays with parameters α and a bias β. We multiply Di values with α with a
rationale that slowing effect of sharing cells is relative to the path length in general. Some POs,
especially LSBs of arithmetic units output, have high fanouts and very small delay values that do
not increase enough with α and become bottlenecks in synthesis. We use a bias value β to relax their
constraints.

32

3.2 Design Methodology

Algorithm 1 Pseudo-code for non-critical path optimization

Input: Original circuit in RTL description: RTLorig
Output: Netlist with widespread delay: Cktout

1: Begin
2: Read the RTLorig
3: CN.Oorig = Output delay constraints set ‘0’ for all endpoints
4: Cktorig = synthesize (RTLorig, CN.Oorig)
5: Dorig = Worst negative slack of Cktorig

Phase 1 – Path Analysis

6: for each POi : Primary Outputs ∈ Cktorig do
7: Di = get_isolated_path_delay(RTLorig, POi)
8: CN.Oiso[POi] = α ∗Di + β . Initialize constraints
9: end for

Phase 2 – Iterative Synthesis

10: Cktout = synthesize (RTLorig, CN.Oiso)
11: <WNS, POWNS> = Worst negative slack & PO pair
12: while WNS < 0 do
13: CN.Oiso[POWNS] = min (CN.Oiso[POWNS] + δ, Dorig)
14: Cktout = synthesize_incremental (Cktout, CN.Oiso)
15: <WNS, POWNS> = Worst negative slack & PO pair
16: end while
17: return Cktout
18: End

The constraining function gives us flexibility to meet the requirements of different design points. For
instance, quality constraints such as output significance can be incorporated into the constraining
function when the circuits are not synthesized for their highest frequency. Also reducing delay
partially, on a subset of POs, may create hold violations. In case minimum delay constraints on the
outputs are necessary, they should be considered in the constraining function as a lower bound.

Phase 2: As explained in Section 3.1.5, in case there are POs with negative slack we iteratively
converge to final constraints and the circuit by increasing the associated POs constraint with a small
value (δ) in each step until the synthesis is successful (lines 12-16). This way we obtain the tightest
output delay constraints our circuit can fit in. Reducing the worst negative slack by a δ changes
the most critical path of the circuit. In consequence, an increased number of paths become critical
during the iterations of synthesis. They receive additional delay optimizations which in a traditional
synthesis they do not. When the constraints for a successful synthesis are reached, the algorithm
returns Cktout (line 17).

Algorithm 2 Pseudo-code for isolated path delays

Input: Original RTL description: RTLorig, Primary Output: POi
Output: Isolated delay of the Endpoint, POi: Di

1: Begin
2: Read the RTLorig
3: CN.Oi = ∞
4: CN.Oi[POi] = 0 . Set Delay Constraint for POi =0
5: Ckti = synthesize (RTLorig, CN.Oi)
6: Di = Worst negative slack of Ckti
7: return Di
8: End

33

3 Synthesis for Graceful Timing Violations

Isolated
Analysis

RTL Description

Isolated
Analysis

Isolated
Analysis

Isolated
Analysis

Synthesis
(Design Compiler)

Netlist

PO1 Delay PON Delay

Gate-Level Simulation
(ModelSim)

Power Analysis
(PrimeTime)

.v
.spef

.v
.saif

SlackHammer Synthesis

phase 1
phase 2

iterate

Figure 3.5: Proposed synthesis flow with 2 phases: Isolated analysis to obtain initial constraints and iterative
synthesis.

Algorithm 2 presents the pseudo code we used to obtain isolated path delay of a PO as explained in
Section 3.1.4. For a given RTL description (RTLorig) and a primary output (POi) of RTLorig, it finds an
isolated minimum delay value. It sets POi with ‘0’ delay constraint while others with an exceedingly
large value (lines 3-4). This has 2 effects: (i) it limits paths that can produce a negative slack to POi

and focuses the delay optimizations on them. (ii) it diminishes load that may occur on cells that are
shared in computation of other POs.

Thus, SlackHammer effectively implements the topology based optimization approach explained in
Section 3.1.3 by reformulating the graceful error degradation problem and using traditional logic
synthesis operations. Figure 3.5 depicts the design flow of the proposed methodology. We utilize an
off-the-shelf synthesis tool for both analysis and synthesis of a circuit. This way we inherit the tools
capabilities and leverage the entire scope of optimizations in reducing the number of near-critical
paths for any underlying technology library. Our methodology is limited with physical boundaries
of the technology library for any given RTL description, which makes it agnostic to output quality
constraints.

Heuristics on Parameter Selection

We define the Algorithm 1 parameters α and β empirically following some heuristics. The proposed
methodology enables delay optimizations on the non-critical paths. Maximum delay in both
SlackHammer and in the traditional synthesis is defined by the original most critical path. This
path is already rigorously optimized yet remained critical in both cases. Therefore it is not feasible
to achieve a faster circuit in terms of maximum delay except possible variations in the synthesis
algorithm. Thus, setting the constraining function parameters α and β to match the maximum delay
constraint in our methodology and the maximum delay of standard synthesis is a good practice.

To that end, we set the parameter values conservatively; initialize our delay constraint estimates
slightly smaller than the maximum delay constraint of standard synthesis. Afterwards, through
iterations, we let the delay constraints converge into values that result in successful synthesis (line
13 of Algorithm 1). This way, during the iterations, almost all POs become critical and examined for
delay optimization possibilities.

Design Time Overhead

34

3.3 Experimental Methodology

Proposed methodology incurs computational expenses in design time, meaning offline and one
time. Therefore, we are not primarily concerned with the design time overheads. Also these expenses
have a high degree of parallelism in phase 1: isolated path analysis for each primary output, and
also in synthesis of different circuits. As a result, the design time primarily depends on phase 2: the
number of iterations to find tightest constraints and achieve a successful synthesis. This overhead is
related to number of primary outputs and appropriate selection of parameters α, β, δ in Algorithm 1.

For instance, when done sequentially, phase 1 of a 16-bit multiplier required 33.7x in design time,
relative to synthesis time of a minimum delay circuit (Dorig). Following the same example for phase 2,
setting the constraining function (parameters α, β) to meet 98% of Dorig (max(CN.Oiso) = 0.98*Dorig)
and setting a small δ: 0.2% of Dorig required an additional 104.6x in design time, totaling 117.3x or 58
minutes. To reduce the design time of phase 2, we can reduce the distance between the constraining
function and Dorig (e.g. from 98% to 99%) or increase δ. Doubling δ parameter reduced the time of
phase 2 to 13.3x with a small drop in quality.

Proposed algorithm iterates on primary outputs. The number of primary outputs affects the design
time of phase 2 as it changes the number of iterations. For instance, a 64-bit Kogge-Stone adder
with constraining function set to meet 96% of Dorig, a relatively large distance, with a δ: 0.8% Dorig

required 623x (∼13.5 hours) in design time. These values are subject to variation as a consequence
of heuristics in the search of synthesis.

3.3 Experimental Methodology

We evaluated the proposed methodology in Section 3.2 on a range of popular arithmetic circuits
given in Table 5.1.

Table 3.1: Circuits used in experiments

Name Function Bitwidth I/O

CLA32
Carry Look-ahead Adder

32 64/33
CLA 64 64 128/65

KSA32
Kogge-Stone Adder

32 64/33
KSA64 64 128/65

MUL16 Multiplier 16 32/32

MAC Multiply and Accumulate 8 48/33

SAD Sum of Absolute Differences 8 48/33

EU-DIST
Euclidian Distance

(without square-root)
8 16/16

All syntheses are done with Synopsys Design Compiler using ultra high effort (compile_ultra option)
and mapped to TSMC 65nm Generic-Plus library in typical corner. In our comparisons, we used ‘0’
delay constraint (zero_delay). We used the worst negative slack of this synthesis as a delay constraint
to synthesize with minimum delay (min_delay). In all experiments we set the Algorithm 1 parameter
α and β conservatively, to meet a slightly lower value than the circuit delay, as previously explained
in Section 3.2. For adders, MAC and SAD we set α = 1.1. For MUL16 and EU-DIST this α value
created delay constraints higher than zero_delay. To constraint path delays conservatively, we set
α = 1.04 for MUL16 and α = 1 for EU-DIST. We show the delay distribution using the proposed
methodology, performing non-critical path optimizations (Proposed), as well as the isolated delay
values (iso) obtained in Algorithm 2. Gate-level simulations for error characteristics are done with

35

3 Synthesis for Graceful Timing Violations

Mentor Graphics ModelSim. We use error rate and mean relative error as our metrics to evaluate
error. Error rate is the ratio of outputs with one or more incorrect bits. Relative error, as given in
Eq.3.2 is the distance between the correct and the approximate value divided by the value of correct
output.

Erel =
|Ocorrect −Oapprox|

Ocorrect
(3.2)

Synopsys PrimeTime is used for power estimations. We obtained the power values for both circuits
using the same input stream with uniform distribution and at the same clock period where they
work correctly. To compare with the state-of-the-art we have implemented cell resizing for slack
redistribution from [61] in PrimeTime. We applied OptimizePaths procedure for all paths until no
further speedup is possible, without power and error bounds and avoided power aware post-processing
in order to maximize performance benefits.

3.4 Results

We first present the results on near-critical paths and the overheads. Among the traditional methods
zero_delay produces circuits with highest amount of path delay optimizations. Therefore we set
zero_delay as baseline and present all values relative to it. Figure 3.6a shows the remaining near-critical
paths in percentage. We use the following definition for a path: A unique set of consecutive logic
from a primary input to a primary output. We counted the paths that are within 5% of the zero_delay
circuit delay as near-critical. The number of near-critical paths are around 106 to 107range.

Min_delay results show that area recovery phase of synthesis increases the number of near-critical
paths consistently and by up to 1.9x at the circuit level. In contrast, proposed method has generally
reduced the number of near-critical paths beyond zero_delay, and further than the cell resizing
method. In the case of MUL16, the number of near-critical paths has decreased by 93%. In the case of
CLA64, synthesis with our methodology using iso based delay constraints (CN.Oiso) could not meet
the circuit delay of the traditional synthesis. This also reflected to area and power overheads as
negative values. Similarly, in DesignWare adder our algorithm did not find a favorable optimization.
We attribute this to a heavily delay balanced topology. Delay reduction on a path increases the worst
case delay through incurring loads on the most critical path.

Figure 3.6b and 3.6c presents area and power overheads of the synthesis methods in comparison.
Comparing zero_delay and min_delay, the area recovery phase results in generally more significant
area and power improvements in parallel-prefix adders (CLA, KSA) when compared to multiplier
circuits (MUL, MAC, EU-DIST). This can be attributed to more sequential topology of multipliers
where LSBs are used as intermediate values in computation of MSBs and cannot be relaxed to
recover area to the extent of parallel-prefix adders. The overheads of SlackHammer strongly depend
on how close the delay values became to the isolated minimums (iso). Such reductions initially
have low area cost, but this cost increases exponentially as paths require more of the logic to be
sped-up. Circuit topology and selection of Algorithm 1 parameters effect these overhead values.
Such overheads are an expected outcome when more paths receive delay optimizations. Therefore,
they confirm that proposed methodology succeeds in optimization of more paths for delay.

Relatively small overheads with reductions in near-critical paths indicate that low cost optimizations
are found during the synthesis with our methodology. This can be observed in comparisons with cell
resizing method. Using the full scope of optimizations in synthesis, proposed methodology finds
better area and power vs. delay trade-offs. Applying cell resizing to all paths have a considerably
higher overhead than selectively applying to some paths and relaxing others as reported in [61].

36

3.4 Results

0
25
50
75

100
125
150
175

CLA32 CLA64 KSA32 KSA64 MUL16 MAC SAD EU-DIST

%
P

at
hs

Min_delay
Zero_delay

Cell Resizing [61]
Proposed

(a) Remaining critical paths in 5%

70

80

90

100

110

120

130

CLA32 CLA64 KSA32 KSA64 MUL16 MAC SAD EU-DIST

%
A

re
a

(b) Area Overhead

70

80

90

100

110

120

130

CLA32 CLA64 KSA32 KSA64 MUL16 MAC SAD EU-DIST

%
P

ow
er

(c) Power Overhead

Figure 3.6: Comparison of synthesis methods normalized to synthesis with ‘tckt = 0ns’ delay constraint,
zero_delay. (a) Percentage of near-critical paths (b) Area overhead (c) Power overhead.

3.4.1 Accuracy-Frequency Trade-Off

Figure 3.7 demonstrates the improvement in error resiliency under timing speculations. In these
comparisons we used circuits that start producing error at the very same frequency to eliminate
variation effects of synthesis heuristics.

In Figure 3.7a and 3.7c, reductions in error rate reach over 2 orders of magnitude. The improvement
margin in mean error in figure 3.7b and 3.7d is considerably less than the error rate margins.
This is because by their topology, MSBs in arithmetic circuits require long paths. Although our
methodology reduces the error rate in general, the error rate on the long paths remains the same
which leads to less reduction on significant errors. The improvement in error resiliency is correlated

37

3 Synthesis for Graceful Timing Violations

with the reduction in the number of near-critical paths shown in Figure 3.6a. The other factors are
significance of the failing bits and activation probability of the failing paths. In some synthesis
results, delay reductions were only possible on LSBs which lead to improvements in error rate but
worsened the mean error. This can be attributed to an increase in significant errors and also glitches.
Proposed methodology reduces many of the PO delays, it leaves less room for glitch optimizations
which could be an interest for further research. Increasing frequency beyond ∼15% shows no
difference between the 2 circuits. At this point the paths our methodology optimized also start to
fail.

1

10−6

10−5

10−4

10−3

10−2

10−1

1 1.05 1.1 1.15 1.2

E
rr

or
R

at
e

Relative Frequency Increase

zero_delay
Proposed

(a) MUL16 Error Rate

10−8

10−7

10−6

10−5

10−4

10−3

10−2

1 1.05 1.1 1.15 1.2

M
ea

n
R

el
at

iv
e

E
rr

or

Relative Frequency Increase

zero_delay
Proposed

(b) MUL16 Error Mean

1

10−6

10−5

10−4

10−3

10−2

10−1

1 1.05 1.1 1.15 1.2

E
rr

or
R

at
e

Relative Frequency Increase

zero_delay
Proposed

(c) KSA64 Error Rate

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1 1.05 1.1 1.15 1.2

M
ea

n
R

el
at

iv
e

E
rr

or

Relative Frequency Increase

zero_delay
Proposed

(d) KSA64 Error Mean

Figure 3.7: Error characterization of circuits under frequency scaling. (a) 16-bit Multiplier error rate and (b)
error mean, (c) 64-bit Kogge-Stone adder error rate, and (d) error mean.

38

3.4 Results

0

0.1

0.2

0.3

0.4

0.5

0.6

048121620242832

D
el

ay
[n

s]

Primary Output

zero_delay
min_delay
Proposed
iso

(a) MUL16

0

0.1

0.2

0.3

0.4

0.5

0.6

0481216

D
el

ay
[n

s]

Primary Output

zero_delay
min_delay
Proposed
iso

(b) EU-DIST

0.04

0.08

0.12

0.16

0.2

0.24

0816243240485664

D
el

ay
[n

s]

Primary Output

zero_delay
min_delay
Proposed
iso

(c) KSA64

0

0.2

0.4

0.6

0.8

1

MSB LSB

R
el

at
iv

e
D

el
ay

Primary Output

MUL16
MUL32
KSA32
KSA64
CLA32
CLA64

(d) Relative Delay Reduction

Figure 3.8: Circuit delay distributions in comparison. Proposed method reduces delays for the majority of
primary outputs, especially on the LSB side.

3.4.2 Delay Distribution Comparison

Figure 3.8 presents the primary output delays of zero_delay and min_delay syntheses (detailed in
Section 3.3) in comparison to the proposed methodology. SlackHammer matched the traditional
synthesis in worst case delays. Additionally, it has improved most of the PO delays in the
experimented circuits as a result of non-critical path optimizations. Carry chains that exists in many
arithmetic circuits confine the biggest improvements to LSBs. Minimum logic depth required to
produce the LSBs are usually smaller than the MSBs. Our methodology results in more significant
delay reductions on them. For brevity, we just explain on the basis of these 3 circuits.

We present delay improvements on POs relative to zero_delay in Figure 3.8d to show the margin for
further optimizations for various circuits. For most POs, delay can be reduced further by 10 to 20%
with the proposed methodology in our experiments.

39

3 Synthesis for Graceful Timing Violations

3.4.3 Cross-Layer Effectiveness

As described in Section 3.4.2, our approach allows reducing LSBs delays significantly. Timing
speculations are commonly used together with precision scaling in a cross layer fashion [23, 27,
120]. In these examples, and when approximations are applied end-to-end in general, precision
scaling utilizes LSB part of the circuits. We demonstrate its effectiveness in cross-layer fashion when
used together with precision scaling in architectures such as QUORA [120]. We consider an initial
mean relative error of 2−7 due to the quantization of inputs to 8 bit with precision scaling. Also we
assume only the expected part of sum is considered as otherwise glitches cause errors in higher
MSBs which results in significant errors under timing approximations. Figure 3.9a shows that
our methodology enables up to 14% speedup for a 16-bit multiplier, Figure 3.9b shows up to 27%
speedup for a 64-bit Kogge-Stone Adder at the same error mean. These speedup values increase
further with lower precision.

10-2

10-1

1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

M
ea

n
R

el
at

iv
e

E
rr

or

Relative Frequency Increase

zero_delay
Proposed

(a) MUL16 with 8-bit precision scaling

10-2

10-1

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

M
ea

n
R

el
at

iv
e

E
rr

or

Relative Frequency Increase

zero_delay
Proposed

(b) KSA64 with 8-bit precision scaling

Figure 3.9: Cross-layer effectiveness of SlackHammer with precision scaling.

3.5 Summary

Allowing approximations in computation via relaxing circuit level error resilience can lead to
performance improvements. This chapter introduced SlackHammer, a systematic methodology to
automatically synthesize circuits with enhanced timing-error resilience under aggressive frequency
scaling. This methodology leverages any underlying synthesis tool and identifies primary outputs
with remaining slack margin given any arbitrary circuit. The key idea behind is to optimize
non-critical paths for delay to reduce the probability of timing errors. Our experiments demonstrate
that SlackHammer methodology is promising in extending the design space to higher frequencies

40

3.5 Summary

and finding favorable trade-offs between performance and accuracy for both standalone and
cross-layer techniques that utilize timing speculations.

