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Abstract

Recently cooperative wireless communications have attracted considerable

attention, due to their potential to provide reliable, cost effective and wide-

area coverage of wireless networks. In cooperative wireless communication

systems, relay node can be deployed in between the source and the destina-

tion nodes to reduce the transmission power from the source to neighbouring

nodes and mitigate the channel fading and shadowing effects. In this sce-

nario, the source signals travel through two hops before they are received

by the destination node. Such system is called as multiple-input multiple-

output (MIMO) relay system. In this dissertation, practical aspects of wire-

less channels such as channel uncertainty and channel estimation errors are

considered for transceiver design problems in a non-regenerative MIMO relay

system.

An optimal structure of the relay precoding matrix is derived to minimize

the mean-squared error (MSE) in the signal waveform estimation with the

assumption that the relay knows the channel covariance information (CCI)

of the relay-destination link and also the full channel state information (CSI)

of the source-relay link. The proposed scheme outperforms the conventional

relay algorithms in terms of both MSE and bit-error-rate (BER).

Next, an iterative covariance algorithm is proposed for non-regenerative

MIMO relay system with direct link. It is assumed that the full CSI of

the source-relay link and CCI of the relay-destination link as well as the

source-destination link are available at the relay node. In order to reduce

computational complexity of the proposed iterative covariance algorithm,

a suboptimal covariance algorithm is proposed. The developed iterative

covariance algorithm outperforms the conventional CCI based MSE algo-

rithms.

Next, an iterative joint source and relay precoder design is proposed for a

non-regenerative MIMO relay system with the assumption that the relay



knows the mean and CCI of the relay-destination link and the full CSI

of the source-relay link. In order to reduce computational complexity of

the proposed iterative design algorithm, a suboptimal relay-only precoder

design algorithm is proposed. The performance of the proposed iterative

joint source and relay precoder design algorithm is very close to that of the

algorithm using the full CSI.

Next, Tomlinson-Harashima (TH) precoder based non-linear transceiver de-

sign is proposed for a non-regenerative MIMO relay system, it is assumed

that the CCI of the relay-destination link is available at the relay node. First,

the structure of the optimal TH precoding matrix and the source precod-

ing matrix is derived. Then an iterative algorithm is developed to optimize

the relay precoding matrix. To reduce the computational complexity of the

iterative algorithm, a simplified precoding matrices design algorithm is pro-

posed. The proposed precoding matrices design algorithms outperform the

existing algorithms.

Finally, the transceiver design is investigated for a non-regenerative mul-

ticasting MIMO relay system, where one transmitter broadcasts common

message to multiple receivers with the aid of a relay node. The transmitter,

relay, and receivers are equipped with multiple antennas. It is assumed that

the true (unknown) channel matrices have Gaussian distribution, the esti-

mated channels are the mean value of this distribution. The channel estima-

tion errors follow the well-known Kronecker model. Two robust transceiver

design algorithms are proposed to jointly design the transmitter, relay, and

receiver matrices to minimize the maximal MSE of the signal waveform es-

timation among all receivers. In particular, it is proved that the MSE at

each receiver can be decomposed into the sum of the MSEs of the first-hop

and second-hop channels. Based on this MSE decomposition, transceiver

design algorithms are developed with low computational complexity. Nu-

merical simulations demonstrate the improved robustness of the proposed

transceiver design algorithm against the mismatch between the true and

estimated channels.
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Chapter 1

Introduction

In the next generation wireless communication systems, relaying is essential to provide

reliable and cost effective, wide-area coverage for wireless networks in a variety of ap-

plications. If the link-quality between the source and destination nodes degrades in a

cellular environment, relay nodes can be deployed in between the source-destination link

to mitigate the strong shadowing, multipath fading, path losses and high interferences.

The main aim of this thesis is to develop advanced robust signal processing algorithms

for multiple-input multiple-output (MIMO) relay communication systems. In this intro-

ductory chapter, necessary background of the MIMO relay systems is presented briefly

using partial channel state information (CSI) and an overview of the thesis contributions

is described in the following section.

1.1 MIMO Wireless Communication Systems

Due to high demand in multimedia applications, next-generation wireless communica-

tion systems are expected to support higher data rate compared to the current systems.

However, wireless communication channel is strongly impaired by multi-path fading.

The multi-path fading effects can severely degrade the performance of wireless com-

munication systems in terms of quality and reliability of the received signal at the

receiver. Designing the high data rate, high reliability wireless communication systems

is extremely challenging task.

MIMO technology provides a number of benefits that it effectively mitigates the

multi-path fading as well as resource constraints [1]. Wireless system’s spectral efficiency

can be improved by deploying multiple antennas at the transmitter and receiver ends.

1



Chapter 1. Introduction

By deploying multiple antennas at the transmitter and receiver ends, higher data rate

can be achieved without increasing the additional power or bandwidth expenditure as

compared to the single-input single-output (SISO) systems. By spatially multiplexing

several data streams onto the MIMO channel, the system can provide an additional

degree-of-freedom which leads to increase in the channel capacity [2–8]. The advantage

of a MIMO system is that it has the ability to convert multipath fading into a benefit

for the user [2, 9–11]. The performance improvements resulting from the use of MIMO

systems are due to the following unique features of MIMO configuration [5, 7].

