286 research outputs found

    Joint source and relay design for MIMO multi-relay systems using projected gradient approach

    Get PDF
    In this paper, we develop the optimal source precoding matrix and relay amplifying matrices for non-regenerative multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes using the projected gradient (PG) approach. We show that the optimal relay amplifying matrices have a beamforming structure. Exploiting the structure of relay matrices, an iterative joint source and relay matrices optimization algorithm is developed to minimize the mean-squared error (MSE) of the signal waveform estimation at the destination using the PG approach. The performance of the proposed algorithm is demonstrated through numerical simulations

    Transceiver Optimization for MIMO Multi-Relay Systems Using Projected Gradient Approach

    Get PDF
    In this paper, we develop the optimal source precoding matrix and relay amplifying matrices for non-regenerative multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes using the projected gradient (PG) approach. We show that the optimal relay amplifyingmatrices have a beamforming structure. Exploiting the structure of relay matrices, an iterative joint source and relay matrices optimization algorithm is developed to minimize the mean-squared error (MSE) of the signal waveform estimation at the destination using the PG approach. The performance of the proposed algorithm is demonstrated through numerical simulations

    Joint Transceiver Optimization for Multiuser MIMO Relay Communication Systems

    Get PDF
    In this paper, we address the optimal source, relay, and receive matrices design for linear non-regenerative uplink multiuser multiple-input multiple-output (MIMO) relay communication systems. The minimum mean-squared error (MMSE) of the signal waveform estimation at the destination node is adopted as our design criterion. We develop two iterative methods to solve the highly nonconvex joint source, relay, and receiver optimization problem. In particular, we show that for given source precoding matrices, the optimal relay amplifying matrix diagonalizes the source-relay-destination channel. While for fixed relay matrix and source matrices of all other users, the source matrix of each user has a general beamforming structure. Simulation results demonstrate that the proposed iterative source and relay optimization algorithms perform much better than existing techniques in terms of both MSE and bit-error-rate

    Joint source and relay optimization for two-way linear non-regenerative MIMO relay communications

    Get PDF
    In this paper, we investigate the challenging problem of joint source and relay optimization for two-way linear non-regenerative multiple-input multiple-output (MIMO) relay communication systems. We derive the optimal structure of the source and relay precoding matrices when linear minimal mean-squared error (MMSE) receivers are used at both destinations in the relay system. We show that for a broad class of frequently used objective functions for MIMO communications such as the MMSE, the maximal mutual information (MMI), and the minimax MSE, the optimal relay and source matrices have a general beamforming structure. This result includes existing works as special cases. Based on this optimal structure, a new iterative algorithm is developed to jointly optimize the relay and source matrices. We also propose a novel suboptimal relay precoding matrix design which significantly reduces the computational complexity of the optimal design with only a marginal performance degradation. Interestingly, we show that this suboptimal relay matrix is indeed optimal for some special cases. The performance of the proposed algorithms are demonstrated by numerical simulations. It is shown that the novel minimax MSE-based two-way relay system has a better bit-error-rate (BER) performance compared with existing two-way relay systems using the MMSE and the MMI criteria

    Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion

    Full text link
    Properly designed precoders can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relay systems. In this paper, we investigate joint source and relay precoding design based on the mean-square-error (MSE) criterion in MIMO two-way relay systems, where two multi-antenna source nodes exchange information via a multi-antenna amplify-and-forward relay node. This problem is non-convex and its optimal solution remains unsolved. Aiming to find an efficient way to solve the problem, we first decouple the primal problem into three tractable sub-problems, and then propose an iterative precoding design algorithm based on alternating optimization. The solution to each sub-problem is optimal and unique, thus the convergence of the iterative algorithm is guaranteed. Secondly, we propose a structured precoding design to lower the computational complexity. The proposed precoding structure is able to parallelize the channels in the multiple access (MAC) phase and broadcast (BC) phase. It thus reduces the precoding design to a simple power allocation problem. Lastly, for the special case where only a single data stream is transmitted from each source node, we present a source-antenna-selection (SAS) based precoding design algorithm. This algorithm selects only one antenna for transmission from each source and thus requires lower signalling overhead. Comprehensive simulation is conducted to evaluate the effectiveness of all the proposed precoding designs.Comment: 32 pages, 10 figure

    Robust transceiver designs for MIMO relay communication systems

    Get PDF
    The thesis investigates robust linear and non-linear transceiver design problems for wireless MIMO relay communication systems with the assumption that the partial information of the channel is available at the relay node. The joint source and relay optimization problems for MIMO relay systems are highly nonconvex, in general. We transform the problems into suitable forms which can be efficiently solved using standard convex optimization techniques. The proposed design schemes outperform the existing techniques

    Tomlinson Harashima precoding design for non-regenerative MIMO relay networks

    Get PDF
    In this paper we consider the design of minimum mean square error (MMSE) transceivers for non-regenerative multiple input multiple output (MIMO) relay systems. Our design utilises Tomlinson Harashima precoding (THP) at the source along with linear processors in each stage of the network. Assuming full channel state information (CSI) is available at each node in the network the various processors are jointly optimised to minimise the system arithmetic mean square error (MSE) whilst abiding by average power constraints at both the source and relay terminals in the network. Simulations show that the proposed schemes outperform existing methods in terms of bit error ratio (BER)
    • …
    corecore