41

4
Synthesis of Frequency-Precision Scalable Circuits

Motivation

This chapter applies delay optimizations of logic synthesis to minimize energy when the circuit is
used for variable accuracy. The computation accuracy can be changed in hardware by dynamically
scaling the quantization, i.e., switching to lower-precision operands when possible, which reduces
the transistor toggles, and therefore the dynamic power consumption. At circuit level, LSB gating has
been used for dynamic precision scaling. Alternatively, a growing number of applications [29, 128],
architectures [120, 121], and in general end-to-end use of approximations employ dynamic precision
scaling that exercises LSB paths of circuits while turning the MSBs off. The latter can further exploit
smaller complexity of LSB logic vs. MSB when running in reduced precision mode: Traditional
synthesis tools aim at meeting a single clock delay for all paths and leverage the imbalances in
logic depths and complexity, e.g., by using slower and more energy-efficient gates, when possible
[8]. However, many of the LSB paths provide intermediate signals, i.e., they are shared and hence
constrained by MSB. Their slack cannot be fully leveraged for energy savings. In addition, LSB logic
is small; thus, gains are very limited.

Figure 4.1: Dynamic frequency-precision scalable MAC unit in a systolic array. Unlike conventional, our
circuits can utilize different clocks for high and low precision inputs to improve energy-efficiency.

43

4 Synthesis of Frequency-Precision Scalable Circuits

This chapter proposes a novel circuit synthesis methodology that alters path delays for energy
optimization under dynamic precision scaling. Given any circuit in RTL description, we explore the
energy-optimum delay values for paths used by different precision levels while matching the initial
average throughput. Our approach obtains net energy gains by relaxing the MSB output delay that
constrains the majority of paths, at the cost of reducing LSB output delays. As such, we synthesize
the whole circuit to be more energy efficient but slower, while low-precision mode can run at a
faster frequency to compensate and meet average throughput. In Figure 4.1, we illustrate our
goal of finding the energy optimum delays, d1 and d2, for fused Multiply and Accumulate (MAC),
the dominating arithmetic operation in DNNs [118]. The inputs, activation (a), weight (w), and
accumulate (ACC), can be high or low precision. We formulate the search for the ideal delays as a
function of the circuit topology in which the logic depth and delay of primary outputs differ and
the application features, i.e., required precisions and their utilization. These features are general
and allow tailoring our method for any application. Our systematic methodology automates a
gradient descent-based design space exploration and logic synthesis using commercial tools. It
is especially effective for high-performance implementations of imbalanced circuit topologies, in
which the circuit-level delay optimizations are maximized. In summary, the work in this chapter
makes the following key contributions:

• We propose a novel circuit synthesis methodology that alters the path delays for energy
minimization under dynamic frequency-precision scaling. It is compatible with standard EDA
flow and general in terms of the application, circuit, and target precisions.

• Circuits synthesized with our methodology have the property of dynamic frequency-precision
scalability. They can run at high precision with a slower clock or low precision with a faster
clock, at the same voltage, while ensuring timing-error-free operation.

In our evaluations of a wide range of variable-precision usage, we reduce the MAC dynamic energy
consumption by up to 34% while also reducing the area by up to 32% and leakage by up to 43%.

4.1 Logic Synthesis with Multiple Delay Constraints

This section describes the conventional and state-of-the-art circuit delay optimizations and our
novel approach in applying them for energy optimization.

4.1.1 Delay Variations in Circuit Topology

Circuit topologies typically have an uneven depth. Conventionally, they are synthesized such that
all paths are aimed at matching a given delay constraint. As detailed in Section 2.4, the synthesis
tool first selects a circuit topology, and then iteratively applies gate-level delay optimizations to
the current most critical path until the slack is met. Afterward, area optimizations undo gate-level
optimizations on non-critical paths for area and energy savings. Hence, the conventional synthesis
results an even delay distribution between the primary outputs.

Alternatively, SlackHammer, introduced in Chapter 3, finds ideal delay constraints for each primary
output, which results in applying delay optimizations to a maximum number of paths [8]. In
Figure 4.2, we compare the circuits generated with SlackHammer against the minimum possible
delay circuits generated with a standard commercial tool, Synopsys Design Compiler. The delay
reductions are limited to LSB side input to output and varying according to circuit topologies: in
Figure 4.2a the delay can be reduced by 21% for a multiplier and in Figure 4.2b, it can be reduced by

44

4.1 Logic Synthesis with Multiple Delay Constraints

0

0.1

0.2

0.3

0.4

0.5

0.6

048121620242832

D
el

ay
[n

s]

Primary Output

Synopsys DC
SlackHammer [8]

0.
13

5n
s

(a) 16-bit DesignWare Multiplier

0

0.04

0.08

0.12

0.16

0.2

048121620242832

D
el

ay
[n

s]

Primary Output

Synopsys DC
SlackHammer [8]

0.
02

ns

(b) 32-bit Carry Look-Ahead Adder

Figure 4.2: Primary output delays of (a) a multiplier and (b) an adder with fastest conventional synthesis
against the state of the art [8].

10% for an adder. Adders, adder-based units (e.g., Sobel and Gaussian Filters), multipliers, and units
based on adders and multipliers (e.g., MAC, Euclidian Distance, DCT, IDCT,) all inherently have a
varying degree of path imbalance in their circuit topology where LSBs can be faster than MSBs [8].

4.1.2 Exploiting Delay Variations for Energy Gains

In this chapter, we exploit the delay variations in circuit topology for energy optimization. For
the same logic, energy is inversely related to circuit delay: Reduction of the delay constraint
leads to parallel computation of intermediate signals by a change in circuit topology or gate-level
optimizations (i.e., load isolation, load splitting, gate upsizing), which increases the number or size
of toggling gates and hence increases the energy. Traditional tools achieve energy gains by relaxing
LSBs. As illustrated in Figure 4.1, we instead increase the delay constraint of MSBs and reduce it for
LSBs while meeting the initial average throughput target.

An energy reduction that materializes with our approach can be explained in two terms: First, the
MSBs typically make the majority portion of the logic and hence benefit from equal increase more
than LSBs. Depending on the topology, the complexity increases beyond linear with bit-width. We
can consider the Ripple-Carry adder a corner case where the logic size and depth increase linearly
with bit-width. Faster parallel prefix adderss (e.g., Kogge-Stone, Brent-Kung, etc.) have a logic size
and depth O(n log n) or higher, and multipliers are even quadratic. As such, when divided for the
same number of bits, the LSB portion of the logic is much smaller than the MSB.

Second, LSBs have inherently shorter paths, and they are shared, thus primarily constrained by
MSB delays. Consequently, relaxing LSB POs only apply to the unshared part and can gain less, if
any. By contrast, relaxing MSBs also increases the delay of shared logic while still being able to meet
tighter LSB output constraints. In Figure 4.3, we present an example with faster LSB output. An
intermediate signal is necessary for the MSB output. MSB paths are typically slower than LSB paths
as they require intermediate signals, such as carry-in in adders. The paths (2-3) and (1-3) form the
critical paths. With a standard gate-level delay optimization method such as gate up-sizing, we
can reduce the circuit delay by first speeding-up gate (3). Then, we have to speed-up both gates (1)
and (2). Tracing it back, the energy and area cost of speed-ups shows an exponential-like increase.
Conversely, relaxing the MSB delay shows reverse-exponential savings in energy and area, surpassing
the costs of reducing LSB delays.

45

4 Synthesis of Frequency-Precision Scalable Circuits

+20fs

(1)

+22fs

(3)

+23fs

(2)

MSB path 1

MSB path 2 slow
MSB output
(inactivate)

f ast
LSB output

LSB path 1

LSB path 2

Figure 4.3: MSB output requires an intermediate signal and hence it is slower. Gate (2) is on the critical path
and cannot gain from any relaxations. By contrast, relaxing the MSB constraint applies to all gates, while
still being able to meet tighter LSB constraints.

In our approach, we group the primary outputs for the given quantization requirements. Within each
group, we individually assign the same delay constraint. Our approach differs from the conventional
synthesis where a single circuit delay is assigned to all primary outputs. Operating our circuits at
different precisions results in different energy, but also different performance requiring different
frequency. The energy-optimal delay values are heavily topology-dependent. Additionally, each
quantization level may be used to a different degree. We search for the ideal delay values that minimize
the energy while matching the average throughput in Section 4.2.

4.1.3 Dynamic Frequency-Precision Scaling System

A dynamic frequency-quantization scaling system, as we define it in the scope of this work, is able
to tune the operating clock frequency upon a change in the precision of data it operates on. We
pair each given quantization level with the suitable clock frequency. At system level, we impose
input-aware clock frequency adjustments: With a change in input quantization, we change the
clock at its source. Hence, the system can run at a high frequency when the clock domain is used
for low-precision operation and vice versa. The circuits designed with our approach do not need
any internal control logic. Our approach ensures timing-error-free operation with correct clock
frequency and quantization pair, without changing the voltage.

At a large scale, systems that incorporate proposed circuits still need a single clock tree for the
clock domain. A clock domain runs independently and communicates through an asynchronous
FIFO interface. In order to benefit from frequency scaling, we make the assumption that multiple
clocks are available for our use. This is a standard function in modern processors and can be done at
runtime dynamically and immediately, within a cycle. We can switch between them using clock
multiplexers at the source of clock tree s.t. the entire clock domain runs at the same frequency.

4.2 Design Methodology

In this section, we mathematically derive energy-optimal delay values for each precision group as a
function of delay and the number of operations at this precision. We isolate the search parameter
and find the energy-optimal delay values with a gradient descent algorithm.

4.2.1 Energy Optimization with a Throughput Target

The total energy Eall can be defined as a product of number of operations and energy per operation
Eop:

46

4.2 Design Methodology

Eall = Nall .Eop(dorig, in) (4.1)

where Nall is the total number of operations, dorig is the original circuit delay per operation. Similarly,
per function unit, throughput is the inverse of circuit delay dorig. It can also be written as number of
computations over the computation time:

Throughputavg =
Nall

Nall .dorig
(4.2)

We address a problem, in which multiple different precisions are required (NP1, NP2,... NPn or Ni as
a general term).

Nall = NP1 + NP2... + NPn

=
n

∑
i=1

Ni
(4.3)

To maintain the same throughput, we need to maintain the same average computation time (CT):

CT = Nall .dorig =
n

∑
i=1

Ni.di (4.4)

The energy consumption of proposed topology-driven circuits can be written using Equation (4.1),
in terms of the number of operations at a particular precision Ni and the energy consumption per
operation Ei, which itself is a function of circuit delay di and the inputs:

Etopo =
n

∑
i=1

Ni.Ei(di, in) (4.5)

where Ei is ultimately determined by and obtained from the synthesis tools. We aim at minimizing
the energy consumption given in Equation (4.5), while maintaining the throughput given in
Equation (4.4), and formulate our goal as follows:

min
N,d,in

n

∑
i=1

Ni.Ei(di, in)

s.t.
n

∑
i=1

Ni.di = Nall .dorig

(4.6)

4.2.2 Leverage & Distance

In this work, we limit the problem to using 2 different precisions: low and high. Starting from the
original circuit delay dorig, we search for ideal path delays used by each precision that minimizes
Equation (4.6) while matching the initial average throughput target. We solve Equation (4.4) as
follows:

47

4 Synthesis of Frequency-Precision Scalable Circuits

CT = Nlow.dorig + Nhigh.dorig

CT
Nlow

= dorig +
Nlow
Nhigh

.dorig

= (dorig −∆d) +
Nhigh

Nlow
.(dorig +

Nlow
Nhigh

.∆d)

(4.7)

We name the term ∆d as distance. Distance is our search parameter s.t. for the ideal ∆d, the energy is
minimized in Equation (4.6). Hence, the delays of the circuit at precision 1 (dlow) and precision 2
(dhigh) can be written as follows:

dlow = (dorig −∆d), dhigh = (dorig +
Nlow
Nhigh

.∆d) (4.8)

Thus, we reduce our search to a single parameter, ∆d. Note that dhigh and dlow are changed unevenly
from the original delay dorig, with a multiplier Nlow/Nhigh, i.e., the number of operations in precision
1 over precision 2. We call this term L for leverage. A high leverage means we can significantly
increase the delay constraint of high precision part while only slightly reducing the delay constraint
of low precision part.

From the hardware perspective, synthesis with a high leverage means a significant increase in delay
margins result in more relaxed, energy-efficient circuit paths. However, it also means a high ratio
of low precision to high precision operations, i.e., rare usage of highly efficient circuit paths. The
opposite holds for a low leverage value, i.e., frequent but small energy savings on high precision
paths. Typically, energy consumption of high precision paths dominates the low precision paths.
However, it is not clear whether small frequent energy savings surpass large and rare savings. Next,
we address this question with a design space exploration.

4.2.3 Design Space Exploration

Given a circuit with dual precision usage, we propose an automated search to find the distance
from the original design delay that minimizes the energy consumption as previously derived in
Equation (4.6).

Algorithm 4 implements a gradient descent algorithm that iteratively approaches energy-optimal
delay values for low precision and high precision operations. We take any given RTL description
of the circuit as input. Behavioral RTL description gives freedom in topology choice (e.g., carry
look-ahead adder vs ripple carry adder). The synthesis tool automatically picks the best suiting
topology from its library. This leads to a greater range of optimizations and applies to a greater
range of delay values. It is also possible to give a highly structured RTL description or even a netlist
to enforce a higher control in the design flow.

Our algorithm updates the gradient descent with an adaptive step size ε. We initialize the design
space exploration between lines 1 to 3. In line 5, we update the delay constraints of the design
according to Equation (4.8) by changing the distance asymmetrically, with a leverage L. We set
these output delay alterations relative to the original clock delay constraint, using set_output_delay
command in Synopsys Design Compiler. This command is common in commercial synthesis tools
and it is used for back-end optimization by the industry. Thus, we satisfy Equation (4.4) and
maintain the throughput target. In line 6, we assign dlow to the LSB primary outputs that are in the
low quantization group and dhigh to the rest of the primary outputs and synthesize the circuit.

48

4.2 Design Methodology

Algorithm 3 Throughput constrained synthesis for energy minimization under dual frequency &
precision use

Input: Circuit RTL: RTLin , delay constraint: dorig, Number of operations in low and high precisions:
< Nlow, Nhigh >, representative input: Inrep

Output: Frequency-Precision Scalable Circuit: CktDFPS
1: Cktinit = synthesize(RTLin, dorig)
2: Einit = get_power(Cktinit, inrep) × dorig
3: n=0, dlow = dhigh = dorig, L = (Nlow/Nhigh) . initialize
4: while |ε| ≥ Threshold do
5: n=n+1, dlow = dlow−ε, dhigh = dhigh+(L× ε)
6: CktDFPSn = synthesize (RTLin, <dlow, dhigh>)
7: En = get_power(CktDFPSn , inlow) × dlow × Nlow

+ get_power(CktDFPSn , inhigh) × dhigh × Nhigh
8: if En > En-1 ∨WNS< 0 then
9: ε = −ε/2

10: end if
11: end while
12: ∆d = dorig − dlow
13: return CktDFPSn−1 , ∆d

In line 7, we compute the total energy consumption weighted to the number of operations in
this quantization level. This calculation follows the formula given in Equation (4.5): Energy per
operation can be obtained by multiplying the average power and delay. We compute the energy
per quantization separately, by querying the synthesis tool for power and using inputs with
corresponding precision, and weigh them according to the number of operations in this precision.
In line 8-10, we update the step size parameter, ε, if the synthesis cannot successfully meet the delay
constraint and create a worst negative slack or if the energy increases. Unusually, if the MSB delays
can be less than the LSB delays, with a reversal of ε in line 9, our algorithm also searches in the
other direction. The commercial synthesis tool we use, Synopsys DC, performs as a black box to us.
The results of its delay optimizations are stochastic to a degree in which fine adjustments do not
necessarily improve the output. Hence, we set a threshold for minimum step size empirically and
share the values we used in Section 4.3. Finally, we return the last successfully synthesized circuit in
netlist form as the output and ∆d for clock generation.

Thus, for a given number of high and low precision operations, Algorithm 4 does a gradient descent
based search to find delay values that minimize the energy that satisfies Equation (4.6).

Table 4.1: Circuits used in experiments.

Name PHigh
I/O

PLow
I/O

delay
[ns]

Area
[µm2] Architecture

MUL
Multiplier 8/16 4/8 0.62 1256.8 CSA Carry

Save Array

ADD
Adder 24/24 12/12 0.21 810.72 CLA Carry

Look-Ahead

MAC
Multiply and
Accumulate

8/24 4/12 0.83 2067.5 CSA + CLA

49

4 Synthesis of Frequency-Precision Scalable Circuits

4.3 Experiments

We synthesize the circuits given in Table 4.1 using Synopsys Design Compiler and the commercially
proven TSMC 65 nm generic plus technology library. All circuits are from Synopsys DesignWare
library. Our method is circuit topology-based and technology library independent. We do not expect
a significant change when a different, possibly smaller technology node is used. All circuits are
initially synthesized for the smallest possible delay. Afterward, Algorithm 4 individually searches
for delay-optimal implementations while matching the same average throughput. Figure 4.2 shows
higher path delay imbalance for multipliers than adders. We empirically set the search step size ε

and stop granularity threshold as 0.05 ns for the multiplier and 0.01 ns for the adder, respectively.
For each search step, we synthesized a new circuit with the current distance, ∆d (the difference
between the original delay and new delay for the low precision).

Following the values given in [19, 58, 116, 130], we present the results on a MAC unit with 8 bit
multiply and 24 bit accumulate at high precision. At low precision, it operates a 4 bit multiply and 12
bit accumulate. These quantization levels can be considered as the representatives. We are, however,
not bound with these quantization levels. It is also possible to design for different precisions such as
9 bit high and 3 bit low independently for the multiplier, the adder, or for both.

Leverage is the parameter we use for generalizing our experiments. Under different use cases
(applications, parameters, input sets, etc.), the usage ratio of low precision to high precision can
vary. We abstract our method from the use cases by covering an extensive range of leverage. All
values are normalized to the conventional circuit synthesis with a single delay target, given in
Table 4.1. In our nomenclature, this represents leverage = 0.

4.3.1 Evaluation of DSE Iterations

We begin our evaluations by presenting the iteratively improved outputs of our design space
exploration for the multiplier in Table 4.2 in a brief form. Starting from a conventional design, in
which all operations have the same delay, we iteratively increase the delay distance (∆d) between
high and low precision operations. Increasing the ∆d forms PO delays that fit more closely to the
intrinsic topology of the multiplier. Iteration 4 at ∆d = 0.20ns results in negative slack, i.e., the
synthesis does not succeed. We use the circuit from the last successful synthesis, iteration 3. Table 4.2
shows a single case detailing the DSE under leverage = 1, the equal utilization of high and low
precision operations. Next, we generalize our work with experiments on a range of leverage values.