• Array gain: Due to a coherent combining effect of the received signals at the

receiver, increases the receive signal-to-noise ratio (SNR). Achieving array gain

requires CSI between the transmitter and receiver and depends on the number of

transmit and receive antennas.

• Spatial diversity gain: In wireless communication systems, the received signal level

undergoes multi-path fading. The spatial diversity gain mitigates the fading effects

of wireless channels. Spatial diversity gain depends on signal being transmitted

over multiple copies of the transmitted signals in time, frequency, or space. Spatial

diversity is preferred over time/frequency diversity as it does not incur any cost

in transmission time or bandwidth. A MIMO channel with MT transmit and MR

receive antennas can achieve MTMRth-order spatial diversity.

• MIMO systems provide higher data rate through spatial multiplexing gain which

is achieved by transmitting independent data streams from different antennas. By

exploiting the spatial information of the signal, the receiver can separate the dif-

ferent streams, and the capacity scales linearly, with minimum number of transmit

antennas and receiver antennas, i.e., min{MT,MR} [7, 9].

• Interference occurs due to multiple users operating in the same time and frequency

band. When multiple antennas are used, spatial filters preserve the signals com-

ing from a certain spatial location, while suppressing signals from other spatial

locations. Therefore, MIMO systems can separate signals which differ in spatial

dimensions, just as a conventional filter which can separate signals of different fre-

quency band. Interference mitigation can also be implemented at the transmitter,

where the aim is to minimize the interference power sent towards the co-channel

users while delivering the signal to the intended user.

2
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However, it can be noticed that in general, it may not be possible to exploit all the

benefits of MIMO technology simultaneously due to conflicting demands on the spatial

degrees of freedom between spatial diversity gain and spatial multiplexing gain. The

level of these conflicts are resolved based on the type of signaling scheme and transceiver

design [5].

MIMO technologies have become the core of many components in the next-generation

wireless standards viz. the mobile communication systems, long-term evolution (LTE)

systems, and the IEEE 802.xx family of standards viz. IEEE 802.16e, IEEE 802.16j,

IEEE 802.16m, and IEEE 802.11n [12]. MIMO technology is compatible with any mod-

ulation scheme, hence future wireless standards will use MIMO techniques to achieve

higher data rate.

1.2 MIMO Relay Communication Systems

Wireless relaying is essential to provide reliable and cost effective, wide-area coverage

for wireless networks in a variety of applications. In a cellular environment, a relay can

be deployed in areas where there are strong shadowing effects, such as inside buildings

and tunnels. For mobile ad-hoc networks, relaying is essential not only to overcome

shadowing due to obstacles but also to reduce transmission power from source to neigh-

bouring nodes [13–16]. For tactical applications, dynamic deployment of relays is useful

to enhance the networks reliability, throughput, and minimize interception by unwanted

users.

There are two types of relay strategies: regenerative scheme and non-regenerative

scheme [17–19]. In regenerative strategy, the relay decodes the information received

from source and forwards the re-encoded signal to the destination. Whereas in non-

regenerative strategy, the relay amplifies the received signal from source and retrans-

mits the signal to the destination. Compared with the regenerative scheme, the non-

regenerative strategy has a lower computational complexity and is easy to implement

in a cooperative environment.

On the other hand, MIMO system can provide spatial diversity and multiplex-

ing gains to wireless communication systems [20]. When nodes in a relay network

have multiple transmit/receive antennas, such system is termed a MIMO relay system.

Transceiver designs for a two-hop non-regenerative MIMO relay system have been pro-

posed to maximize the mutual information (MI) between the source-destination link

3



Chapter 1. Introduction

[21, 22]. Relay precoding algorithms have been investigated to minimize the mean-

squared error (MSE) of the signal waveform estimation at the destination node [23–28].

The proposed precoder designs in [21–28] have been developed with the assumption

that the full CSI of the source-relay and relay-destination links is available at the relay

node.

However, in practice, the environment is mostly surrounded by scatters and shad-

owing effects. Due to the scattered and shadowing environments, the received signal

is uncorrelated at the destination. Hence, the full CSI of the wireless channel is too

difficult to estimate at the relay node. Hence, a more practical assumption is that only

partial information of the wireless channel is available at the relay node. Relay precoder

design schemes have been proposed in [29–31] for maximizing the ergodic capacity of a

non-regenerative MIMO relay system with the assumption that the channel covariance

information (CCI) of the relay-destination link is available at the relay node. Minimum

MSE (MMSE) based transceiver designs have been investigated in [32–35] with the as-

sumption that CCI of the relay-destination link and the full CSI of the source-relay link

is known at the relay node.

Linear transceiver designs have been considered for non-regenerative MIMO relay

systems in the work of [29, 30, 32–35]. Compared with linear transceivers, non-linear

transceivers have a better MSE and bit-error-rate (BER) performances. Recently,

non-linear transceiver based non-regenerative MIMO relay system designs have been

proposed in [36, 37]. Non-linear transceiver can be incorporated at the receiver as a

decision-feedback equalizer (DFE) and/or at the transmitter in the form of a Tomlinson-

Harashima (TH) precoder. In general, the TH precoding based non-linear transceiver

design provides better MSE and BER performances than the DFE-based transceiver

design, as the latter suffers from error propagation.

The performance of the TH precoding scheme has been well studied for single-hop

MIMO systems [38], [39]. Recently, the TH precoding scheme has also been developed

for dual-hop non-regenerative MIMO relay systems [40] with the assumption that the

full CSI of the wireless channel is available at the relay node. In [40–43], channel

uncertainty has been considered for designing the TH precoding based non-regenerative

MIMO relay systems. Due to the non-linear nature of the precoding scheme, the TH

precoding is highly sensitive to the time-varying nature of the wireless channel [44].

The foregoing algorithms are developed by assuming that the exact CSI of the

channels is available at the relay node. However, in practical communication systems,

4
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the exact CSI is not available, and therefore, has to be estimated. There is always a

mismatch between the true and estimated CSI. Hence, the performance of the earlier

proposed algorithms will degrade due to such CSI mismatch. Furthermore, the proposed

algorithms are not tested under multiple receivers.

Recently, a two-hop non-regenerative multicasting MIMO relay system has been

investigated in [45, 46] where one transmitter multicasts common message to multiple

receivers with the aid of a relay node. The transmitter, relay, and receivers are all

equipped with multiple antennas. The multicasting transceiver design in [45, 46] is

proposed with the assumption that the full CSI of all channels is available at the relay

node. As described earlier, in the practical communication systems, the exact CSI is

not available, and therefore, has to be estimated. There is always a mismatch between

the true and estimated CSI. Hence, the performance of the algorithm in [45, 46] will

also degrade due to such CSI mismatch.

1.3 Thesis Objectives

The objective of this research is to develop new and innovative robust transceiver de-

sign schemes for a non-regenerative MIMO relay system to minimize the MSE of the

estimated signal at the destination node. Distinctively, the objectives of this research

are to:

• develop new and innovative MMSE based robust transceiver design schemes for

MIMO relay systems with theoretical justifications using computationally efficient

convex optimization algorithms.

• investigate the currently popular transceiver design approaches to minimize the

MSE of the MIMO relay systems for further improvement.

• evaluate and validate the effectiveness of the proposed transceiver design schemes

using numerical analysis and computer simulation.

1.4 Thesis Overview and Contributions

In next generation wireless communication systems, multiple users equipped with mul-

tiple antennas will transmit simultaneously to the base station with multiple receive

antennas and vice versa [47, 48]. However, in the case of long source-destination link
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distance, relay node is necessary to efficiently mitigate the pathloss of wireless channel.

Non-regenerative MIMO relays are very useful in extending the network coverage and

improving the link quality of the network.

Recently, relay precoding schemes have been proposed [23–28] to minimize the MSE

of the signal waveform estimation at the destination node. The precoder designs in [21–

28] assume that the full CSI of the source-relay and relay-destination links is available at

the relay node. However, the exact CSI is not available at the relay node. Hence, a more

practical assumption is that only partial CSI of the wireless channel is available at the

relay node. MMSE based linear transceiver designs [32–35] and non-linear transceiver

design [49] have been proposed with the assumption that the CCI of the relay-destination

link and the full CSI of the source-relay link are known at the relay node.

However, in practical communication systems, the CSI is unknown at the relay

node, and therefore, has to be estimated. There is always mismatch between the true

and the estimated CSI due to channel noise, quantization errors and outdated channel

estimates. Hence, the performance of the earlier proposed algorithms will be degraded

due to such CSI mismatch. Therefore, in this thesis, it is assumed that the true channel

matrices have Gaussian distribution, with the estimated channels as the mean value,

and the channel estimation errors follow the well-known Kronecker model. Based on this

assumption, robust advanced signal processing algorithms are proposed to jointly design

the transmitter, relay, and receiver matrices to minimize the maximal mean MSE of the

non-regenerative multicasting MIMO relay systems. The proposed joint source and relay

optimization problems for non-regenerative MIMO relay systems are highly nonconvex,

in nature, hence, main contribution of this thesis is that the nonconvex optimization

problems are transformed into suitable forms which can be efficiently solved by using

standard convex optimization tools.

In Chapter 2, the problem of transceiver design is addressed for a non-regenerative

MIMO relay system with the assumption that CCI of the relay-destination link and

the full CSI of the source-relay link are known at the relay node. Chapter 3, a design

scheme is proposed for a non-regenerative MIMO relay system with covariance feed-

back and direct link. In the proposed design scheme, it is assumed that the full CSI

of the source-relay link and partial channel state information such as CCI of the relay-

destination link are available at the relay node. The problem of transceiver design in a

non-regenerative MIMO relay system is investigated in Chapter 4 with the assumption

that the mean and CCI of the relay-destination link and the full CSI of the source-relay

6
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link are known at the relay node. In Chapter 5, the performance of the TH precoder

based non-linear transceiver design is investigated for a non-regenerative MIMO relay

system with the assumption that the full CSI of the source-relay link is known, while

only the CCI of the relay-destination link is available at the relay node. Chapter 6

proposes a robust transceiver design for a non-regenerative multicasting MIMO relay

system with the assumption that the actual CSI is assumed as a Gaussian random ma-

trix with the estimated CSI as the mean value, and estimated errors of the channels are

derived from the well-known Kronecker model. Chapter 7 summarizes the thesis and

highlights some interesting future works.