Table 4.2: Iterative search steps of Algorithm 4 for MUL, leverage=1

Iteration 0 1 2 3 4

∆d [ns] 0 0.05 0.10 0.15 0.20

Dyn.Power - PHigh [mW] 0.903 0.889 0.776 0.728 -

Dyn.Power - PLow [mW] 0.704 0.594 0.501 0.488 -

Leakage Power [nW] 9.12 7.07 5.77 5.29 -

Area [µm2] 1256.8 984.2 830.2 785.5 -

50

4.3 Experiments

0

0.2

0.4

0.6

0.8

1

0.25 0.5 1 2 4

N
or

m
al

iz
ed

A
re

a

Leverage

MUL

∆
d
=

0.
15

ns

∆
d
=

0.
1n

s

∆
d
=

0.
15

ns

∆
d
=

0.
07

5n
s

∆
d
=

0.
05

ns

(a)

0.25 0.5 1 2 4
Leverage

ADD

∆
d
=

0.
01

ns

∆
d
=

0.
02

ns

∆
d
=

0.
02

ns

∆
d
=

0.
02

ns

∆
d
=

0.
01

ns

(b)

0.25 0.5 1 2 4
Leverage

MAC

∆
d
=

0.
16

ns

∆
d
=

0.
12

ns

∆
d
=

0.
17

ns

∆
d
=

0.
95

ns

∆
d
=

0.
06

ns

(c)

0

0.2

0.4

0.6

0.8

1

0.25 0.5 1 2 4

N
or

m
al

iz
ed

L
ea

ka
ge

Leverage

MUL(d)

0.25 0.5 1 2 4
Leverage

ADD(e)

0.25 0.5 1 2 4
Leverage

MAC(f)

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 1 2 4

N
or

m
al

iz
ed

D
yn

am
ic

P
ow

er

Leverage

MUL8Bit

MUL4Bit

(g)

0 0.25 0.5 1 2 4
Leverage

ADD24Bit

ADD12Bit

(h)

0 0.25 0.5 1 2 4
Leverage

MAC8-24Bit

MAC4-12Bit

(i)

Figure 4.4: Comparisons of proposed frequency-precision scaling methodology against conventional synthesis
targeting a single frequency, for circuit given in Table 4.1, in terms of (a,b,c) area, (d,e,f) leakage, and (g,h,i)
dynamic power consumption.

4.3.2 Circuit Level Trade-Offs

In Figure 4.4, we share the area, leakage, and dynamic power values for the circuits used in our
experiments. We obtained these results individually for each leverage value: Algorithm 4 iteratively
optimized the MUL, ADD, and MAC circuits from Table 4.1 for a given leverage. We also label the
final ∆d values for each result. For the multiplier inputs, we used uniform random inputs. The
adder is used as an accumulator in the MAC unit. An input operand of the adder comes from
the multiplier. We set this adder input operand toggle frequency equal to the multiplier output

51

4 Synthesis of Frequency-Precision Scalable Circuits

operand. Accordingly, we set the bits 16 to 23 as ‘0’. For the accumulation operand we used uniform
random inputs. We show the dynamic power for high and low precision separately.

With two delay targets instead of one, the proposed methodology better fits the delays of activated
paths to the circuit topology than the conventional synthesis. By comparing Figure 4.4a and 4.4b, we
can see that the multiplier primary output delay constraints are changed more than the adder, and
hence, returned higher ∆d values. In other words, the multiplier has intrinsically more significant
path delay imbalances in its topology. This path imbalance reflects the results as higher area, leakage,
and dynamic power savings with the proposed methodology. The resulting multiplier circuit is
37.5% smaller, has 42% less leakage, and 21% less dynamic power at leverage =1.

In Figures 4.4c, 4.4f and 4.4i, we show the area, leakage, and dynamic power for the MAC unit,
respectively. The darker shaded portion shows the contribution of the multiplier unit, which is on
average 56% in area and 58% in leakage, and in dynamic power 63% for high precision and 69% for
low precision. The remaining values are from the adder. In total, the MAC unit synthesized with the
proposed method has up to 32% smaller area, 43% less leakage, and 31% and 34% less dynamic
power at high and low precision, respectively, than the conventional synthesis.

Within the range of topological and gate-level delay optimizations, with higher leverage, we generally
obtain smaller area, leakage. and dynamic power in Figures 4.4a to 4.4i. At high leverage, we can
significantly relax the MSB delay constraints while slightly reducing the LSB delay constraints. An
outlier to this situation is the adder circuit when operating at low precision mode. We observe at
leverage values 0.25, 0.5, and 1, the 12-bit addition consumes more energy than the initial circuit. This
means a part of the logic is aggressively optimized for the delay and became less energy-efficient.
However, a larger and/or more frequently used part of the logic became more energy-efficient
in return. Our algorithm aims at minimizing the total weighted energy consumption, which we
examine next.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25 40.1 1 10

E
ne

rg
y

N
or

m
al

iz
ed

to
E

in
it

Leverage

ADD - DPS
MAC - DPS
MUL - DPS
ADD - DFPS (proposed)
MAC - DFPS (proposed)
MUL - DFPS (proposed)

∆
E
=

19
%

∆
E
=

34
%

∆
E
=

39
%

Figure 4.5: Average energy under dynamic precision scaling with conventional synthesis against dynamic
frequency precision scaling with the proposed.

4.3.3 Energy vs. Leverage

In Figure 4.5, we show the average energy consumption under dynamic frequency and precision
scaling with the proposed methodology (DFPS), compared to state-of-the-art implementations of
dynamic precision scaling with conventional synthesis (DPS) [29, 120, 121, 128]. The energy values

52

4.4 Summary

are obtained from Figure 4.4, weighted to the utilization ratio of the precision mode (i.e., leverage).
Lower quantization, i.e., low precision operations are more efficient. For applications with a high
leverage, most operations are in low precision and the overall energy consumption is also lower in
general. When compared the state of the art (DPS), proposed method (DFPS) reduces the MAC unit
energy consumption by up to 34%.

4.4 Summary

This chapter has proposed automated design of throughput constrained dynamic frequency-
precision scalable circuits. As the experiments of Chapter 3 has revealed, many circuits have
uneven complexity in their topologies. Especially LSBs of arithmetic circuits have significantly less
complexity than their MSBs and they can be synthesized faster. Utilizing this underlying circuit
property, the method proposed in this chapter applies the delay optimizations in synthesis described
in Section 2.4 for energy minimization under configurable accuracy use. It finds the energy-optimal
delay values for two different precisions while matching the average throughput. It is a promising
design method for applications that have dynamic changes in precision requirements, such as
DNNs.

53

5
Architecture andCircuit Co-Synthesis

Motivation 1

Majority of the current approximate hardware designs and design methodologies target a single
and static accuracy, as previously detailed in Section 2.2. Existing accuracy-configurable hardware
proposals [25, 27, 51, 56, 120] and design methodologies [57, 66, 93] primarily utilize circuit-layer
gating mechanisms: They disable a configurable portion of the paths by not propagating data or
inserting control circuitry into the exact hardware with a small area overhead. Notwithstanding
their potency, such approaches only benefit from reduced toggling activity. Because they do not
structurally simplify the circuit, e.g. shorten the critical path, they cannot exploit the full extent of
power savings that static approximate hardware can achieve with synthesis relaxations.

A potential solution can be instantiating multiple static accuracy circuits in the architecture and
switching between them despite their area and leakage power costs [16, 119]. In Figure 5.1, we
compare gating an exact hardware, similar to existing work [57, 66, 93], against static accuracy
approximate hardware by means of precision scaling their inputs, i.e., discarding a number of LSBs
for Sobel Filter and Euclidian Distance computation hardware blocks. Additional dynamic power
savings reach up to 46% when leakage is neglected. Notably, the additional area cost of instantiating
a circuit is reduced significantly as the accuracy is reduced. For instance in Figure 5.1b at 90%
accuracy, the circuit requires only 0.19× the area of the exact circuit. This example demonstrates that
instantiating and connecting additional approximate circuits can be a lower-power and higher-area
overhead alternative to gating. However, instantiating an additional circuit incurs leakage cost even
when this circuit is not used. The dynamic power benefits of an instantiated logic is proportional to
its utilization whereas its leakage power and area costs are fixed. At fine granularity, having many
instantiations would reduce the utilization per circuit. Hence, instantiating may not always result in
net energy benefits.

In this chapter, we propose a novel, cross-layer approach for the synthesis of runtime accuracy-energy
configurable hardware. Our approach combines circuit-level gating mechanisms and instantiating
multiple approximate circuits in the architecture, to exploit both toggling activity and also synthesis
relaxations. It enables fine-grain energy vs. area trade-offs in a design space that is a superset of
two distinct approaches. Finding energy optimal solutions in this joint design space is a non-trivial
function of required accuracies, their utilization in the workload, power savings that can be achieved
at required accuracies, and leakage in the used technology. In [6], we introduced the basic hybrid

1 The content of this chapter is based on the work originally published in [4–6].

55

5 Architecture and Circuit Co-Synthesis

0.2

0.4

0.6

0.8

1

909698100

∆
P
=

32
%Area +=0.79x

Area +=0.59x

Area +=0.45x

N
or

m
al

iz
ed

P
ow

er
to

P E
xa

ct

Accuracy (%)

Gated

Relaxed

(a) Sobel

Filter

0.2

0.4

0.6

0.8

1

909698100

∆
P
=

46
%Area +=0.50x

Area +=0.34x

Area +=0.19x

N
or

m
al

iz
ed

P
ow

er
to

P E
xa

ct

Accuracy (%)

Gated

Relaxed

(b) Euclidian

Distance

Figure 5.1: Power vs. accuracy to compare gating an exact circuit against instantiating relaxed, approximate
circuits. Area costs of instantiated circuits are noted. All values are relative to the exact version of the
corresponding circuit. ∆P is dynamic power savings of instantiating approach over gating.

design approach combining gating and instantiation applied in a manual fashion. This chapter
extends our previous work into a systematic and automated cross-layer methodology that explores the
design space efficiently yet exhaustively and finds the minimum energy requirement solution given
an RTL block, a workload with specified accuracies and a maximum area constraint. Additionally,
we significantly expand our evaluations to showcase generality, impact of the integration overheads,
accuracy reconfiguration costs, input dependency of energy savings, and a detailed analysis of the
leakage impact with 2 different technology libraries. All combined, our work makes the following
key contributions:

• We propose a novel and cross-layer runtime accuracy-configurable hardware design approach.
Our approach is general, supports several accuracies, and utilizes both circuit and architectural
techniques in significantly reducing dynamic power consumption.

• Our work demonstrates the existence of a larger design space of accuracy-configurable hardware,
with non-obvious trade-offs linked to the workload, hardware architecture, and technology.

• We present a systematic methodology to ensure selecting Pareto-optimal solutions. Our
methodology creates a design-time knob on energy vs. area while matching given dynamic
accuracy requirements.

• Our experiments show significant energy savings can be achieved despite the increase in area
and leakage energy. We present these results in a technology-independent manner.

In ourevaluations,we examine a range of circuits underdifferent workloads and accuracy requirements.
Our experiments show at 2× area cost and the same performance, up to 60% energy reduction
compared to an exact hardware block and up to 32% energy reduction compared to state-of-the-art
accuracy-configurable gated hardware while matching the accuracy.

5.1 Background

Figure 5.2 illustrates the background of a runtime accuracy-configurable system and highlights
the position of our work. At design time (Figure 5.2a), we aim at synthesizing an energy optimum
hardware that consists of multiple instantiations of approximate circuits and a gating mechanism.
Here, optimality depends on the accuracy specifications that can be profiled for the given applications

56

5.2 Accuracy-Configurable Hardware Architecture

Figure 5.2: Background of a runtime accuracy-configurable system at design and run time. (a) Synthesis
of approximate hardware with multiple circuit instantiations and a gating mechanism. (b) System-level
abstraction of accuracy management, where the hardware can work in tandem with a runtime system.

and the quality specifications. In Figure 5.2c, hardware synthesized by our methodology offers
accuracy controls to work in tandem with an external runtime system for accuracy management.

5.2 Accuracy-Configurable Hardware Architecture

In this section, we first detail gating mechanisms and present instantiating approximate circuits,
which is a distinct, architecture-layer design approach for accuracy configurable hardware synthesis.
Next, we introduce a novel hybrid, cross-layer design approach that jointly considers gating and
instantiating and enables a design space with fine-grain energy vs. area trade-offs. Finally, we
explain the hardware execution of cycle-by-cycle accuracy configuration, facilitating dynamic
runtime adjustments.

5.2.1 Gating Groups of Paths in Circuit

We utilize the gating mechanisms discussed in Section 2.3.4 as low area cost accuracy configuration
methods [57, 66, 93]. When the clock gating, power gating, and masking compared; masking by
inserting control gates into the combinatorial paths increases path delays of the circuit. Thus, either
the circuit delay increases or circuit area and power increase to match the same delay with more
aggressive synthesis optimizations. These effects are counter-intuitive to our energy optimization
design goal. Power and area overheads are reported as up to 7.6% and 8.7% [57]. Power gating
mechanism, used in [57, 93] require many cycles, prohibiting cycle-by-cycle dynamic adjustments.
In comparison, clock gating for approximations can eliminate such delay overheads and allow
dynamic adjustments. Clock gating is a mean for disabling configurable partitions of a circuit. In
[66], significance constrained overgating strategy, together with clock gating candidates algorithm
result in configurable degrees of precision scaling on the input registers.

While our design approach will allow for any gating mechanism to be employed, we use clock
gating as a baseline in our comparisons to represent the gating approach in the remainder of this
chapter.

5.2.2 Instantiating Approximate Circuits with Different Accuracies

We employ adding and connecting multiple instantiations of a circuit for additional energy savings at
area expense. As shown in Figure 5.1, the approximate instantiations have static accuracies and they
exhibit lower power at the same delay as the exact instantiation. To design approximate instantiations

57

5 Architecture and Circuit Co-Synthesis

Figure 5.3: Cross-layer accuracy configurable hardware architecture. The lower positioned circuit is instantiated
and gated.

of a circuit, we inherit the rich set of existing static approximation, i.e., single accuracy hardware
design methods. By connecting separate instantiations of a circuit with different accuracies, the
hardware is able to offer dynamic accuracy configuration to fulfill the varying requirements of the
application at runtime.

Energy savings through functional simplification of the hardware architecture originate from having
fewer gates and shorter paths compared to the exact circuit. When the exact and the approximate
circuits are synthesized for the same clock delay, the shorter paths allow synthesis relaxations: Boolean
remapping and undoing gate-level delay optimizations [31]. Boolean remapping converts a large
number of parallel gates into a less number of serial gates while maintaining the boolean function (e.g.,
parallel-prefix adder to ripple carry adder). Undoing gate-level delay optimizations such as inserting
buffers (load isolation) and splitting the driving gates on the critical paths (load splitting) reduce the
number of gates in the design. Gate resizing re-composes the circuit with smaller transistors that
require less energy. Hence, synthesis relaxations generate inherently more energy-efficient circuits.

Our approach is agnostic to the design method of the approximate instantiations. Existing work
includes tools that parameterize precision scaling [73, 86], other automated functional simplifications
[21, 110], and selecting manually implemented approximate circuits from a library [16]. In this
chapter, we apply precision scaling to the primary inputs of the RTL and let the synthesis tool
propagate this approximation using hardware compiler optimizations such as constant propagation
and eliminating unused gates.

A challenge in instantiation is how to integrate the instances into the final design. Integration
overheads can easily overweigh the benefits. If the accuracy-configurable hardware block is a
component in a larger final design that includes a interconnection network such as a crossbar or a
shared bus system, new instantiations can be connected as additional system components [16]. Larger
hardware blocks such as systolic arrays [25, 27, 58, 120] share and reduce the integration overheads
as they are connected through a single shared system interface. In case of multiplexer-based
systems [10], this will require extending slave-to-master multiplexers for each instantiation. Such
an approach also allows instantiating multiple functional units within the execution stage in a
processor [119]. Alternatively, instantiations can be integrated as separate accelerators with distinct

58

5.2 Accuracy-Configurable Hardware Architecture

0.2

0.4

0.6

0.8

1

909698100

N
or

m
al

iz
ed

P
ow

er
to

P E
xa

ct

Accuracy (%)

Ckt100 ,Area = 1.00x

Ckt98 , Area = 0.79x

Ckt96 , Area = 0.59x

Ckt90 , Area = 0.45x0.91

0.74

0.57

0.75

0.63

0.49
0.55

0.43
0.39(a) Sobel

Filter
0.2

0.4

0.6

0.8

1

909698100

N
or

m
al

iz
ed

P
ow

er
to

P E
xa

ct

Accuracy (%)

Ckt100 ,Area = 1.00x

Ckt98 , Area = 0.50x

Ckt96 , Area = 0.34x

Ckt90 , Area = 0.19x

0.78

0.64

0.48

0.62

0.51

0.420.42

0.32
0.26

(b) Euclidian

Distance

Figure 5.4: Power vs. accuracy design space of the cross-layer approach. Power values are labeled. Area costs of
instantiated circuits are given in the legend. All values are relative to the exact version of the corresponding
circuit.

memory-mapped IO at no multiplexer cost [94]. As a guideline, in case neither memory-mapped
IO nor extending a multiplexer is possible, adding a new multiplexer to the same hardware stage
should be avoided for delay and power overhead reasons, as shown by previous work [15, 57].

In this work, the instantiated circuits are at the level of at least one complete sequential stage. We
call this granularity a hardware block. Potentially, instantiating at the combinational, sub-block level
can exploit logic sharing opportunities for area savings across instantiated blocks. We utilize the
final synthesis tool to find hardware common sub-expressions between instantiated combinational
blocks for sharing logic and thus exploit opportunities for sharing logic in an automated manner. To
connect new instantiations, we consider two architectural integration decisions: memory-mapped
IO at no multiplexer cost [94] and extending slave-to-master multiplexers in shared bus systems [10].

5.2.3 Cross-Layer Design Approach

While gating brings some energy benefits at low area overhead, instantiating can significantly
improve the energy benefits with a higher area overhead. Our proposed cross-layer approach
combines the two: It instantiates distinct approximated blocks at coarse accuracy levels and
selectively gates them. Consequently, it enables fine-grained intermediate accuracies and additional
energy savings on their computation, without the area and leakage cost of instantiating each
intermediate accuracy circuit. We take an existing RTL design (hardware block) as input and apply
instantiating at the complete block level only. Afterwards, we apply a chosen gating method which
can potentially gate instantiations internally, according to its search algorithm. Figure 5.3 illustrates
the proposed cross-layer approach. Here, an instance of the original design (top) is combined with
an approximate instantiation of the original circuit (bottom). The instantiation has a shorter critical
path and fewer gates. It maximizes the power savings of computation at a particular accuracy. The
instantiation is also clock gated to enable further power savings for a further range of accuracies.