Chapter 2: MIMO Relay Design with Covariance Feedback

In this chapter, the optimal structure of the non-regenerative MIMO relay matrix is

derived which minimizes the MSE of the symbol estimation at the destination node. It

is assumed that the covariance feedback of the relay-destination link is available at the

relay node. It is further assumed that the full CSI of the source-relay link is known at

the relay node. Simulation results demonstrate that the proposed scheme has better

performance in terms of MSE and BER as compared to the conventional MSE schemes

proposed in the literature for non-regenerative MIMO relay schemes.

Chapter 2 is based on the following conference publication:

• L. Gopal, Y. Rong, and Z. Zang, “Joint MMSE transceiver design in non-regenerative

MIMO relay systems with covariance feedback”, in Proc. 17th Asia-Pacific Conf.

Commun., Sabah, Malaysia, Oct. 2-5, 2011.

Chapter 3: MIMO Relay Design with CCI Feedback and Direct Link

In this chapter, a design scheme for non-regenerative MIMO relay system is developed

to minimize the MSE of the signal estimation at the destination node. In the proposed

design scheme, an optimal precoding matrix is derived with the assumption that the full

CSI of the source-relay link and partial CSI such as CCI of the relay-destination link are

available at the relay node. In practical cases, if the destination is closer to the source,

the source-destination link cannot be ignored. Hence, in this chapter, it is assumed

that the partial CSI of the source-destination link is known at the relay node. Based on

this assumption, an iterative optimal covariance algorithm is developed to achieve the

minimum MSE of the estimated signal at the destination node. Numerical examples

show that the developed optimal covariance algorithm outperforms the conventional

CCI based MSE algorithms.
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The material in Chapter 3 is based on the following conference publication:

• L. Gopal, Y. Rong, and Z. Zang, “Channel covariance information based transceiver

design for AF MIMO relay systems with direct Link”, in Proc. 18th Asia-Pacific

Conf. Commun., Jeju Iceland, South Korea, Oct. 15-17, 2012.

Chapter 4: MIMO Relay Design with Mean and Covariance Feedback

In this chapter, the problem of transceiver design in a non-regenerative MIMO relay

system is addressed, where linear signal processing is applied at the source, relay and

destination nodes to minimize the MSE of the signal waveform estimation at the desti-

nation node. In the proposed design scheme, optimal structure of the source and relay

precoding matrices are obtained with the assumption that the mean and CCI of the

relay-destination link and the full CSI of the source-relay link are known at the relay

node. Based on this assumption, an iterative joint source and relay precoder design

is proposed to achieve the minimum MSE of the estimated signal at the destination

node. In order to reduce computational complexity of the proposed iterative design,

a suboptimal relay-only precoder design is proposed. Numerical examples show that

the performance of the proposed iterative joint source and relay precoder design is very

close to that of the algorithm using full CSI.

Chapter 4 is based on the following conference publication:

• L. Gopal, Y. Rong, and Z. Zang, “MMSE based transceiver design for MIMO

relay systems with mean and covariance feedback”, in Proc. 77th IEEE Veh.

Tech. Conf., Dresden, Germany, Jun. 2-5, 2013.

Chapter 5: Non-linear MIMO Relay Design with Covariance Feedback

In this chapter, the performance of the TH precoder based non-linear transceiver design

is investigated for a non-regenerative MIMO relay system with the assumption that the

full CSI of the source-relay link is known, while only the CCI of the relay-destination

link is available at the relay node. First, the optimal structure of the TH precoding

matrix and the source precoding matrix are derived to minimize the MSE of the signal

waveform estimation at the destination. Then, an iterative algorithm to optimize the

relay precoding matrix is developed. To reduce the computational complexity of the it-

erative algorithm, a simplified precoding matrices design scheme is proposed. Numerical

results show that the proposed precoding matrices design schemes outperform existing

algorithms.

The material in Chapter 5 is based on the following journal submission:

8
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• L. Gopal, Y. Rong, and Z. Zang, “Tomlinson-Harashima precoding based transceiver

design for MIMO relay systems with channel covariance information”, IEEE Trans.

Wireless Commun., to appear, 2015.