In Figure 5.4, we extend our motivational example from Figure 5.1 with the cross-layer design
approach. Starting from exact versions of the Sobel filter and Euclidian distance circuits, we
synthesize approximate circuits for each accuracy. Afterward, we gate each synthesized circuit for
lower accuracies. The leftmost value of each line represents power values achieved with instantiations.
The lines towards the right represent power values achieved with gating each instantiated circuit.
Note that the design space of prior, gating-only approaches is limited to the Ckt100 line. By contrast,

59

5 Architecture and Circuit Co-Synthesis

instantiations are limited to the left-most points on each curve (blue dashed line). The combined
design space of our proposed cross-layer approach is shown by the shaded area. These examples
also indicate a key insight to minimize dynamic power: We observe that for a single accuracy level,
instantiating a circuit produces the most power-efficient solution, followed by gating the closest
higher accuracy circuit available. In Section 5.3, we use this insight to reduce the search space.

Given an area budget, we can instantiate a set of circuits to address varying accuracy requirements.
The energy-optimal selection of such a circuit set is not a trivial task. It necessitates answering
the following questions: (1) how many circuits to instantiate and at which accuracies (2) which
instantiated circuits to gate and (3) how to associate different accuracy requirements of workloads
with the hardware in an optimum manner. The energy optimal solution is a function of hardware
and workload. Within an area budget, the additional area and associated leakage cost vs. dynamic
power savings of instantiations over gating should be considered. From the leakage perspective,
the impact of power savings through instantiation is thereby weighted by the utilization of the
corresponding accuracy level in a given workload.

A multi-layer search, i.e., independent decisions in the architecture and the circuit would lead to
first instantiating the highest utilized circuit (to make it most efficient) and then gating for other
accuracies. For example, following Figure 5.4, if a low accuracy is utilized 70% of the time, the best
strategy seems to be instantiating an efficient circuit for this accuracy. However, if gating a slightly
higher accuracy instantiation results in a very close energy consumption, yet considerably increases
utilization of this efficient circuit, let’s say 90% of the time, instantiating a higher accuracy circuit
and gating it 70% of the time can become the ideal solution. The inter-dependency between the
layers, i.e., the impact of gating on instantiations influence the optimal decision. Such decisions
can only be made with a cross-layer search in the joint design space. Note that the number of
solutions increases quadratically with the number of accuracies as we can see in Figure 5.4. We
need to consider their combination to address all required accuracies, which is a power set with the
complexity O(2n2

). Therefore, an automated and systematic exploration methodology is necessary.
We address this challenge in Section 5.3.

5.2.4 Runtime Accuracy Management

Our design approach supports dynamic accuracy configuration at cycle-by-cycle granularity. With
this, the runtime accuracy changes can be set by a simple control unit. For each accuracy, there exists
a single, static choice of circuit and gating configuration, determined at design time. I.e., no dynamic
decisions are taken on circuit selection. Accuracy changes are orchestrated by an independent
runtime system, such as [11, 72, 128], one cycle ahead of the operation. The frequency of accuracy
changes is determined by the runtime system as a function of dynamic changes in the input stream
or environment. The design of such a runtime system is out of the scope of this dissertation. Once an
accuracy change is requested, the control unit sets circuit select and gating signals using a look-up
table that holds the configuration for the selected accuracy. It propagates requested accuracies to
the next stages in multi-stage hardware.

5.3 Exploration Methodology

In this section, we introduce our methodology to systematically and efficiently explore the joint
design space. Here, energy optimality is a non-trivial function of required accuracies, their utilization
in the workload, power savings that can be achieved at required accuracies, and leakage in the used

60

5.3 Exploration Methodology

Stage2

Stage3

Cross-Layer Energy Optimizer

Runtime Accuracy Configurable Hardware

Power AnalysisOriginal RTL

Target
Accuracies

Instantiations
(netlist.v)

Weighted
Dynamic Energy

Table of all
instantiation and

gating permutations

Approximate
Synthesis

Permutate

Leakage Energy of
Instantiations

Target
Accuracy

Utilizations

Power Analysis

Database of
the Design Space

M
axim

u
m

 A
rea

Integration
cost

R
ep

resen
tative In

p
u

ts

Stage1

Gating
Configuration

Figure 5.5: Cross-layer synthesis flow.

technology. Finding the highest energy saving combination that fits into an area constraint maps to
the well studied Knapsack Problem, and it is known to be NP-complete.

In Figure 5.5, we present our cross-layer synthesis flow as a framework. We employ a divide
and conquer alike algorithm, in which we search for the minimum energy solutions in 3 distinct
hierarchical stages. We break down the cross-layer energy optimization problem to energy optimal
instantiation and energy optimal gating problems. Both are further divided per accuracy. In stage
3, we combine the prior solutions to answer the original problem. Combinations of prior solutions,
permutated over target accuracies gives us a complete table where each entry is a unique 3-tuple
(target accuracy, instantiation, gating). Considering dynamic energy consumption weighted to circuit
utilization, together with leakage and integration costs, we search for the lowest energy solution fitting
into a given area constraint, by solving a 0/1 Knapsack problem with dynamic weight dependencies
among elements. Hence, we decouple the cross-layer search and explore the joint meta design space
on top of the separate design spaces of synthesis and gating. Our approach thereby enables: (1) use of
existing, effective and well-studied tools for approximate synthesis and gating without modification,
(2) modularity in choosing among approximate synthesis methods and gating mechanisms (such as
clock gating, masking, or power gating). (3) significant design time savings by running synthesis and
gating only one time to create a database, not recursively. Our search remains complete following the
assumption that the ideal instantiations will also lead to ideal gated instantiations. This assumption
held true in the extent of our experiments. Typically Knapsack Problem is solved using a form
of greedy search (gradient descent/ascent, simulated annealing, etc.). With our flow, we can run
an exhaustive search in a feasible time to find optimum cross-layer solutions. Next, we detail our
methodology using pseudo-code and analyze its computational complexity.

Algorithm 4 describes a 3-stage exploration process, namely approximate synthesis, gating, and
optimizer. The inputs to the algorithm are an RTL description, the maximum area constraint (Amax)
per hardware block, representative inputs (Inrep), and the list of required circuit accuracies with

61

5 Architecture and Circuit Co-Synthesis

Algorithm 4 Accuracy configurable hardware synthesis

Input: Exact RTL block, area constraint: Amax, representative input: Inrep, accuracy and utilization list:
< ACClist, Ulist >

Output: Accuracy configurable circuit: Cktdynamic

Phase 1 – Approximate Synthesis

1: for each ACCi ∈ ACClist do
2: Ckt_acci = Synthesize_AX (RTL, ACCi)
3: <Pi, Pleak_i> = get_power(Ckt_acci, Inrep)
4: Cktall = Cktall ∪ Ckt_acci
5: end for

Phase 2 – Gating

6: for each Ckt_acci ∈ Cktall do
7: for each ACCj < ACCi, in ACClist do
8: Ckt_acci_gj = apply_gating (Ckt_acci, ACCj)
9: Pi,j = get_power(Ckt_acci_gj, Inrep)

10: end for
11: end for

Phase 3 – Cross-Layer Energy Optimizer

12: CktSetall = ℘Cktall \∅
13: CktSetcandidates = {CktSet ∈CktSetall|(get_area(CktSet) ≤ Amax) ∧ (Ckt_accmax ⊆ CktSet)}
14: for each CktSetk ∈ CktSetcandidates do
15: CktSetk = Synthesize(CktSetk)
16: for each ACCi in ACClist do
17: if Ckt_acci ∈ CktSetk then
18: associate(CktSetk.Ckt_acci, ACCi)
19: PCktSetk

= PCktSetk
+ (PMUX+Pi)*U(ACCi) + Pleak_i + Pleak_MUX

20: else
21: associate(CktSetk.Ckt_acci+1_gi, ACCi)
22: PCktSetk

= PCktSetk
+Pi+1,j *U(ACCi)

23: end if
24: end for
25: end for
26: CktSetminpower = argmin(CktSetcandidates, PCktSet)
27: Cktdynamic = wrap(CktSetminpower)
28: return Cktdynamic

their utilization (ACClist, Ulist) in ascending order. The latter input pair can be obtained for a given
workload using a profiler, e.g. from [26, 128].

Stage 1 synthesizes circuits at the same delay for all accuracies in ACClist. Netlists can be generated
by an automated tool that parameterizes precision scaling [73, 86] or functional simplification
[21, 110], or synthesizing manually implemented approximate circuits from a library; our flow
is agnostic to the synthesis method. We consider the synthesized approximate circuits optimal
in the sense that they are the minimum power consuming circuits possible for that accuracy. We
characterize the power of each circuit (Ckt_acci) using the given representative input in line 3. In line
4 we create a set of all synthesized circuits, Cktall.

Stage 2 applies a chosen gating method to each instantiation generated in stage 1 (Cktall), and for
each target accuracy. In line 8, the apply_gating function returns the minimum power gated circuit
that meets or exceeds the accuracy constraint, ACCj. Note that gating can only reduce the accuracy
of a netlist. So instantiated circuits are gated only to lower accuracies in the ACClist. Possible gating
strategies are given in [57] for masking and power gating, and in [66] for clock gating, where our
flow is again agnostic to the chosen method. The output of this second stage is a database containing
dynamic power, area values (as given in Figure 5.4), and also leakage power for all instantiation and
gating combinations.

62

5.3 Exploration Methodology

Stage 3 forms and evaluates circuit combinations, CktSet, to find the minimum power solution for a
given area constraint. This decision depends on the utilization of each accuracy (Ui), the power
consumption of each circuit (Pi), and also the integration cost (PMUX). We show this relation in
Equation (5.1) for a system that utilizes n different accuracies.

PCktSetk
=

n

∑
i=1

PiUi + PLeakage + PMUX

where : Utotal =
n

∑
i=1

Ui, 0 ≤ Utotal ≤ 1
(5.1)

Utotal is the portion of cycles in which at least one circuit instantiation is active, i.e., the hardware is
not idle. PCktSetk

denotes the total power consumption of a circuit set out of many.

The optimizer first generates all dynamic-accuracy solutions (CktSetall) from the combinations of
all prior, static-accuracy solutions (Cktall). This is the power set of Cktall, except the empty set. In
line 13, we reduce the possible dynamic-accuracy solutions CktSetall to CktSetcandidates. These are
the solutions that fit into a given area constraint and also include the highest accuracy circuit
(Ckt_accmax). If a CktSet does not include Ckt_accmax, we invalidate it because a part of the workload
cannot be computed at a required accuracy. In line 15, we instantiate each CktSet and synthesize it
with the “-incremental” switch in Synopsys DC to find and exploit the opportunities for sharing
logic, i.e., hardware common subexpressions, between the circuits of each set.

The second part of stage 3 is to evaluate each candidate CktSet. For each circuit set, we associate the
accuracy requirements of the workload with circuits. When CktSet contains a circuit with matching
accuracy ACCi, we associate them in line 18. The associate function generates directives for the
control system, binding configurations to accuracies. Our insight from Section 5.2.3 has shown
that when gated, the closest accuracy requires the lowest power. In case CktSet does not contain a
matching accuracy circuit, we get the gating of the next higher accuracy circuit available in the set
(Ckt_acci+1_gi) in line 21-22, and use the configuration previously computed in line 8. This gives us
a permutation of all dynamic-accuracy solutions (CktSet) over the target accuracies (ACClist) as a
complete table. With the workload associations in line 18 and 22, we know the utilization of each
circuit (Ui) within each dynamic-accuracy solution (CktSet). We can fill our table with the power
values. In lines 19 and 22, we accumulate the dynamic power consumption of each circuit weighted
proportionally to its utilization. The total power consumption includes dynamic, leakage, and also
integration costs. Our analysis on system integration has shown that multiplexer area, dynamic,
and leakage power increase linearly with size. To consider the integration impacts, we synthesize
m-to-1 multiplexers where we changed m from 1 to 8, and used average increment in determining
AMUX, PMUX, and Pleak_MUX at average primary output toggle rate. Finally, from all evaluated circuit
sets, we pick the one with lowest power consumption, CktSetminpower in line 26. Since all circuits
were synthesized to the same delay, the CktSetminpower is also the CktSetminenergy. We instantiate all
the circuits in CktSetminpower and connect them as explained in Section 5.2.2 to generate a dynamic
accuracy configurable circuit (Cktdynamic) in line 27.

Thus, our proposed methodology systematically explores the design space of dynamic accuracy
configurable hardware. It finds circuit sets, that require minimum energy, and match the required
accuracies by their construction, in the joint design space of gating and instantiating approaches.
With an adjustable area constraint, Amax, it creates a design-time knob on energy vs. area. It
automates the generation of Cktdynamic, i.e. the energy-optimized dynamic accuracy configurable
circuit.

63

5 Architecture and Circuit Co-Synthesis

The computations in Stage 1 and 2 are necessary only one time and can be parallelized. Afterward,
our optimizer works on provided power and area values. Thus, it is completely decoupled from the
previous stages. To ensure Pareto-optimal solutions, we run an exhaustive search with a complexity
O(n2n), where n is the number of elements in ACClist. If we break it down, in line 14, the for
loop operates on CktSetcandidates, which is a subset of the power set term ℘Cktall has the complexity
of O(2n). In line 16, another for loop operates on ACClist, with complexity O(n). The insight we
gained in Section 5.2.3 allowed us to reduce the gating candidates in line 21 to one. As a result,
this reduced the complexity by one order. Overall, an exhaustive search is possible within seconds
for the practical range of n, where our carefully structured and computation efficient algorithm is
capable of exploring a design space significantly beyond the previous work.

Table 5.1: Circuits used in our experiments.

Name Function Bitwidth I/O tckt[ns] Area
[µm2] Input

FIR 4-Tap FIR Filter 8 8/16 0.30 1177 random
uniform

Neuron 8 input ReLu Neuron 8 64/8 0.91 5865 random
uniform

Sobel 3x3 Sobel Filter 8 64/8 0.60 1337 cameraman

Gaussian 3x3 Gaussian Filter 8 72/8 0.50 764 cameraman

Euclidian
Euclidian Distance

(without square-root)
8 32/16 0.77 1380 random

uniform

5.4 Experiments and Results

We evaluate the effectiveness of the proposed cross-layer methodology on a variety of circuits
as listed in Table 5.1. For the synthesis, we use Synopsys Design Compiler with the ultra high
effort option using an industrially proven technology library, TSMC 65nm generic plus (typical
case, 1.0 Volt, 25°C). We synthesized a circuit for each given accuracy by precision scaling the
primary inputs and letting the synthesis tool propagate optimizations to later stages with compiler
optimizations (dead code/gate elimination, constant propagation, etc.). All instantiations of circuits
are synthesized to match the same delay, i.e.,110% of the minimum delay of the corresponding exact
circuit (tckt = delaymin × 110%). Therefore all circuits compared in our experiments have the same
performance. The extra 10% delay budget was applied to give some headroom for optimizations;
It is not a limitation. We instantiated each circuit directly in the HDL testbench. For gating, we
reduced the number of primary inputs supplied to the netlists according to the algorithm given
in the state of the art [66]. For the area and leakage cost of gating, we assumed a conservative 3%
penalty per added accuracy, which is in line with [57]. We calculated energy by multiplying total
power and time. To characterize the dynamic power consumption of our circuits, we generated
toggling activity files (.vcd file) from gate-level simulations with ModelSim and provided them to
Synopsys Primetime in .saif format. Similarly, we included the leakage power values that Primetime
reported. We ignore the clock tree power of our post-synthesis netlists. In practice, there could be
additional minor clock tree savings, up to 2.5% according to our experiments. The unit of length
is µm in our library and we derive the area in µm2. For a gate count comparisons, the smallest
NOT and NAND gates are 1.08 and 1.44 µm2, respectively. As inputs, in Sobel and Gaussian filter
experiments we used a 512x512 pixel cameraman picture. These filters are used exclusively in image

64

5.4 Experiments and Results

processing. For other circuits, we used random inputs with uniform distribution. Note that the 3x3
Sobel kernel inputs 8 pixels (64 bits), excluding the center pixel. The FIR filter module inputs an
8-bit value and internally propagates it through its stages.

65

5 Architecture and Circuit Co-Synthesis

Workload Profiling:

The required circuit accuracies and their utilizations are application and input dependent. To
abstract their effect on our methodology, we used 4 different accuracies and 3 different utilization
distributions as shown in Table 5.2. In our experiments on the Sobel filter, 98%, 96% and 90%
accuracies corresponded to PSNR 45, 38 and 31dB, respectively.

Table 5.2: Utilization distributions (Ui) of 4 different circuit accuracies for 3 synthetic workloads.

Utilization Distributions Accuracy
Workload 100% 98% 96% 90%

W_ex - mostly exact 0.5 0.2 0.2 0.1
W_eq - even distribution 0.25 0.25 0.25 0.25
W_ax - mostly approximate 0.1 0.15 0.05 0.7

Accuracy:

We considered circuit accuracies in terms of 1−MRED (Mean Relative Error Distance), as shown
in Equation (5.2), where Oapprox_n is the nth approximate and Oexact_n is the nth exact output value.

Accuracy = 1− 1
N

N

∑
n=1

|(Oapprox_n −Oexact_n)|
Oexact_n

(5.2)

As we use the mean value in Equation (5.2), our error metric involves both the rate and magnitude.

Optimizer Runtime:

We profiled the runtime of our Cross-Layer Energy Optimizer (Algorithm 1 - Stage 3) with MATLAB
R2016a using integer variables on an Intel i5 6600 with 16GB RAM. In Table 5.3, we show that
an exhaustive search is feasible as it is in the order of seconds for the practical range of the
number of required accuracies n (3-6 in [27, 56, 57, 66, 90, 93, 97, 98, 119, 120, 128]). In fact, our
computation-efficiently structured algorithm is capable of exploring a design space for double the
n, that is quadratically larger than the previous work.