Chapter 6: Robust Design for Multicasting MIMO Relay Systems

The increasing demand for mobile applications such as streaming media, software up-

dates, and location-based services involving group communications has triggered the

need for wireless multicasting technology. The broadcasting nature of the wireless chan-

nel makes it naturally suitable for multicasting applications, since a single transmission

may be simultaneously received by a number of users. However, wireless channel is

subject to signal fading. By exploiting the spatial diversity, multi-antenna techniques

can be applied to combat channel fading [7]. Hence, in this chapter, the transceiver de-

sign is investigated for non-regenerative multicasting MIMO relay systems, where one

transmitter broadcasts common message to multiple receivers with the aid of a relay

node and it is assumed that the transmitter, relay, and receivers are all equipped with

multiple antennas. In the proposed design, it is assumed that the true channel matrices

have Gaussian distribution, with the estimated channels as the mean value, and the

channel estimation errors follow the well-known Kronecker model. In this chapter, two

robust algorithms are proposed, namely suboptimal robust and optimal robust algo-

rithms, to jointly design the transmitter, relay, and receiver matrices to minimize the

maximal MSE of the signal waveform estimation among all receivers. In particular,

it is proved that the MSE at each receiver can be decomposed into the sum of the

MSEs of the first-hop and second-hop channels. Based on this MSE decomposition,

transceiver design algorithms are developed with low computational complexity. Nu-

merical simulations demonstrate the improved robustness of the proposed transceiver

design algorithms against the mismatch between the true and estimated channels.

Chapter 6 is based on the following journal submission:

• L. Gopal, Y. Rong, and Z. Zang, “Robust MMSE transceiver design for nonregen-

erative multicasting MIMO relay systems”, IEEE Trans. Signal Process., revised

and resubmitted, May. 2015.

and conference submission:

• L. Gopal, Y. Rong, and Z. Zang, “Simplified robust design for nonrenerative

multicasting MIMO relay systems”, in Proc. 22nd Int. Conf. Telecommun.,

Sydney, Australia, Apr. 27-29, 2015.
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1.5 Notations

The notations used in this thesis are as follows: Lower case letters are used to denote

scalars, e.g. s, n. Bold face lower case letters denote vectors, e.g. s, n. Bold face upper

case letters are reserved for matrices, e.g. S, N. For matrices, (·)T , (·)∗, (·)H , (·)−1, and

(·)† denote transpose, conjugate, Hermitian transpose, inverse, and pseudo-inverse oper-

ations, respectively. rank(·) and tr(·) denote the rank and trace of matrices, respectively.

⊗ denotes the matrix kronecker product. E[·] represents the statistical expectation. An
N dimensional identity matrix is denoted as either IN or I. Note that the scope of any

variable in each chapter is limited to that particular chapter.
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Chapter 2

MIMO Relay Design with

Covariance Feedback

In this chapter, the transceiver design in a non-regenerative MIMO relay system is

addressed by deriving the optimal structure of the relay precoding matrix. Linear

signal processing is applied at the relay and destination nodes to minimize the MSE of

the estimated signal waveform. The optimal structure of the relay precoding matrix is

derived with the assumption that the CCI of the relay-destination link and the full CSI

of the source-relay link are known at the relay node. Following, a review of previous

contribution available in the literature is presented in Section 2.1, system model of a two-

hop non-regenerative MIMO relay system is introduced in Section 2.2. The MIMO relay

precoder design algorithm is proposed in Section 2.3. Simulation results are presented

in Section 2.4 to justify the significance of the proposed algorithms before summarizing

the chapter in Section 2.5.

2.1 Overview of Existing Techniques

Wireless relaying is essential to provide reliable, cost effective and wide-area coverage

for wireless networks in a variety of applications. In a cellular environment, a relay

can be deployed in areas where there are strong shadowing effects, such as inside the

buildings and tunnels. For mobile ad-hoc networks, relaying is essential not only to

overcome shadowing due to obstacles but also to reduce transmission power from source

to neighbouring nodes. For tactical applications, dynamic deployment of relays is useful

11



Chapter 2. MIMO Relay Design with Covariance Feedback

to enhance the network reliability, throughput, and minimize interception by unwanted

users.

There are two types of relay strategies: non-regenerative scheme and regenera-

tive scheme [17–19, 50]. Compared with the regenerative scheme, the non-regenerative

scheme is easy to implement, and thus is embraced by industry.

A relay precoding scheme in non-regenerative MIMO relaying has been proposed to

increase the capacity between the source and destination with further signal processing

[21, 22, 51–54]. In this scheme, the relay multiplies the received signal by a linear

precoding matrix and retransmits the precoded signal to the destination. The precoding

matrix is designed by minimizing the MSE of the estimated signal waveform at the

destination node [23–25, 55–57]. An optimal precoding matrix based on the maximum

SNR criterion is developed in [24, 55]. A unified framework is developed to jointly

optimize the source precoding matrix and the relay amplifying matrix for a broad class

of objective functions [25]. The full CSI for entire link is assumed to be available at the

relay node [23–25, 55–57].

In a practical system with a limited feedback rate, the assumption that the full

CSI for the relay-destination link is known at the relay node is not feasible, especially

in the situation when the mobile node is moving rapidly. The covariance matrix is

more stable than the instantaneous channel matrix because the scattering environment

changes more slowly compared to the mobile location. The precoding matrix is derived

for maximizing the ergodic capacity when only the partial CSI for the relay-destination

link is available at the relay node in [29–31, 58]. A covariance feedback based MMSE

estimator is proposed in [33] and the estimator is only suitable for a MIMO relay system,

where the number of antennas at the destination is greater than the relay antennas.