Table 5.3: Optimizer run time

n ≤9 10 11 12
[s] 0.01 0.14 1.42 21.3

5.4.1 Design Space Exploration

We begin our evaluations by presenting the design space of a Sobel filter obtained using our
proposed methodology in Figure 5.6 under 3 different workloads from Table 5.2. Each solution
on the design space corresponds to a particular combination of instantiated circuit, gating and
workload accuracy association. We show the Pareto front obtained by our proposed methodology
with a dashed line. The Pareto solutions we refer to in the text are labeled as follows: G1-G3 are
gating-only solutions, Hy1-Hy5 are hybrid solutions of gating and instantiations in the cross-layer

66

5.4 Experiments and Results

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5

N
or

m
al

iz
ed

E
ne

rg
y

to
E E

xa
ct

Normalized Area to AExact

(a)

W_ex

1 1.5 2 2.5

Exact
G1

G2

G3

Normalized Area to AExact

Hy1

Hy2
Hy3

Hy4
Hy5

Inst

(b)

W_eq

1 1.5 2 2.5 3

G3

Normalized Area to AExact

Hy1
Hy3

Hy2.(c)

W_ax

Figure 5.6: Design space of an accuracy configurable Sobel filter under 3 different utilizations given in
Table 5.2. Pareto-front is obtained using the proposed methodology. Pareto solutions in Figure 5.6b are
labeled to be used in Figures 5.7 and 5.12.

design space, and Inst is the instantiation-only solution. When examined at 2× maximum area
constraint, the Pareto-optimum solution in Figure 5.6b is labeled Hy2. At the same area cost,
under W_ax workload in Figure 5.6c, Hy1 is the optimum solution, which dominates Hy2. Thus,
Pareto-optimal solutions are workload dependent.

The dynamic power impact of instantiating an approximate circuit is proportional to the utilization
of its accuracy. Our methodology first instantiates the highest power impact solution. At the excess
area, only low impact circuits remain. As an example, under the mostly approximate workload in
Figure 5.6c, 90% is the dominating accuracy. With solution Hy1: [Ckt_acc100g98g96, Ckt_acc90] (i.e.,
instantiating exact and 90% accuracy circuits and gating the exact for 98% and 96%) we already
achieve significant energy savings. Additionally instantiating a 96% accuracy circuit (Ckt_acc96)
only reduces the energy consumption by a mere 2.6% at 0.6×AExact extra area cost. Similarly, under
W_eq, where the accuracy utilization is even, an extra 0.65× area at first reduces energy by 28% w.r.t.
Exact (10% w.r.t. G3), and at the end, only 1.3%, w.r.t. Hy5. Thus, energy savings diminish at excess area.

0

5

10

15

20

25

E
xa

ct G
1

G
2

G
3

H
y1

H
y2

H
y3

H
y4

H
y5

In
st

E
ne

rg
y

Sa
vi

ng
s

(%
)

Proposed vs. Instantiating
Proposed vs. Gating

Figure 5.7: Pareto front comparison of cross-layer solutions against gating and instantiating solutions from
Figure 5.6b.

67

5 Architecture and Circuit Co-Synthesis

5.4.2 Comparison of Pareto-Optimal Solutions

In Figure 5.7, we show the energy savings of cross-layer solutions over gating and instantiating
alone for the Sobel Filter with W_eq workload. We obtain the gating Pareto front by providing only
the exact circuit as the output of Stage 1 in Algorithm 1. Similarly, to obtain the Pareto front of the
instantiating approach, we skip Stage 2 in Algorithm 1 and associate the missing accuracies with
a higher accuracy circuit. The figure highlights that, as we increase the area budget, the Pareto
solutions of cross-layer and instantiating approaches offer energy reduction over state-of-the-art
gating approaches. The joint design space offers solutions that are superior or equal to the two individual
approaches.

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5

N
or

m
al

iz
ed

E
ne

rg
y

to
E E

xa
ct

Area*

no overhead
typical
worst case

(a)

W_ex

1 1.5 2 2.5

*: Normalized Area to AExact
Area*

Hy3. Inst.

(b)

W_eq

1 1.5 2 2.5 3

G3

Area*

∆
E
=

11
%

∆
E
=

18
%

∆
E
=

23
%

(c)

W_ax

Figure 5.8: Design space of an accuracy configurable Sobel Filter with typical integration costs (con-
trol+MUX+clk) under 3 different utilizations given in Table 5.2. Pareto-fronts are obtained using the proposed
methodology with varying integration costs.

5.4.3 Analysis of Integration and Control Overhead

The integration overheads, as we have previously discussed in Section 5.2.2, are dependent on the
connection to an enclaving hardware system. The experiments in Figures 5.6 and 5.7 represent
energy savings when the system integration costs can be averted, such as in adding instantiations
with memory-mapped IO [94]. For a shared bus architecture, we need to extend the slave-to-master
multiplexers to connect new instantiations [10].

We included an m-to-1 multiplexer in our design space exploration in the experiments shown in
Figure 5.8. The system-level integration overheads manifest themselves as additional energy and
area as a function of m, i.e., the number of instantiations. In Figure 5.8, we show their impact on the
Pareto-front for 3 scenarios: The worst-case line represents using the fastest multiplexer generated
by the synthesis tool with the delay constraint set to 0 ns to maximize synthesis effort. The typical
line represents a multiplexer with an excess delay budget. In our experiments, the multiplexer delay
has been a fraction of the circuit delay (< 41%). Hence, if necessary, multiplexers could always
comfortably fit into a pipeline stage that is delay constrained by the experimented circuit. Finally,
we included the ‘no overhead’ line from the previous experiments, as shown in Figure 5.6. Values
are normalized to the area and the energy of the Sobel Filter. Depending on the scenario, Figure 5.8c
shows 11% to 23% energy savings over G3, the most energy-efficient solution of the state-of-the-art
gating method.

68

5.4 Experiments and Results

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3

N
or

m
al

iz
ed

E
ne

rg
y

to
E E

xa
ct

Normalized Area to AExact

FIR
Neuron
Sobel
Euclidian
Gaussian

(a) W_ex

1 1.5 2 2.5 3
Normalized Area to AExact

(b) W_eq

1 1.5 2 2.5 3

∆E=33%
0.516

0.333

∆E=32%
0.584

0.396

∆E=23%

0.905

0.701

Normalized Area to AExact

(c) W_ax

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3

N
or

m
al

iz
ed

E
ne

rg
y

to
E E

xa
ct

Normalized Area to AExact

FIR
Neuron
Sobel
Euclidian
Gaussian

(d) W_ex*

1 1.5 2 2.5 3
Normalized Area to AExact

(e) W_eq*

1 1.5 2 2.5 3

∆E=30%
0.516

0.360

∆E=28%0.584

0.421

∆E=20%

0.905

0.720

Normalized Area to AExact

(f) W_ax*

Figure 5.9: Pareto curves for a range of circuits under workloads with accuracy utilizations given in Table 5.2.
The experiments denoted with a “*” in (d,e,f) include system integration overheads. Each point represents a
particular dynamic accuracy configurable circuit, Cktdynamic, which is energy optimized for the given area
and the workload.

Note that in the typical case, the solution of instantiating all circuits (inst) is no longer on the Pareto
front for any workload. We also observe that Hy3 is dominated in Figure 5.8b. These are the first
(lowest area) solutions that use 4 and 3 instantiations and their energy reduction do not compensate
for the increased integration overheads. This finding supports the previous argument of energy
savings diminish at the excess area for a different reason: increasing overheads.

We have also explored placing multiplexers inside the pipeline stages of the hardware block, similar
to the previous work [15, 57]. As such, we can enable sharing some stages and configuring accuracy
in others. This setup has not given energy savings more than gating as it significantly reduces
the delay margin for both the instantiations and the multiplexer and thus more aggressive delay
optimizations that increase energy.

5.4.4 Area vs. Energy Trade-offs

In Figure 5.9, we generalize our exploration by repeating it for a range of datapath circuits. We
share the energy-area Pareto front obtained under 3 different workloads from Table 5.2, with (d,e,f)
and without integration overheads (a,b,c). For each circuit, after the exact, the first 3 data points
represent the gating solutions and for Figure 5.9a,b,c the last data point represents the solution
at which all circuits are instantiated. Figure 5.9 shows that our cross-layer synthesis methodology is
general and it applies to a wide range of circuits.

We can observe that Pareto points change in number and x-axis position under different workloads.
For instance, the Gaussian filter has 10 Pareto solutions under the workloads W_ex and W_eq whereas

69

5 Architecture and Circuit Co-Synthesis

0

0.4

0.8

1.2

1.6

100 98 96 90

N
or

m
al

iz
ed

E
ne

rg
y

to
P E

xa
ct
×

1c
yc

le

Accuracy (%)

Gating Inst

1.00

0.91

0.74

0.57

1.57
1.51

1.41

1.29

1.43

1.26

1.13

1.04

0.93

0.760.75

0.55

0.39

0.
52

0.
16

E
xa

ct

E
xa

ct
C

kt
98

E
xa

ct
C

kt
98

C
kt

96

E
xa

ct
C

kt
98

C
kt

96
C

kt
90

Figure 5.10: Energy required for accuracy reconfiguration of the Sobel Filter: Each bar represents one-time
energy to activate a circuit for the desired accuracy. The purple line represents clock gating the exact circuit
for the desired accuracy. The blue line is the runtime energy requirement of instantiations at their designed
accuracy, without switching. Normalized to the average of Pexact × 1cycle, for Cameraman picture as input.

8 under W_ax. This validates the workload dependency of Pareto solutions. Similarly, a maximum
area constraint of 2× AExact results in an average 18%, 28%, and 48% energy savings under W_ex,
W_eq and W_ax workloads, respectively. Afterward, an additional area budget of AExact only reduces
energy by 4%, 5%, and 1%. These values support our previous finding on diminishing energy savings
at excess area. In other terms, instantiating all accuracies solution (inst) has only a small, incremental
energy saving over cross-layer solutions at relatively large area cost.

Previously, in Figure 5.1, we shared power savings with instantiating compared to an exact Euclidian
distance calculator as up to 78%. Compared to gating an exact circuit, we reported additional power
savings of up to 46% with instantiation at matching accuracy. These values set the maximum possible
savings: under a workload utilizing constantly 90% accuracy (U90 = 1). Between our workloads, W_ax
shows higher energy savings than W_eq and W_ex, as it utilizes the energy-efficient, approximate
instantiations more. At 2x area cost, the power reduction under the mostly exact workload in
Figure 5.9a is up to 26% whereas the reduction under the mostly approximate workload reaches 60%
in Figure 5.9c. When compared to the state-of-the-art gating approach and at matching accuracy, in
Figure 5.9c, we achieve up to 32% additional energy savings.

In the experiments shown in Figure 5.9(d,e,f), we considered the system-level integration overheads
by including an m-to-1 multiplexer in our design space exploration methodology, generalizing our
previous overhead analysis in Section 5.4.3. We observe that some Pareto points such as solutions
that instantiate all (inst) vanish; effectively, for the remaining Pareto-solutions, the energy overhead
of integration is less than 4%. When Figure 5.9(d,e,f) are examined, apart from the initial low-cost
gating solutions, only the cross-layer solutions remain on the Pareto-front.

5.4.5 Energy Cost of Runtime Accuracy Reconfiguration

Runtime systems decide and dictate an accuracy reconfiguration in relatively large periods [11, 128],
and independently of our hardware synthesis methodology. Architecturally, as shown in Figure 5.3,
an accuracy change is conducted by setting a small number of registers (∼ log(n), for n accuracies).

70

5.4 Experiments and Results

Although this register energy cost is negligible, activating a different instantiation can result in a
context switch cost.

In the real-world, due to temporal and spatial correlations in input data, we can expect that not
all input bits change and lead to toggles and energy consumption in every cycle. In other words,
bit-level input correlation is a factor in energy consumption. For instance, in a picture, neighboring
pixels are likely to have a similar value, as do successive frames in a video stream. Running a kernel
on the equal value pixels of a graphic would not lead to any toggling activity. Small changes in
the input are likely to toggle only LSB paths which are inherently short and more energy-efficient
[8]. However, activating a different circuit instantiation by switching accuracy or changing the
input data context leads to a high amount of toggle in the hardware. Upon a context switch, the
correlation in inputs is lost and the energy consumption is expected to be higher. The impact can be
generalized as energy consumption upon context change.

Each time we switch to a different instantiation, we can expect the current input values to not be
correlated to what the inputs of the instantiation were the last time it was used: A context switch
occurs to instantiations upon activation. To evaluate this energy impact of input data correlation,
we have tested the Sobel Filter with uniform random input values that have no correlation from one
cycle to the next, which emulates a setup in which accuracy re-configuration occurs in every cycle. In
Figure 5.10, we compare the average power consumption per cycle with accuracy configuration (bars)
against the runtime cost of using the same circuit with normal inputs benefiting from correlation
(lines). In other words, bars represent the energy consumption of switching to and activating a
specific instantiations when changing the hardware accuracy, while the lines represent the energy
consumption at a fixed accuracy, where purple is a gated exact circuit and blue is instantiations
without gating. The figure can be read as follows: Normalized to an energy unit of PExact × 1cycle,
1.43x energy is required to switch to the 98% accuracy instantiation. In comparison, if there are
no instantiations and only the exact circuit, the circuit could be gated to 98% at no context switch
cost, resulting in a fixed energy cost of 0.91x as shown with the purple line. Hence, by switching
to a different accuracy circuit, we incur an energy overhead. However, instantiated circuits are
more energy-efficient than the gated ones at the same accuracy. Considering a net switching cost of
(1.43− 0.91) = 0.52x and following savings of (0.91− 0.75) = 0.16x, our approach can amortize an
accuracy reconfiguration within 4 cycles.

This analysis is particularly useful as it abstracts the hardware from the workload and hence
retains generality. We see the impact of switching between instantiations on energy, independent of
the workload characteristics such as the switch frequency and previous state (as in a finite state
machine).

5.4.6 Input Dependency of Cross-Layer Design Space

The dynamic power consumption depends on the characteristics of the input stream. Figure 5.11a is
the cameraman picture used in our experiments. We use it is a representative of real-world data
with spatial correlations (similarly valued neighbor pixels). The image processing kernels we used,
Sobel and Gaussian filters, work on neighboring pixels and shift over the image pixels like a sliding
window for each output. The required computation is strongly affected by spatial correlations.
In Figure 5.11b, we analyze the bitwise similarity between neighboring pixels of the cameraman
picture using MATLAB. The figure can be read as follows: the MSB of the pixels have the same value
for 95% of the neighbors; only 5% of the neighbor pixels have a different MSBs. The LSBs of the
neighbor pixels, however, have the same value for only 54%. Using real-world data, the kernel inputs
have relatively high-frequency changes between LSBs compared to their MSBs. In comparison, uniform

71

5 Architecture and Circuit Co-Synthesis

(a) Cameraman

50

60

70

80

90

100

1 2 3 4 5 6 7 8

N
ei

gh
bo

r
B

it
Si

m
ila

ri
ty

(%
)

Bit Position

Cameraman
Random

54
58

67

75

82

89

93
95

(b)

0.2

0.4

0.6

0.8

1

909698100

∆P = 44%

N
or

m
al

iz
ed

P
ow

er
to

P E
xa

ct

Accuracy (%)

Random

Cameraman
Ckt100 ,98 ,96 ,90(c)

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3

Exact
G1

G2

G3 . .
N

or
m

al
iz

ed
E

ne
rg

y
to

E E
xa

ct

Normalized Area to AExact

DSE+IN:Random
DSE+IN:Cameraman
DSE:Random+IN:Camera

Hy1

Hy2
Hy3

Hy4
Hy5

Inst

∆E = 4.5%

∆E = 5.2%

(d)

Figure 5.11: Input dependency of cross-layer design space. (a) Cameraman picture used in our experiments.
(b) Bitwise similarity between neighbor pixel values of the Cameraman picture vs. uniform random numbers.
(c) Power consumption of a Sobel Filter with random inputs compared to the cameraman picture as input.
Lines with different markers represent the dynamic power consumption of instantiations when gated, as in
Figure 5.4. (d) Design Space of accuracy configurable Sobel filter under W_eq workload from Table 5.2, with
random inputs, highlighting the mismatch in solutions and its energy impact.

random input has the same, 50% toggle rate for each bit position. As we lower accuracy through
precision scaling, we omit the high frequency LSB toggles, which leads to bigger normalized savings
in real-world data (up to 44%, in Figure 5.11c) than random. Since both experiments are on the same
circuit, the area and leakage power remain the same. To the scope of our experiments, precision
scaling leads to higher normalized energy savings with inputs from real-world data than random inputs with
uniform distribution.

We run our cross-layer synthesis methodology using both random and representative input values
for comparison by changing the inputs in line 3 and 9 of Algorithm 1. In Figure 5.11d, we present
the design space exploration of the accuracy configurable Sobel filter with random input and the
Pareto-fronts for random and representative inputs when evaluated running the same inputs as used
during search. Comparing the Pareto-fronts, we notice a difference in energy consumption. The red
line in Figure 5.11d shows the solutions for random input evaluated by running on the cameraman
input. An in-depth analysis shows that most of the solutions on both Pareto-fronts are the same
configuration. However, some Pareto-solutions are input dependent. Using an unrepresentative
input during design space exploration can lead to suboptimal solutions, which cost up to 5.2% energy.
By contrast, performing exploration using representative inputs reveals additional Pareto-solutions
(Hy4, Hy5) for further energy savings of up to 4.5% in this example.

72

5.4 Experiments and Results

0.6

0.7

0.8

0.9

1

1.1

0.01 0.1 1

10.1

(TSMC65nm worst-case)

(TSMC65nm typical)

0.50.05

N
or

m
al

iz
ed

E
ne

rg
y

to
E E

xa
ct

Utilization Factor Utotal

Exact
G1
G2
G3
Hy1
Hy2
Hy3
Hy4
Hy5
Inst

Gating Cross-layer

(a) TSMC 65nm typical and worst-case corners

0.6

0.7

0.8

0.9

1

1.1

0.01 0.1 1

(NanGate45nm typical)N
or

m
al

iz
ed

E
ne

rg
y

to
E E

xa
ct

Utilization Factor Utotal

Exact
nG1
nG2
nG3
nHy1
nHy2
nHy3
nHy4
nHy5

(b) NanGate 45nm typical corner

Figure 5.12: Leakage impact on accuracy configurable Sobel filters under varying utilization factor Utotal with
different technology libraries. Each line is a Pareto solution under the workload W_eq.

5.4.7 Leakage Energy Analysis and Technology Independence

Instantiating additional circuits increases area and hence the leakage of the hardware. The
contribution of leakage energy over total energy is a function of the technology and hardware
utilization, Utotal: the portion of cycles, in which at least one circuit is active. In Figure 5.12, we
present the total energy consumption of dynamic accuracy configurable Sobel filters under the
workload W_eq for different technologies and varying utilization factors, achieved by introducing
idle cycles. The y-axis shows the total energy (including the leakage), normalized to the total energy
of the exact circuit. Note that the x-axes (utilization factor) are on a logarithmic scale. The graph can
be read as follows: at a utilization factor of 1, there are no idle cycles. At 0.1 the hardware is used for
1 cycle out of 10 on average, i.e., 9 idle cycles. Here, the energy contribution of the dynamic part is
also reduced to 0.1, while the leakage remains constant.

In Figure 5.12a, dynamic accuracy configurable circuits that we use are from the Pareto front
of Figure 5.6b. We plot their energy under two different utilization scales: The main (bottom)
x-axis represents our analysis with the TSMC65nm library at the typical corner. The second x-axis
represents results for the worst-case corner instead. The TSMC65nm library characterized for
worst-case conditions (0.9V, 125C) results in an increase in leakage to dynamic power ratio by 2x.
This is equivalent to doubling the number of idle cycles, i.e., scaling utilization by a factor of 0.5 as
shown in the figure. The highest energy savings are obtained with instantiation (inst) and cross-layer
solutions (Hy1-Hy5) at high hardware utilization, such as 1 to 0.1 for the x-axis representing the
typical corner. As the effect of leakage power becomes more prominent, the energy of Hy1-Hy5,

73

5 Architecture and Circuit Co-Synthesis

and inst increase above gating-only solutions G1-G3 between 0.1 and 0.05 (marked in Figure 5.12a).
Until the range of 0.05 to 0.0125, the Hy1-Hy5, and inst remain superior to the exact circuit.

We applied the Sobel Filter to a camera system application with a 512×512 pixel video feed at 30
frames per second, running at a clock frequency of 100MHz. In this specification, the utilization
factor is 0.08. Even though this can be considered as a low utilization to justify the accelerator,
the best solution is Hy2 (with typical x-axis). When we increase the resolution and frame rate to
1280×720 pixels and 60fps, the utilization factor becomes 0.54. At this value, leakage power has a
much lower impact on total energy. The instantiation solution (inst) offers 0.4%, 26%, and 37% more
energy savings than solutions Hy5, G3 and exact, respectively.

The data can be read in a technology-independent manner, for different leakage impact on total
energy, by scaling the utilization factor axis accordingly, as we show in Figure 5.12a. Furthermore,
In Figure 5.12b, we redo the experiments (synthesis, gating, design space exploration, and leakage
analysis) with a NanGate 45nm library. Note that the Pareto-points in Figure 5.12a and Figure 5.12b
are not the same set. For instance, the NanGate inst solution is dominated by nHy5 and not drawn in
Figure 5.12b. There are differences in synthesis and gating results that change the design space and
Pareto-points. The NanGate experiments validate our previous leakage analysis using a completely
independent technology library. With these experiments, we can generalize that for a significant
range of utilization factor, the cross-layer approach produces superior solutions.

5.5 Summary

This chapter addressed the necessity of accuracy-configurable hardware systems with the exploration
of applying gating mechanisms to existing circuits together with instantiating more efficient circuits
into the architecture. Jointly, they present a larger design space where non-trivial cross-layer
decisions are necessary to find optimal solutions. We proposed a systematic methodology to ensure
Pareto-optimal combinations towards minimizing energy consumption under given workload and
area constraints. Our work has demonstrated that dynamic accuracy configurable hardware with
significantly (up to 33%) reduced energy compared to existing gating solutions can be synthesized
when more circuit area can be utilized.

74

6
Conclusion

Approximation-resilient applications paved up avenues for new methods to improve energy
efficiency and performance. Over the last decade, a significant amount of work is proposed across
the computing stack to best take advantage of the approximations. One key aspect is that required
computation accuracy changes with input, applications, and application quality targets. The current
conventional design automation flow is optimized for exact computation and provides sub-optimal
benefits when used for accuracy-configurable computations. This dissertation proposed methods
and implementations to design accuracy-configurable hardware, exposing the accuracy knobs, and
also to optimize the hardware for accuracy-configurable use.

In Chapter 3, this dissertation introduced a systematic methodology to automatically synthesize
circuits with enhanced timing-error resilience when frequency is scaled beyond safe limits. The
key idea behind is to optimize non-critical paths for the delay. Given any arbitrary circuit, this
methodology identifies primary outputs with a remaining slack margin and assigns them the
minimum delay constraint for successful synthesis. Consequently, it reduces the probability of
timing errors and thus improves the accuracy. It also makes the timing errors occur more gradually
with frequency scaling. As demonstrated by experiments, this methodology extends the design
space to higher frequencies and finding favorable trade-offs between performance and accuracy
for both standalone and cross-layer techniques that utilize timing speculations for approximate
computation.

The experiments in Chapter 3 have exposed that many circuits have an uneven complexity in their
topologies. This property leads to most critical path delay dominated circuit delay, power, and area
requirements while achieving limited, best-effort improvements on low-complexity paths. Chapter 4
introduced the second contribution of this dissertation, a throughput-constrained, energy-optimized
synthesis method. It relaxes the delay constraints that apply to the majority of the circuit while
tightening it for a smaller part used for reduced precision operations. Consequently, the resulting
circuits require less area and average energy, when used for accuracy-configurable approximate
computing, while being able to maintain the initial average throughput. These circuits possess the
property of dynamic frequency-precision scalability as they can operate at high precision with a
slow clock and at a low precision with a fast clock.

Chapter 5, addressed the necessity of accuracy-configurable hardware systems with the exploration
of circuit-level gating mechanisms together with instantiating more efficient circuits into the
architecture. Jointly, they present a larger design space where non-trivial cross-layer decisions are
necessary to find optimal solutions. In this chapter, a systematic methodology is proposed to ensure
Pareto-optimal combinations towards minimizing energy consumption under given workload and

75

6 Conclusion

area constraints. This work has demonstrated that the cross-layer design space offers dynamic
accuracy-configurable hardware with significantly reduced energy compared to existing gating
solutions when more area can be utilized.

The design methodologies proposed in this dissertation utilize underlying circuit properties into
account in an automated and general way. As they are built on the logic synthesis that is used for all
logic, they inherent generality and rich set of optimizations. These methods design runtime variable
accuracy hardware with exposing knobs for accuracy configurability and optimize the hardware for
runtime accuracy-configurable use towards maximally exploiting the approximation benefits while
maintaining quality targets.

Future Work

Runtime accuracy configuration necessitates monitoring changes in inputs or quality targets and
reacting to them. This comes in some form of overhead. Therefore, it is important to make these
runtime methods lightweight. A potential solution can be hardware support for runtime methods
to minimize their overhead and maximize approximation benefits

A cross-layer approach includes the design space of single-layer approaches and merges them. Thus,
it creates a larger design space where the solutions are better than or equal to any incorporated
single layer of the computing stack, for any design metric. This dissertation has proposed a joint
circuit and architecture design space exploration to reduce energy consumption. Integrating more
layers and making design decision in the larger joint design space has the potential to provide
further improvements.

76

Bibliography

[1] Sara Achour and Martin C Rinard. “Approximate computation with outlier detection in
topaz”. In: Acm Sigplan Notices 50.10 (2015), pp. 711–730.

[2] Mohammad Abdullah Al Faruque, Thomas Ebi, and Jorg Henkel. “Configurable links for
runtime adaptive on-chip communication”. In: 2009 Design, Automation & Test in Europe
Conference & Exhibition. IEEE. 2009, pp. 256–261. doi: 10.1109/DATE.2009.5090667.

[3] Mohammad Abdullah Al Faruque, Thomas Ebi, and Jorg Henkel. “Run-time adaptive on-chip
communication scheme”. In: 2007 IEEE/ACM International Conference on Computer-Aided
Design. IEEE. 2007, pp. 26–31. doi: 10.1109/ICCAD.2007.4397239.

[4] Tanfer Alan, Jorge Castro-Godinez, and Jörg Henkel. “Multiple Approximate Instances
in Neural Processing Units for Energy-Efficient Circuit Synthesis (WiP)”. In: International
Conference on Compilers, Architectures and Synthesis For Embedded Systems (CASES), (2021).
doi: 10.1145/3451939.3477594.

[5] Tanfer Alan, Andreas Gerstlauer, and Jörg Henkel. “Cross-Layer Approximate Hardware
Synthesis for Runtime Configurable Accuracy”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (2021). doi: 10.1109/TVLSI.2021.3068312.

[6] Tanfer Alan, Andreas Gerstlauer, and Jörg Henkel. “Runtime Accuracy-Configurable
Approximate Hardware Synthesis Using Logic Gating and Relaxation”. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE). 2020, pp. 1578–1581. doi: 10.23919/
DATE48585.2020.9116272.

[7] Tanfer Alan and Jörg Henkel. “Probability-Driven Evaluation of Lower-Part Approximation
Adders”. In: IEEE Transactions on Circuits and Systems II: Express Briefs (2021). doi: 10.1109/
TCSII.2021.3093984.

[8] Tanfer Alan and Jörg Henkel. “SlackHammer: Logic Synthesis for Graceful Errors Under
Frequency Scaling”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37.11 (2018), pp. 2802–2811. doi: 10.1109/TCAD.2018.2858364.

[9] Pietro Albicocco, Gian Carlo Cardarilli, Alberto Nannarelli, Massimo Petricca, and Matteo Re.
“Imprecise arithmetic for low power image processing”. In: Signals, Systems and Computers
(ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar Conference on. IEEE. 2012,
pp. 983–987. doi: 10.1109/ACSSC.2012.6489164.

[10] ARM AMBA 5 AHB Protocol Specification. Accessed: 2020.05.17. url: https://static.docs.
arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf.

[11] Woongki Baek and Trishul Chilimbi. “Green: A system for supporting energy-conscious
programming using principled approximation”. In: Conference on Programming Language
Design and Implementation. ACM. 2010, pp. 198–209.

[12] Lars Bauer, Muhammad Shafique, and Jorg Henkel. “Run-time instruction set selection in a
transmutable embedded processor”. In: 2008 45th ACM/IEEE Design Automation Conference.
IEEE. 2008, pp. 56–61. doi: 10.1145/1391469.1391486.

77

https://doi.org/10.1109/DATE.2009.5090667
https://doi.org/10.1109/ICCAD.2007.4397239
https://doi.org/10.1145/3451939.3477594
https://doi.org/10.1109/TVLSI.2021.3068312
https://doi.org/10.23919/DATE48585.2020.9116272
https://doi.org/10.23919/DATE48585.2020.9116272
https://doi.org/10.1109/TCSII.2021.3093984
https://doi.org/10.1109/TCSII.2021.3093984
https://doi.org/10.1109/TCAD.2018.2858364
https://doi.org/10.1109/ACSSC.2012.6489164
https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
https://doi.org/10.1145/1391469.1391486

Bibliography

[13] Lars Bauer, Muhammad Shafique, Simon Kramer, and Jörg Henkel. “RISPP: Rotating
instruction set processing platform”. In: Proceedings of the 44th annual Design Automation
Conference. 2007, pp. 791–796. doi: 10.1145/1278480.1278678.

[14] Kartikeya Bhardwaj, Pravin S Mane, and Jörg Henkel. “Power-and area-efficient approximate
wallace tree multiplier for error-resilient systems”. In: Fifteenth International Symposium on
Quality Electronic Design. IEEE. 2014, pp. 263–269. doi: https://doi.org/10.1109/ISQED.
2014.6783335.

[15] Behzad Boroujerdian, Hussam Amrouch, Jörg Henkel, and Andreas Gerstlauer. “Trading
off temperature guardbands via adaptive approximations”. In: International Conference on
Computer Design (ICCD). IEEE. 2018, pp. 202–209. doi: 10.1109/ICCD.2018.00039.

[16] Marcelo Brandalero, Antonio Carlos S Beck, Luigi Carro, and Muhammad Shafique.
“Approximate on-the-fly coarse-grained reconfigurable acceleration for general-purpose
applications”. In: Design Automation Conference (DAC). IEEE. 2018, pp. 1–6. doi: 10.1109/
DAC.2018.8465930.

[17] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. “Deep learning with low
precision by half-wave gaussian quantization”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 5918–5926. doi: 10.1109/CVPR.2017.574.

[18] Michael Carbin, Sasa Misailovic, and Martin C Rinard. “Verifying quantitative reliability
for programs that execute on unreliable hardware”. In: ACM SIGPLAN Notices. Vol. 48. 10.
ACM. 2013, pp. 33–52. doi: 10.1145/2509136.2509546.

[19] Stephen Cass. “Taking AI to the edge: Google’s TPU now comes in a maker-friendly package”.
In: IEEE Spectrum 56.5 (2019), pp. 16–17. doi: 10.1109/MSPEC.2019.8701189.

[20] J. Castro-Godínez, S. Esser, M. Shafique, S. Pagani, and J. Henkel. “Compiler-driven error
analysis for designing approximate accelerators”. In: 2018 Design, Automation Test in Europe
Conference Exhibition (DATE). 2018, pp. 1027–1032. doi: 10.23919/DATE.2018.8342163.

[21] Jorge Castro-Godınez, Sven Esser, Muhammad Shafique, Santiago Pagani, and Jörg Henkel.
“Compiler-driven error analysis for designing approximate accelerators”. In: Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE. 2018, pp. 1027–1032. doi:
10.23919/DATE.2018.8342163.

[22] Jorge Castro-Godınez, Julián Mateus-Vargas, Muhammad Shafique, and Jörg Henkel.
“AxHLS: design space exploration and high-level synthesis of approximate accelerators
using approximate functional units and analytical models”. In: 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE. 2020, pp. 1–9. doi: 10.1145/3400302.
3415732.

[23] Srimat T Chakradhar and Anand Raghunathan. “Best-effort computing: re-thinking parallel
software and hardware”. In: Design Automation Conference (DAC). ACM/IEEE. 2010, pp. 865–
870. doi: 10.1145/1837274.1837492.

[24] Yen-Kuang Chen, Jatin Chhugani, Pradeep Dubey, Christopher J Hughes, Daehyun Kim,
Sanjeev Kumar, Victor W Lee, Anthony D Nguyen, and Mikhail Smelyanskiy. “Convergence
of recognition, mining, and synthesis workloads and its implications”. In: Proceedings of the
IEEE 96.5 (2008), pp. 790–807. doi: 10.1109/JPROC.2008.917729.

[25] Vinay Chippa, Anand Raghunathan, Kaushik Roy, and Srimat Chakradhar. “Dynamic effort
scaling: Managing the quality-efficiency tradeoff”. In: Design Automation Conference (DAC).
IEEE. 2011, pp. 603–608. doi: 10.1145/2024724.2024863.

[26] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan. “Analysis
and characterization of inherent application resilience for approximate computing”. In:
Design Automation Conference (DAC). 2013, pp. 1–9.

[27] Vinay Kumar Chippa, Debabrata Mohapatra, Kaushik Roy, Srimat T Chakradhar, and Anand
Raghunathan. “Scalable effort hardware design”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22.9 (2014), pp. 2004–2016. doi: 10.1145/1837274.1837411.

78

https://doi.org/10.1145/1278480.1278678
https://doi.org/https://doi.org/10.1109/ISQED.2014.6783335
https://doi.org/https://doi.org/10.1109/ISQED.2014.6783335
https://doi.org/10.1109/ICCD.2018.00039
https://doi.org/10.1109/DAC.2018.8465930
https://doi.org/10.1109/DAC.2018.8465930
https://doi.org/10.1109/CVPR.2017.574
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1109/MSPEC.2019.8701189
https://doi.org/10.23919/DATE.2018.8342163
https://doi.org/10.23919/DATE.2018.8342163
https://doi.org/10.1145/3400302.3415732
https://doi.org/10.1145/3400302.3415732
https://doi.org/10.1145/1837274.1837492
https://doi.org/10.1109/JPROC.2008.917729
https://doi.org/10.1145/2024724.2024863
https://doi.org/10.1145/1837274.1837411

Bibliography

[28] Jason Cong and Kirill Minkovich. “Logic synthesis for better than worst-case designs”. In:
VLSI Design, Automation and Test, 2009. VLSI-DAT’09. International Symposium on. IEEE. 2009,
pp. 166–169. doi: 10.1109/VDAT.2009.5158121.

[29] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Training deep neural
networks with low precision multiplications”. In: arXiv preprint arXiv:1412.7024 (2014).

[30] Robert H Dennard,Fritz H Gaensslen,Hwa-Nien Yu,V Leo Rideout,Ernest Bassous,and Andre
R LeBlanc. “Design of ion-implanted MOSFET’s with very small physical dimensions”. In:
IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268. doi: 10.1109/JSSC.1974.1050511.

[31] Design Compiler® User Guide. Synopsys. www.synopsys.com, 2010.

[32] Thomas Ebi, Mohammad Abdullah Al Faruque, and Jörg Henkel. “Tape: Thermal-aware
agent-based power econom multi/many-core architectures”. In: 2009 IEEE/ACM International
Conference on Computer-Aided Design-Digest of Technical Papers. IEEE. 2009, pp. 302–309. doi:
10.1145/1687399.1687457.

[33] Thomas Ebi, David Kramer, Wolfgang Karl, and Jörg Henkel. “Economic learning for
thermal-aware power budgeting in many-core architectures”. In: Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis.
2011, pp. 189–196. doi: 10.1145/2039370.2039401.

[34] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad
Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, et al. “Razor: A low-power pipeline
based on circuit-level timing speculation”. In: Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on. IEEE. 2003, pp. 7–18. doi: 10.1109/
MICRO.2003.1253179.

[35] Rolf Ernst, Jörg Henkel, and Thomas Benner. “Hardware-software cosynthesis for microcon-
trollers”. In: IEEE Design & Test of computers 10.4 (1993), pp. 64–75. doi: 10.1109/54.245964.

[36] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. “Architecture support
for disciplined approximate programming”. In: ACM SIGPLAN Notices. Vol. 47. 4. ACM.
2012, pp. 301–312. doi: 10.1145/2150976.2151008.

[37] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. “Neural acceleration
for general-purpose approximate programs”. In: 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE. 2012, pp. 449–460. doi: 10.1109/MICRO.2012.48.

[38] Brian Greskamp, Lu Wan, Ulya R Karpuzcu, Jeffrey J Cook, Josep Torrellas, Deming Chen,
and Craig Zilles. “Blueshift: Designing processors for timing speculation from the ground
up.” In: High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th International
Symposium on. IEEE. 2009, pp. 213–224. doi: 10.1109/HPCA.2009.4798256.

[39] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. “Deep
Learning with Limited Numerical Precision”. In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings
of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 1737–1746. url: http:
//proceedings.mlr.press/v37/gupta15.html.