In this chapter, optimal precoder design is proposed to minimize the MSE of the

estimated signal in a non-regenerative MIMO relay system, when the covariance infor-

mation for the relay-destination link is available at the relay. It is assumed that the

full CSI of the source-relay link and CCI of the relay destination link are known at the

relay node. By restraining power consumption at the relay node, the optimal precoding

matrix is derived to minimize the MSE of the estimated signal at the destination node.

The proposed algorithm is not constrained by the number of antennas at the destina-

tion as in [33]. Simulation results presented in Section 2.4 show the effectiveness of the

proposed MSE scheme.

12
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2.2 MIMO Relay System Model without Direct Link

In this section, the non-regenerative MIMO relay system is considered as shown in

Fig. 2.1, where the source, relay and destination nodes have NS , NR and ND antennas,

respectively. In this system model, it is assumed that there is no direct link exist between

the source and destination nodes due to long distance between these two nodes. The

W
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2n
Relay

nDestinatio

X
~

F
x

1

SN

Source

G

1
1

RN RN

1

Figure 2.1: Block diagram of linear non-regenerative MIMO relay communication system

without direct link.

data transmission takes place over two time slots. The received signal at the relay node

during the first time slot is given by

y1 = H1Fx+ n1 (2.1)

where F ∈ C
NS×NS is a precoding matrix of the source node, H1 ∈ C

NR×NS is the

channel matrix of the source-relay link, x ∈ C
NS×1 is the transmitted vector with

covariance matrix E{xxH} = σ2
xINS

, n1 ∈ C
NR×1 is the circularly symmetric complex

Gaussian noise vector with zero mean and covariance matrix E{n1n
H
1 } = σ2

1INR
. The

received signal at the destination node during the second time slot is given by

y2 = H2GH1Fx+H2Gn1 + n2 (2.2)

where H2 ∈ C
ND×NR is the channel matrix of the relay-destination link, G ∈ C

NR×NR

is a precoding matrix of the relay, n2 ∈ C
ND×1 is the circularly symmetric complex

Gaussian noise vector with zero mean and covariance matrix E{n2n
H
2 } = σ2

2IND
. The

combined channel and noise matrices can be introduced

H = σxH2GH1 (2.3)
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and

n = H2Gn1 + n2 (2.4)

where H ∈ C
ND×NS is the equivalent MIMO channel matrix, and n ∈ C

ND×1 represents

the equivalent noise vector and for simplicity, the source precoding matrix F is assumed

as F = INS
. Now (2.2) can be written as

y2 = Hx+ n. (2.5)

Similar to [30, 31], it is assumed that the channel of the relay-destination link is

correlated at the transmit antennas and is uncorrelated at the receive antennas. The

model is suitable for an environment where the relay is not influenced by local scatters

and the destination is fully surrounded by local scatters [11]. It is assumed that H2 can

be expressed as

H2 = HωΣ
1/2 (2.6)

where Hω is an ND × NR Gaussian matrix having independent and identically dis-

tributed (i.i.d.) circularly symmetric complex entries with zero mean and unit variance,

and Σ is an NR ×NR covariance matrix of H2 at the relay end. To reduce implemen-

tation complexity, linear receiver precoder matrix W is applied at the destination, the

estimated signal is given by

x̃ = WHx+Wn. (2.7)

It is assumed that the average power used by the source is upper bounded by Ps,

and the average power used by the relay is upper bounded by Pr. Since the transmitted

signal from the relay is Gy1 = GH1x+Gn1, the power constraint on the relay can be

expressed as

p(G) = tr
{
G(σ2

xH1H
H
1 + σ2

1INR
)GH

}
≤ Pr. (2.8)

Our goal is to design G and W so as to obtain the estimated signal which minimizes

the following MSE function subject to the power constraint (2.8).

J(G,W) = tr
{
E
[
(x̃− x)(x̃− x)H

]}
(2.9)

Mathematically, this problem can be formulated as

(G,W) = argmin
(G,W)

J(G,W),

s.t. p(G) ≤ Pr. (2.10)
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After substituting (2.7) into (2.9), the MSE function (2.9) is simplified to

J(G,W)=tr
{
σ2
x

(
WH− INS

)(
WH− INS

)H
+WRnW

H
}

(2.11)

where Rn is the equivalent noise covariance matrix, given by

Rn=E
[
nnH

]

=E
[(
H2Gn1 + n2

)(
H2Gn1 + n2

)H]

=σ2
1H2GGHHH

2 + σ2
2IND

. (2.12)

Note that directly solving the constrained optimization problem (2.10) is difficult

due to the fact that both the cost function J(G,W) and the power constraint are non-

linear function of G and W. In the following section a suboptimal approach will be

used to tackle the constrained non-linear optimization problem. First, the problem will

be solved for the optimal linear receiver W for any given precoding matrix G which

satisfies the power constraint (2.8). Then, the optimal precoding matrix G will be

derived by solving a closely related constrained optimization problem.