[40] T. Han and D. A. Carlson. “Fast area-efficient VLSI adders”. In: Computer Arithmetic (ARITH),
1987 IEEE 8th Symposium on. May 1987, pp. 49–56. doi: 10.1109/ARITH.1987.6158699.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[42] Rajamohana Hegde and Naresh R Shanbhag. “Energy-efficient signal processing via
algorithmic noise-tolerance”. In: Proceedings of the 1999 international symposium on Low power
electronics and design. ACM. 1999, pp. 30–35. doi: 10.1145/313817.313834.

[43] Jörg Henkel. “A low power hardware/software partitioning approach for core-based
embedded systems”. In: Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).
IEEE. 1999, pp. 122–127. doi: 10.1109/DAC.1999.781296.

79

https://doi.org/10.1109/VDAT.2009.5158121
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/1687399.1687457
https://doi.org/10.1145/2039370.2039401
https://doi.org/10.1109/MICRO.2003.1253179
https://doi.org/10.1109/MICRO.2003.1253179
https://doi.org/10.1109/54.245964
https://doi.org/10.1145/2150976.2151008
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/HPCA.2009.4798256
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
https://doi.org/10.1109/ARITH.1987.6158699
https://doi.org/10.1145/313817.313834
https://doi.org/10.1109/DAC.1999.781296

Bibliography

[44] Jörg Henkel, Thomas Ebi, Hussam Amrouch, and Heba Khdr. “Thermal management for
dependable on-chip systems”. In: Design Automation Conference (ASP-DAC), 2013 18th Asia
and South Pacific. IEEE. 2013, pp. 113–118. doi: 10.1109/ASPDAC.2013.6509582.

[45] Jörg Henkel, Andreas Herkersdorf, Lars Bauer, Thomas Wild, Michael Hübner, Ravi Kumar
Pujari, Artjom Grudnitsky, Jan Heisswolf, Aurang Zaib, Benjamin Vogel, et al. “Invasive
manycore architectures”. In: 17th Asia and South Pacific Design Automation Conference. IEEE.
2012, pp. 193–200. doi: 10.1109/ASPDAC.2012.6164944.

[46] Jörg Henkel and Yanbing Li. “Energy-conscious HW/SW-partitioning of embedded systems:
A Case Study on an MPEG-2 Encoder”. In: Proceedings of the Sixth International Workshop on
Hardware/Software Codesign.(CODES/CASHE’98). IEEE. 1998, pp. 23–27. doi: 10.1109/HSC.
1998.666233.

[47] Jörg Henkel, Wayne Wolf, and Srimat Chakradhar. “On-chip networks: A scalable,
communication-centric embedded system design paradigm”. In: 17th International Conference
on VLSI Design. Proceedings. IEEE. 2004, pp. 845–851. doi: 10.1109/ICVD.2004.1261037.

[48] Dirk Herrmann, Jörg Henkel, and Rolf Ernst. “An approach to the adaptation of estimated cost
parameters in the COSYMA system”. In: Third International Workshop on Hardware/Software
Codesign. IEEE. 1994, pp. 100–107. doi: 10.1109/HSC.1994.336718.

[49] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin Rinard.
“Using code perforation to improve performance, reduce energy consumption, and respond
to failures”. In: (2009).

[50] Mark Horowitz. “1.1 computing’s energy problem (and what we can do about it)”. In: 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 2014. doi:
10.1109/ISSCC.2014.6757323.

[51] Chih-Chieh Hsiao, Slo-Li Chu, and Chen-Yu Chen. “Energy-aware hybrid precision selection
framework for mobile GPUs”. In: Elsevier Computers & Graphics 37.5 (2013), pp. 431–444. doi:
10.1016/j.cag.2013.03.003.

[52] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. “Densely
connected convolutional networks”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 4700–4708. doi: 10.1109/CVPR.2017.243.

[53] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
“Binarized Neural Networks”. In: Advances in Neural Information Processing Systems.
Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran
Associates, Inc., 2016. url: https : / / proceedings . neurips . cc / paper / 2016 / file /

d8330f857a17c53d217014ee776bfd50-Paper.pdf.

[54] Mohsen Imani, Daniel Peroni, and Tajana Rosing. “CFPU: Configurable floating point
multiplier for energy-efficient computing”. In: Design Automation Conference (DAC). IEEE.
2017, pp. 1–6. doi: 10.1145/3061639.3062210.

[55] Invasive Computing (InvasIC). Online. (Accessed: 2021-05-19). url: http : / / invasic .

informatik.uni-erlangen.de/en/index.php.

[56] Animesh Jain,Parker Hill,Shih-Chieh Lin,Muneeb Khan,Md E Haque,Michael A Laurenzano,
Scott Mahlke, Lingjia Tang, and Jason Mars. “Concise loads and stores: The case for an
asymmetric compute-memory architecture for approximation”. In: International Symposium
on Microarchitecture (MICRO). IEEE/ACM. 2016, pp. 1–13. doi: 10.5555/3195638.3195688.

[57] Shubham Jain, Swagath Venkataramani, and Anand Raghunathan. “Approximation through
logic isolation for the design of quality configurable circuits”. In: Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE. 2016, pp. 612–617. doi: 10.5555/2971808.
2971951.

[58] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. “In-datacenter performance
analysis of a tensor processing unit”. In: International Symposium on Computer Architecture
(ISCA). 2017, pp. 1–12. doi: 10.1145/3079856.3080246.

80

https://doi.org/10.1109/ASPDAC.2013.6509582
https://doi.org/10.1109/ASPDAC.2012.6164944
https://doi.org/10.1109/HSC.1998.666233
https://doi.org/10.1109/HSC.1998.666233
https://doi.org/10.1109/ICVD.2004.1261037
https://doi.org/10.1109/HSC.1994.336718
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1016/j.cag.2013.03.003
https://doi.org/10.1109/CVPR.2017.243
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://doi.org/10.1145/3061639.3062210
http://invasic.informatik.uni-erlangen.de/en/index.php
http://invasic.informatik.uni-erlangen.de/en/index.php
https://doi.org/10.5555/3195638.3195688
https://doi.org/10.5555/2971808.2971951
https://doi.org/10.5555/2971808.2971951
https://doi.org/10.1145/3079856.3080246

Bibliography

[59] Matthias Jung, Deepak M Mathew, Christian Weis, and Norbert Wehn. “Invited-Approximate
computing with partially unreliable dynamic random access memory-approximate DRAM”.
In: Proceedings of the 53rd Annual Design Automation Conference. ACM. 2016, p. 100. doi:
10.1145/2897937.2905002.

[60] Andrew B Kahng and Seokhyeong Kang. “Accuracy-configurable adder for approximate
arithmetic designs”. In: Design Automation Conference (DAC). ACM. 2012, pp. 820–825. doi:
10.1145/2228360.2228509.

[61] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori. “Slack redistribution
for graceful degradation under voltage overscaling”. In: Proc. of the 2010 Asia and South Pacific
Design Automation Conference. 2010, pp. 825–831. doi: 10.1109/ASPDAC.2010.5419690.

[62] Georgios Karakonstantis, Debabrata Mohapatra, and Kaushik Roy. “System level DSP
synthesis using voltage overscaling, unequal error protection & adaptive quality tuning”.
In: IEEE Workshop on Signal Processing Systems, 2009. SiPS 2009. IEEE, pp. 133–138. doi:
10.1109/SIPS.2009.5336238.

[63] Heba Khdr. “Resource Management for Multicores to Optimize Performance under Temper-
ature and Aging Constraints”. PhD thesis. Karlsruher Institut für Technologie (KIT), 2019.
155 pp. doi: 10.5445/IR/1000095963.

[64] Daya S Khudia, Babak Zamirai, Mehrzad Samadi, and Scott Mahlke. “Rumba: An online
quality management system for approximate computing”. In: International Symposium on
Computer Architecture (ISCA). 2015, pp. 554–566. doi: 10.1145/2749469.2750371.

[65] Kinam Kim and Jooyoung Lee. “A new investigation of data retention time in truly nanoscaled
DRAMs”. In: IEEE Electron Device Letters 30.8 (2009), pp. 846–848. doi: 10.1109/LED.2009.
2023248.

[66] Younghoon Kim, Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan. “Design-
ing approximate circuits using clock overgating”. In: Design Automation Conference (DAC).
ACM/IEEE. 2016, pp. 1–6. doi: 10.1145/2897937.2898005.

[67] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat, and Jörg
Henkel. “DistRM: Distributed resource management for on-chip many-core systems”. In:
2011 Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS). IEEE. 2011, pp. 119–128. doi: 10.1145/
2039370.2039392.

[68] Peter M Kogge and Harold S Stone. “A parallel algorithm for the efficient solution of a
general class of recurrence equations”. In: IEEE Transactions on Computers 100.8 (1973),
pp. 786–793.

[69] Israel Koren. Computer Arithmetic Algorithms. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1993. isbn: 0-13-151952-2.

[70] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Communications of the ACM 60.6 (2017), pp. 84–90. doi:
10.1145/3065386.

[71] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. “Trading accuracy for power with an
underdesigned multiplier architecture”. In: 2011 24th Internatioal Conference on VLSI Design.
IEEE. 2011, pp. 346–351. doi: 10.1109/VLSID.2011.51.

[72] Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars, and Lingjia
Tang. “Input responsiveness: using canary inputs to dynamically steer approximation”. In:
ACM, 2016, pp. 161–176. doi: 10.1145/2908080.2908087.

[73] Seogoo Lee andAndreas Gerstlauer. “Fine grain precision scaling fordatapathapproximations
in digital signal processing systems”. In: International Conference on Very Large Scale Integration-
System on a Chip. IFIP/IEEE. 2013, pp. 266–271. doi: 10.1109/VLSI-SoC.2013.6673287.

[74] Seogoo Lee, Dongwook Lee, Kyungtae Han, Emily Shriver, Lizy K John, and Andreas
Gerstlauer. “Statistical quality modeling of approximate hardware.” In: ISQED. 2016,
pp. 163–168.

81

https://doi.org/10.1145/2897937.2905002
https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1109/ASPDAC.2010.5419690
https://doi.org/10.1109/SIPS.2009.5336238
https://doi.org/10.5445/IR/1000095963
https://doi.org/10.1145/2749469.2750371
https://doi.org/10.1109/LED.2009.2023248
https://doi.org/10.1109/LED.2009.2023248
https://doi.org/10.1145/2897937.2898005
https://doi.org/10.1145/2039370.2039392
https://doi.org/10.1145/2039370.2039392
https://doi.org/10.1145/3065386
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1145/2908080.2908087
https://doi.org/10.1109/VLSI-SoC.2013.6673287

Bibliography

[75] Teahyung Lee, Myung Hwangbo, Tanfer Alan, Omesh Tickoo, and Ravishankar Iyer. “Low-
complexity hog for efficient video saliency”. In: International Conference on Image Processing
(ICIP). IEEE. 2015, pp. 3749–3752. doi: 10.1109/ICIP.2015.7351505.

[76] Teahyung Lee, Myung Hwangbo, Tanfer Alan, Omesh Tickoo, and Ravishankar Iyer. “Method
and system of low-complexity histogram of gradients generation for image processing”.
U.S. pat. US9760794B2. 2017.

[77] Vasileios Leon, Georgios Zervakis, Sotirios Xydis, Dimitrios Soudris, and Kiamal Pekmestzi.
“Walking through the energy-error Pareto frontier of approximate multipliers”. In: IEEE
Micro 38.4 (2018), pp. 40–49. doi: 10.1109/MM.2018.043191124.

[78] Yanbing Li and Jörg Henkel. “A framework for estimation and minimizing energy dissipation
of embedded HW/SW systems”. In: Proceedings of the 35th annual Design Automation
Conference. 1998, pp. 188–193.

[79] Xiaofan Lin, Cong Zhao, and Wei Pan. “Towards accurate binary convolutional neural
network”. In: Advances in Neural Information Processing Systems. 2017, pp. 345–353. doi:
10.5555/3294771.3294804.

[80] Avinash Lingamneni, Christian Enz, Jean-Luc Nagel, Krishna Palem, and Christian Piguet.
“Energy parsimonious circuit design through probabilistic pruning”. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2011. IEEE. 2011, pp. 1–6. doi: 10.1109/
DATE.2011.5763130.

[81] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. “RAIDR: Retention-aware intelligent
DRAM refresh”. In: ACM SIGARCH Computer Architecture News. Vol. 40. 3. IEEE Computer
Society. 2012, pp. 1–12. doi: 10.1109/ISCA.2012.6237001.

[82] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G Zorn. “Flikker: saving
DRAM refresh-power through critical data partitioning”. In: ACM SIGPLAN Notices 47.4
(2012), pp. 213–224. doi: 10.1145/1950365.1950391.

[83] Yuxi Liu, Rong Ye, Feng Yuan, Rakesh Kumar, and Qiang Xu. “On logic synthesis for timing
speculation”. In: Proceedings of the International Conference on Computer-Aided Design. ACM.
2012, pp. 591–596. doi: 10.1145/2429384.2429512.

[84] Jan Lucas, Mauricio Alvarez-Mesa, Michael Andersch, and Ben Juurlink. “Sparkk: Quality-
scalable approximate storage in DRAM”. In: The Memory Forum. 2014, pp. 1–9.

[85] Hamid Reza Mahdiani, Ali Ahmadi, Sied Mehdi Fakhraie, and Caro Lucas. “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of soft-computing
applications”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 57.4 (2010),
pp. 850–862. doi: 10.1109/TCSI.2009.2027626.

[86] Jin Miao, Andreas Gerstlauer, and Michael Orshansky. “Approximate logic synthesis under
general error magnitude and frequency constraints”. In: International Conference on Computer-
Aided Design (ICCAD). IEEE. 2013, pp. 779–786. doi: 10.1109/ICCAD.2013.6691202.

[87] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard. “Chisel:
Reliability-and accuracy-aware optimization of approximate computational kernels”. In:
ACM SIGPLAN Notices. Vol. 49. 10. ACM. 2014, pp. 309–328. doi: 10.1145/2660193.2660231.

[88] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. “Quality of
service profiling”. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. 2010, pp. 25–34. doi: 10.1145/1806799.1806808.

[89] Debabrata Mohapatra, Vinay K Chippa, Anand Raghunathan, and Kaushik Roy. “Design of
voltage-scalable meta-functions for approximate computing”. In: DATE. IEEE. 2011, pp. 1–6.
doi: 10.1109/DATE.2011.5763154.

[90] Bert Moons and Marian Verhelst. “Dvas: Dynamic voltage accuracy scaling for increased
energy-efficiency in approximate computing”. In: International Symposium on Low Power
Electronics and Design (ISLPED). IEEE. 2015, pp. 237–242. doi: 10.1109/ISLPED.2015.
7273520.

82

https://doi.org/10.1109/ICIP.2015.7351505
https://doi.org/10.1109/MM.2018.043191124
https://doi.org/10.5555/3294771.3294804
https://doi.org/10.1109/DATE.2011.5763130
https://doi.org/10.1109/DATE.2011.5763130
https://doi.org/10.1109/ISCA.2012.6237001
https://doi.org/10.1145/1950365.1950391
https://doi.org/10.1145/2429384.2429512
https://doi.org/10.1109/TCSI.2009.2027626
https://doi.org/10.1109/ICCAD.2013.6691202
https://doi.org/10.1145/2660193.2660231
https://doi.org/10.1145/1806799.1806808
https://doi.org/10.1109/DATE.2011.5763154
https://doi.org/10.1109/ISLPED.2015.7273520
https://doi.org/10.1109/ISLPED.2015.7273520

Bibliography

[91] Gordon E Moore. “Cramming more components onto integrated circuits”. In: Electronics
38.8 (Apr. 1965), p. 114. doi: 10.1109/N-SSC.2006.4785860.

[92] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh, Luis Ceze,
and Mark Oskin. “SNNAP: Approximate computing on programmable socs via neural
acceleration”. In: 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). IEEE. 2015, pp. 603–614. doi: 10.1109/HPCA.2015.7056066.

[93] Vojtech Mrazek, Zdenek Vasicek, and Lukas Sekanina. “Design of Quality-Configurable
Approximate Multipliers Suitable for Dynamic Environment”. In: NASA/ESA Conference
on Adaptive Hardware and Systems (AHS). IEEE. 2018, pp. 264–271. doi: 10.1109/AHS.2018.
8541479.

[94] MSP430 Hardware Multiplier. (Accessed: 2020.05.17). url: http://www.ti.com/sc/docs/
products/micro/msp430/userguid/ag_06.pdf.

[95] Jacob Nelson, Adrian Sampson, and Luis Ceze. Dense approximate storage in phase-change
memory. ASPLOS Ideas & Perspectives. 2011.

[96] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars Bauer, Jörg Henkel, Daniel
Lohmann, and Wolfgang Schröder-Preikschat. “OctoPOS: A parallel operating system for
invasive computing”. In: Proceedings of the International Workshop on Systems for Future
Multi-Core Architectures (SFMA). EuroSys. Citeseer. 2011, pp. 9–14.

[97] Daniele Jahier Pagliari, Enrico Macii, and Massimo Poncino. “Automated Synthesis of
Energy-Efficient Reconfigurable-Precision Circuits”. In: IEEE Access 7 (2019), pp. 172030–
172044. doi: 10.1109/ACCESS.2019.2956679.

[98] Daniele Jahier Pagliari and Massimo Poncino. “Application-driven synthesis of energy-
efficient reconfigurable-precision operators”. In: International Symposium on Circuits and
Systems (ISCAS). IEEE. 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8351232.

[99] Guilherme Paim, Leandro Mateus Giacomini Rocha, Hussam Amrouch, Eduardo Antônio
César da Costa, Sergio Bampi, and Jörg Henkel. “A cross-layer gate-level-to-application
co-simulation for design space exploration of approximate circuits in HEVC video encoders”.
In: IEEE Transactions on Circuits and Systems for Video Technology 30.10 (2019), pp. 3814–3828.
doi: 10.1109/TCSVT.2019.2945763.

[100] Yale N. Patt and Sanjay J. Patel. Introduction to Computing Systems: From Bits amp; Gates to C
amp; Beyond. 2nd ed. USA: McGraw-Hill, Inc., 2003. isbn: 0072467509.

[101] Arnab Raha, Hrishikesh Jayakumar, Soubhagya Sutar, and Vijay Raghunathan. “Quality-
aware data allocation in approximate DRAM”. In: Proceedings of the 2015 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems. IEEE Press. 2015,
pp. 89–98. doi: 10.1109/CASES.2015.7324549.

[102] Shankar Ganesh Ramasubramanian, Swagath Venkataramani, Adithya Parandhaman, and
Anand Raghunathan. “Relax-and-retime: A methodology for energy-efficient recovery based
design”. In: Proceedings of the 50th Annual Design Automation Conference. ACM. 2013, p. 111.
doi: 10.1145/2463209.2488871.