2.3 Proposed MIMO Relay Precoder Design

For any given precoding matrix G which satisfies the power constraint (2.8), the optimal

linear receiver W that minimizes the MSE function J(G,W) is the same as the MMSE

(Wiener filter) receiver [59], which is given by

W = σ2
xH

H(σ2
xHHH +Rn)

−1. (2.13)

After substituting (2.13) into (2.11), the MSE function is obtained as

J(G) = σ2
xtr
{
INS

− σ2
xH

H(σ2
xHHH +Rn)

−1H
}
. (2.14)

Using the following matrix inversion lemma [60]

(A+BCD)−1=A−1 −A−1B(DA−1B+C−1)−1DA−1, (2.15)

the MSE function (2.14) can be written as

J(G) = σ2
xtr
{[

INS
+ σ2

xH
HR−1

n H
]−1}

. (2.16)
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Substituting (2.3) and (2.12) into (2.16), the MSE function can be expressed as

J(G)=σ2
xtr
{[

INS
+ σ2

xH
H
1 GHHH

2

×
(
σ2
1H2GGHHH

2 + σ2
2IND

)−1
H2GH1

]−1}
. (2.17)

Now the problem is reduced to find the optimal G that minimize J(G) subject

to the power constraint (2.8). The singular value decomposition (SVD) of H1 can be

introduced as

H1 = U1Λ
1/2
1 VH

1 (2.18)

where Λ1 = diag{Λ1,1 · · ·Λ1,NR
} is a diagonal matrix with Λ1,1 ≥ · · · ≥ Λ1,NR

. The

eigenvalue decomposition of Σ can be introduced as Σ = VΣΛΣV
H
Σ where ΛΣ =

diag{ΛΣ,1 · · ·ΛΣ,NR
} with ΛΣ,1 ≥ · · · ≥ ΛΣ,NR

. The columns of VΣ are the right

eigenvectors of Σ for the corresponding eigenvalues. Then H2 can be rewritten as

H2 = ZΛ
1/2
Σ VH

Σ (2.19)

where Z , H2VΣΛ
−1/2
Σ . Then Z has the same distribution asHw becauseH2VΣΛ

−1/2
Σ =

HωVΣ. The optimal precoding matrix G which minimizes (2.17) can be expressed as

G = VΣΛ
1/2
G UH

1 (2.20)

where ΛG = diag{ΛG,1 · · ·ΛG,NR
}. Using the matrix inversion lemma (2.15), the MSE

function (2.17) can be written as

J(G)=σ2
xtr
{[

INS
+

σ2
x

σ2
1

HH
1

[
INR

−
(
INR

+
σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1

]−1}
. (2.21)

Substituting (2.18)-(2.20) in (2.21), now the MSE function is given by

J(ΛG)=σ2
xtr
{[

INS
+

σ2
x

σ2
1

V1Λ
1/2
1 UH

1

×
[
INR

−D1

]
U1Λ

1/2
1 VH

1

]−1}
(2.22)

where

D1 =
(
INR

+
σ2
1

σ2
2

U1Λ
1/2
G Λ

1/2
Σ ZHZΛ

1/2
Σ Λ

1/2
G UH

1

)−1
.
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Using the SVD and trace properties, the MSE function (2.22) can be simplified to

J(ΛG)=σ2
xtr
{[

INS
+

σ2
x

σ2
1

(
Λ1 −Λ

1/2
1 D2Λ

1/2
1

)]−1}

= σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
x

(
Λ1 −Λ

1/2
1 D2Λ

1/2
1

)]−1}
(2.23)

where

D2 =
(
INR

+
σ2
1

σ2
2

Λ
1/2
G Λ

1/2
Σ ZHZΛ

1/2
Σ Λ

1/2
G

)−1
.

It can be seen from (2.23) that J(ΛG) depends on Z, which is random and unknown.

In the following, EZ[J(ΛG)] is optimized, where EZ[.] indicates that the expectation is

taken with respect to the random matrix Z. Now EZ[J(ΛG)] can be expressed as

EZ[J(ΛG)]=σ2
xσ

2
1EZ

[
tr
{[

σ2
1INS

+ σ2
x

×
(
Λ1 −Λ

1/2
1 D2Λ

1/2
1

)]−1}]
(2.24)

where

D2 =
(
INR

+
σ2
1

σ2
2

Λ
1/2
G Λ

1/2
Σ ZHZΛ

1/2
Σ Λ

1/2
G

)−1
.

Now the work is left to determine the diagonal elements ΛG of precoder matrix G.

The optimal precoder allocates power according to the eigenmodes of H1H
H
1 and Σ.

Direct minimization of (2.24) for the optimal power allocation is difficult. In the

following, the lower bound of the MSE is used together with the power constraint (2.8)

to derive the suboptimal power allocation for the precoder matrix G. Assume that

the MSE function is convex in ZHZ and has the following lower bound using Jensen’s

inequality

JL(ΛG) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ1 − σ2

xΛ
1/2
1 D3Λ

1/2
1

]−1}
(2.25)

where

D3 =
(
INR

+
σ2
1

σ2
2

Λ
1/2
G Λ

1/2
Σ EZ[Z

HZ]Λ
1/2
Σ Λ

1/2
G

)−1
.