[103] Ashish Ranjan, Arnab Raha, Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan.
“Aslan: Synthesis of approximate sequential circuits”. In: Proceedings of the conference on
Design, Automation & Test in Europe. European Design and Automation Association. 2014,
p. 364. doi: 10.7873/DATE.2014.377.

[104] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. “Xnor-net:
Imagenet classification using binary convolutional neural networks”. In: European conference
on computer vision. Springer. 2016, pp. 525–542. doi: 10.1145/3429945.

[105] Ton Roosendaal. “Big Buck Bunny”. In: International Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ASIA 2008, Singapore, December 10-13, 2008, Computer
Animation Festival. Ed. by Jinny H. J. Choo. ACM, 2008, p. 62. doi: 10.1145/1504271.1504321.
url: https://doi.org/10.1145/1504271.1504321.

83

https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/HPCA.2015.7056066
https://doi.org/10.1109/AHS.2018.8541479
https://doi.org/10.1109/AHS.2018.8541479
http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_06.pdf
http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_06.pdf
https://doi.org/10.1109/ACCESS.2019.2956679
https://doi.org/10.1109/ISCAS.2018.8351232
https://doi.org/10.1109/TCSVT.2019.2945763
https://doi.org/10.1109/CASES.2015.7324549
https://doi.org/10.1145/2463209.2488871
https://doi.org/10.7873/DATE.2014.377
https://doi.org/10.1145/3429945
https://doi.org/10.1145/1504271.1504321
https://doi.org/10.1145/1504271.1504321

Bibliography

[106] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott Mahlke.
“Sage: Self-tuning approximation for graphics engines”. In: MICRO’46 , IEEE/ACM. 2013.
doi: 10.1145/2540708.2540711.

[107] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. “EnerJ: Approximate data types for safe and general low-power computation”.
In: ACM SIGPLAN Notices. Vol. 46. 6. 2011, pp. 164–174. doi: 10.1145/1993498.1993518.

[108] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. “Approximate storage in
solid-state memories”. In: ACM Transactions on Computer Systems (TOCS) 32.3 (2014), pp. 1–23.
doi: 10.1145/2540708.2540712.

[109] Syed Shakib Sarwar, Gopalakrishnan Srinivasan, Bing Han, Parami Wijesinghe, Akhilesh
Jaiswal, Priyadarshini Panda, Anand Raghunathan, and Kaushik Roy. “Energy efficient neural
computing: A study of cross-layer approximations”. In: IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 8.4 (2018), pp. 796–809. doi: 10.1109/JETCAS.2018.2835809.

[110] Ilaria Scarabottolo, Giovanni Ansaloni, and Laura Pozzi. “Circuit carving: A methodology
for the design of approximate hardware”. In: Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE. 2018, pp. 545–550. doi: 10.23919/DATE.2018.8342067.

[111] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel. “A low latency generic
accuracy configurable adder”. In: 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE. 2015, pp. 1–6. doi: https://doi.org/10.1145/2744769.2744778.

[112] Doochul Shin and Sandeep K Gupta. “Approximate logic synthesis for error tolerant
applications”. In: Proceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association. 2010, pp. 957–960. doi: 10.1109/DATE.
2010.5456913.

[113] Stelios Sidiroglou-Douskos,Sasa Misailovic,Henry Hoffmann,and Martin Rinard. “Managing
performance vs. accuracy trade-offs with loop perforation”. In: Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software engineering.
2011, pp. 124–134. doi: 10.1145/2025113.2025133.

[114] Leonardo B Soares, Morgana MA da Rosa, Cláudio M Diniz, Eduardo AC da Costa, and
Sergio Bampi. “Exploring power-performance-quality tradeoff of approximate adders for
energy efficient sobel filtering”. In: 2018 IEEE 9th Latin American Symposium on Circuits &
Systems (LASCAS). IEEE. 2018, pp. 1–4. doi: 10.1109/LASCAS.2018.8399938.

[115] Leonardo Bandeira Soares, Morgana Macedo Azevedo da Rosa, Cláudio Machado Diniz,
Eduardo Antonio César da Costa, and Sergio Bampi. “Design methodology to explore
hybrid approximate adders for energy-efficient image and video processing accelerators”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 66.6 (2019), pp. 2137–2150. doi:
10.1109/TCSI.2019.2892588.

[116] Jinook Song, Yunkyo Cho, Jun-Seok Park, Jun-Woo Jang, Sehwan Lee, Joon-Ho Song, Jae-Gon
Lee, and Inyup Kang. “7.1 An 11.5 TOPS/W 1024-MAC butterfly structure dual-core sparsity-
aware neural processing unit in 8nm flagship mobile SoC”. In: International Solid-State Circuits
Conference-(ISSCC). IEEE. 2019, pp. 130–132. doi: 10.1109/ISSCC.2019.8662476.

[117] Phillip Stanley-Marbell and Martin Rinard. “Error-Efficient Computing Systems”. In:
Foundations and Trends® in Electronic Design Automation 11.4 (2017), pp. 362–461. issn:
1551-3939. doi: 10.1561/1000000049. url: http://dx.doi.org/10.1561/1000000049.

[118] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. “Efficient processing of deep
neural networks: A tutorial and survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–
2329. doi: 10.1109/JPROC.2017.2761740.

[119] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca Benini.
“A transprecision floating-point platform for ultra-low power computing”. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2018, pp. 1051–1056. doi:
10.23919/DATE.2018.8342167.

84

https://doi.org/10.1145/2540708.2540711
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/2540708.2540712
https://doi.org/10.1109/JETCAS.2018.2835809
https://doi.org/10.23919/DATE.2018.8342067
https://doi.org/https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1109/DATE.2010.5456913
https://doi.org/10.1109/DATE.2010.5456913
https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1109/LASCAS.2018.8399938
https://doi.org/10.1109/TCSI.2019.2892588
https://doi.org/10.1109/ISSCC.2019.8662476
https://doi.org/10.1561/1000000049
http://dx.doi.org/10.1561/1000000049
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.23919/DATE.2018.8342167

Bibliography

[120] Swagath Venkataramani, Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand
Raghunathan. “Quality programmable vector processors for approximate computing”. In:
International Symposium on Microarchitecture (MICRO). IEEE/ACM. 2013, pp. 1–12. doi:
10.1145/2540708.2540710.

[121] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. “AxNN:
energy-efficient neuromorphic systems using approximate computing”. In: 2014 IEEE/ACM
International Symposium on Low Power Electronics and Design. doi: 10.1145/2627369.2627613.

[122] Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan. “Substitute-and-simplify: A
unified design paradigm for approximate and quality configurable circuits”. In: Proceedings of
the Conference on Design, Automation and Test in Europe. EDA Consortium. 2013, pp. 1367–1372.

[123] Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kaushik Roy, and Anand Raghu-
nathan. “SALSA: systematic logic synthesis of approximate circuits”. In: DAC. ACM. 2012,
pp. 796–801. doi: 10.1145/2228360.2228504.

[124] Ajay K Verma, Philip Brisk, and Paolo Ienne. “Variable latency speculative addition: A new
paradigm for arithmetic circuit design”. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE). 2008, pp. 1250–1255. doi: 10.1109/DATE.2008.4484850.

[125] Lu Wan and Deming Chen. “DynaTune: circuit-level optimization for timing speculation
considering dynamic path behavior”. In: Proceedings of the 2009 International Conference on
Computer-Aided Design. ACM. 2009, pp. 172–179. doi: 10.1145/1687399.1687430.

[126] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Esmaeilzadeh, Onur
Mutlu, and Todd C Mowry. “RFVP: Rollback-free value prediction with safe-to-approximate
loads”. In: ACM Transactions on Architecture and Code Optimization (TACO) 12.4 (2016),
pp. 1–26. doi: 10.1145/2836168.

[127] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. “On reconfiguration-oriented
approximate adder design and its application”. In: International Conference on Computer-Aided
Design (ICCAD). IEEE. 2013, pp. 48–54. doi: 10.1109/ICCAD.2013.6691096.

[128] Serif Yesil, Ismail Akturk, and Ulya R Karpuzcu. “Toward Dynamic Precision Scaling”. In:
IEEE Micro 38.4 (2018), pp. 30–39. doi: 10.1109/MM.2018.043191123.

[129] Georgios Zervakis, Kostas Tsoumanis, Sotirios Xydis, Dimitrios Soudris, and Kiamal
Pekmestzi. “Design-efficient approximate multiplication circuits through partial prod-
uct perforation”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24.10
(2016), pp. 3105–3117. doi: 10.1109/TVLSI.2016.2535398.

[130] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. “Lq-nets: Learned
quantization for highly accurate and compact deep neural networks”. In: Proceedings of the
European conference on computer vision (ECCV). 2018, pp. 365–382.

[131] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients”. In: arXiv
preprint arXiv:1606.06160 (2016).

[132] Ning Zhu, Wang Ling Goh, and Kiat Seng Yeo. “An enhanced low-power high-speed adder
for error-tolerant application”. In: ISIC. IEEE. 2009, pp. 323–327.

[133] Ning Zhu, Wang Ling Goh, Weija Zhang, Kiat Seng Yeo, and Zhi Hui Kong. “Design of
low-power high-speed truncation-error-tolerant adder and its application in digital signal
processing”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 18.8 (2010),
pp. 1225–1229. doi: 10.1109/SOCDC.2010.5682905.

85

https://doi.org/10.1145/2540708.2540710
https://doi.org/10.1145/2627369.2627613
https://doi.org/10.1145/2228360.2228504
https://doi.org/10.1109/DATE.2008.4484850
https://doi.org/10.1145/1687399.1687430
https://doi.org/10.1145/2836168
https://doi.org/10.1109/ICCAD.2013.6691096
https://doi.org/10.1109/MM.2018.043191123
https://doi.org/10.1109/TVLSI.2016.2535398
https://doi.org/10.1109/SOCDC.2010.5682905

List of Publications

[4] Tanfer Alan, Jorge Castro-Godinez, and Jörg Henkel. “Multiple Approximate Instances
in Neural Processing Units for Energy-Efficient Circuit Synthesis (WiP)”. In: International
Conference on Compilers, Architectures and Synthesis For Embedded Systems (CASES), (2021).
doi: 10.1145/3451939.3477594.

[5] Tanfer Alan, Andreas Gerstlauer, and Jörg Henkel. “Cross-Layer Approximate Hardware
Synthesis for Runtime Configurable Accuracy”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (2021). doi: 10.1109/TVLSI.2021.3068312.

[6] Tanfer Alan, Andreas Gerstlauer, and Jörg Henkel. “Runtime Accuracy-Configurable
Approximate Hardware Synthesis Using Logic Gating and Relaxation”. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE). 2020, pp. 1578–1581. doi: 10.23919/
DATE48585.2020.9116272.

[7] Tanfer Alan and Jörg Henkel. “Probability-Driven Evaluation of Lower-Part Approximation
Adders”. In: IEEE Transactions on Circuits and Systems II: Express Briefs (2021). doi: 10.1109/
TCSII.2021.3093984.

[8] Tanfer Alan and Jörg Henkel. “SlackHammer: Logic Synthesis for Graceful Errors Under
Frequency Scaling”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37.11 (2018), pp. 2802–2811. doi: 10.1109/TCAD.2018.2858364.

[75] Teahyung Lee, Myung Hwangbo, Tanfer Alan, Omesh Tickoo, and Ravishankar Iyer. “Low-
complexity hog for efficient video saliency”. In: International Conference on Image Processing
(ICIP). IEEE. 2015, pp. 3749–3752. doi: 10.1109/ICIP.2015.7351505.

[76] Teahyung Lee, Myung Hwangbo, Tanfer Alan, Omesh Tickoo, and Ravishankar Iyer. “Method
and system of low-complexity histogram of gradients generation for image processing”.
U.S. pat. US9760794B2. 2017.

87

https://doi.org/10.1145/3451939.3477594
https://doi.org/10.1109/TVLSI.2021.3068312
https://doi.org/10.23919/DATE48585.2020.9116272
https://doi.org/10.23919/DATE48585.2020.9116272
https://doi.org/10.1109/TCSII.2021.3093984
https://doi.org/10.1109/TCSII.2021.3093984
https://doi.org/10.1109/TCAD.2018.2858364
https://doi.org/10.1109/ICIP.2015.7351505

List of Figures

2.1 Approximate Computing across the computing stack. 8
2.2 Motivational example: changing accuracy requirement for a fixed application quality

target . 12
2.3 Edge detection on Big Buck Bunny with exact and approximate Sobel Filters. 13
2.4 Required accuracy for edge detection for different quality targets 14
2.5 Synthesis Optimizations . 19
2.6 Gate-level delay optimizations to reduce the most critical path delay [31] 20
2.7 Iterative improvements of the critical path delay. 21
2.8 Comparison of lower-part approximate adder circuits 22
2.9 Error magnitude comparison of lower-part approximate adders. 23
2.10 Area comparisons of lower-part approximate adders. 24
2.11 Power vs. Frequency vs. Accuracy trade-offs of a 32-bit Adder 25

3.1 Logic synthesis for graceful errors (motivational) . 28
3.2 Path delays in traditional logic synthesis . 29
3.3 Path delays with non-critical path optimizations . 29
3.4 Search of minimum feasible delay constraints for primary outputs 32
3.5 SlackHammer synthesis flow . 34
3.6 Comparison of synthesis methods in (a) number of near-critical paths (b) Area, and

(c) Power. 37
3.7 Error characterization of circuits under frequency scaling. 38
3.8 Circuit delay distributions in comparison. 39
3.9 Non-critical path delay optimizations for cross-layer use with precision scaling . . . 40

4.1 Motivational: dynamic frequency-precision scalable MAC unit in a systolic array . . 43
4.2 Primary output delay comparison of traditional synthesis vs. SlackHammer [8] . . . 45
4.3 Abstracted and circuit-level comparison of high-complexity MSB paths vs. low-

complexity LSB paths. 46
4.4 Comparisons of proposed frequency-precision scaling methodology against conven-

tional synthesis targeting a single frequency, in circuit metrics: area, leakage, and
dynamic power. 51

4.5 Energy comparison of circuits under dynamic precision scaling. 52

89

List of Figures

5.1 Power vs. accuracy comparisons of gating an exact circuit against instantiating
relaxed, approximate circuits . 56

5.2 Background of a runtime accuracy-configurable system at design and run time . . . 57
5.3 Cross-layer accuracy configurable hardware architecture 58
5.4 Power vs. accuracy design space of the cross-layer approach 59
5.5 Cross-layer synthesis flow. 61
5.6 Design space of an accuracy configurable Sobel filter under 3 different utilizations

given in Table 5.2 . 67
5.7 Pareto front comparison of cross-layer solutions against gating and instantiating

solutions from Figure 5.6b. 67
5.8 Design space of an accuracy configurable Sobel Filter with typical integration costs

(control+MUX+clk) under 3 different utilizations given in Table 5.2 68
5.9 Pareto curves for a range of circuits under workloads with accuracy utilizations given

in Table 5.2. 69
5.10 Energy required for accuracy reconfiguration of the Sobel Filter 70
5.11 Input dependency of cross-layer design space . 72
5.12 Leakage impact on accuracy configurable Sobel filters under varying utilization factor

with different technology libraries. 73

90

List of Tables

2.1 Quantization for different neural network learning methods 15

3.1 Circuits used in experiments of Chapter 3 . 35

4.1 Circuits used in experiments of Chapter 4 . 49
4.2 Iterative search steps of Algorithm 4. 50

5.1 Circuits used in experiments of Chapter 5 . 64
5.2 Accuracy utilization distributions of experimented synthetic workloads 66
5.3 Cross-layer energy optimizer run time . 66

91

	Acknowledgements
	Abstract
	Kurzfassung
	Contents

	1 Introduction
	1.1 Approximate Computing
	1.2 Accuracy-Configurable Approximations
	1.3 Dissertation Contribution

	2 Background
	2.1 Research at KIT - Chair for Embedded Systems
	2.2 Approximate Computing Across the Stack
	2.3 Dynamic Accuracy Reconfiguration
	2.3.1 Accuracy-Configurable System
	2.3.2 Case Study: Edge Detection in Video Frames
	2.3.3 Case Study: DNN Inference
	2.3.4 Accuracy-Configurable Hardware

	2.4 Logic Synthesis
	2.4.1 Synthesis of Approximate Units
	2.4.2 Impact of Critical Path Length on Circuit Trade-offs

	2.5 Summary

	3 Synthesis for Graceful Timing Violations
	3.1 SlackHammer: Preliminaries and Approach
	3.1.1 Traditional Logic Synthesis
	3.1.2 Non-Critical Path Optimization
	3.1.3 Synthesis for Graceful Errors
	3.1.4 Path Analysis in Isolation
	3.1.5 Constraining Path Delays

	3.2 Design Methodology
	3.3 Experimental Methodology
	3.4 Results
	3.4.1 Accuracy-Frequency Trade-Off
	3.4.2 Delay Distribution Comparison
	3.4.3 Cross-Layer Effectiveness

	3.5 Summary

	4 Synthesis of Frequency-Precision Scalable Circuits
	4.1 Logic Synthesis with Multiple Delay Constraints
	4.1.1 Delay Variations in Circuit Topology
	4.1.2 blackExploiting Delay Variations for Energy Gains
	4.1.3 Dynamic Frequency-Precision Scaling System

	4.2 Design Methodology
	4.2.1 Energy Optimization with a Throughput Target
	4.2.2 Leverage & Distance
	4.2.3 Design Space Exploration

	4.3 Experiments
	4.3.1 Evaluation of DSE Iterations
	4.3.2 Circuit Level Trade-Offs
	4.3.3 Energy vs. Leverage

	4.4 Summary

	5 Architecture and Circuit Co-Synthesis
	5.1 Background
	5.2 Accuracy-Configurable Hardware Architecture
	5.2.1 Gating Groups of Paths in Circuit
	5.2.2 Instantiating Approximate Circuits with Different Accuracies
	5.2.3 Cross-Layer Design Approach
	5.2.4 Runtime Accuracy Management

	5.3 Exploration Methodology
	5.4 Experiments and Results
	5.4.1 Design Space Exploration
	5.4.2 Comparison of Pareto-Optimal Solutions
	5.4.3 Analysis of Integration and Control Overhead
	5.4.4 Area vs. Energy Trade-offs
	5.4.5 Energy Cost of Runtime Accuracy Reconfiguration
	5.4.6 Input Dependency of Cross-Layer Design Space
	5.4.7 Leakage Energy Analysis and Technology Independence

	5.5 Summary

	6 Conclusion
	Bibliography
	List of Publications
	List of Figures
	List of Tables