Now the MSE function 2.25 is simplified to

JL(ΛG) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ1

− σ2
xΛ1

(
INR

+
σ2
1

σ2
2

ΛGΛΣND

)−1]−1}
(2.26)

where EZ(Z
HZ) = NDINR

. Inserting (2.18) and (2.20) into (2.8), the power constraint

for the relay node can be expressed as

p(ΛG)=tr
{
VΣΛ

1/2
G UH

1

(
σ2
xU1Λ1U

H
1 + σ2

1INR

)

×U1Λ
1/2
G VH

Σ

}
≤ Pr. (2.27)
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Using the SVD and trace properties, the power constraint (2.27) can be simplified to

p(ΛG) = tr
{(

σ2
xΛ1 + σ2

1INR

)
ΛG

}
≤ Pr. (2.28)

From (2.26) and (2.28), the constrained optimization problem can be expressed as

min
{ΛG,i}

σ2
x

NS∑

i=1

σ2
1NDΛΣ,iΛG,i + σ2

2

(σ2
xΛ1,i + σ2

1)NDΛΣ,iΛG,i + σ2
2

(2.29)

s.t.

NS∑

i=1

(σ2
xΛ1,i + σ2

1)ΛG,i ≤ Pr. (2.30)

Using the Karush-Kuhn-Tucker(KKT) conditions [61], the optimal diagonal elements of

ΛG,i are obtained as

ΛG,i =
1

(σ2
xΛ1,i + σ2

1)NDΛΣ,i

(√
σ2
xσ

2
2NDΛ1,iΛΣ,i

µ(σ2
xΛ1,i + σ2

1)
− σ2

2

)+

(2.31)

where (x)+ = max(x, 0), and µ should be chosen to meet the power constraint (2.30).

Inserting (2.31) and (2.18)-(2.20) into (2.13) leads to obtain the optimal receiver matrix

W.

2.4 Numerical Examples

In this section, the performance of the proposed algorithm is presented by numerical ex-

amples. The channel matrices H1 and Hω are generated as complex Gaussian variables

with zero mean and unit variance. The symbols are generated from QPSK constellation.

The elements of covariance matrix Σ of H2 are generated by Σi,j = J0(△π|i − j|)
[11], where J0(.) is the zeroth order Bessel function of the first kind, △ the angle of

fading spread. The SNRs for the source-relay and relay-destination links are defined as

SNR1 =
σ2
x

σ2
1
, SNR2 =

Pr

NRσ2
2
.

The performance of the proposed joint MMSE covariance (JMMSE-COV) algo-

rithm is compared with that of the full CSI algorithm [23], the MMSE-COV algorithm

[33], pseudo match-and-forward (PMF) algorithm [22] and the traditional amplify-and-

forward (AF) algorithm. The full CSI algorithm, also known as JMMSE [23] provides

the lower-bound of the proposed algorithm. In the conventional AF algorithm, the relay

precoder is obtained by G = αINR
, where α is determined to meet the power constraint

(2.30).
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Figure 2.2: BER versus SNR2 while fixing SNR1 = 20dB, △ = 5o, NS = NR = ND=4.
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Figure 2.3: BER versus SNR1 while fixing SNR2 = 20dB, △ = 5o, NS = NR = ND=4.
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Figure 2.4: NMSE versus SNR2 while fixing SNR1 = 20dB, △ = 5o, NS = NR = ND=4.

−10 −5 0 5 10 15 20 25 30

10
−2

10
−1

10
0

 SNR
1
(dB)

 N
M

S
E

 

 

AF Algorithm

PMF Algorithm

MMSE−COV Algorithm

JMMSE−COV Algorithm

JMMSE Algorithm

Figure 2.5: NMSE versus SNR1 while fixing SNR2 = 20dB, △ = 5o, NS = NR = ND=4.

20

./ch2_cov/mse_SNR2.eps
./ch2_cov/mse_SNR1.eps


Chapter 2. MIMO Relay Design with Covariance Feedback

In the first example, the performance of the MSE algorithms is studied in terms

of BER versus SNR2 while fixing SNR1 = 20dB and the number of antennas at the

source, relay and destination nodes are fixed as NS = NR = ND=4. The angle spread is

considered as △ = 5o. The simulation result is averaged over 1000 independent channel

realization. It can be seen in Fig. 2.2 that the proposed JMMSE-COV algorithm shows

better BER performance over all range of SNR2 than the MMSE-COV, PMF and AF

algorithms. For high SNR2, the BER performance of the proposed MSE algorithm is

closer to the JMMSE algorithm.

In the second example, the BER performance is compared for various SNR1 while

fixing SNR2= 20dB and similar to [33], the MIMO relay system is simulated with

NS = NR = ND =4. In this example, the angle spread is fixed as △ = 5o. Randomly

generated 1000 QPSK constellations are transmitted from the source node for each

channel realization. It can be noticed from the Fig. 2.3 that the proposed JMSE-COV

algorithm performance is similar to the MMSE-COV, PMF and AF algorithms in low

SNR1 (e.g. SNR1 < 5dB) because the received signal at the relay is impaired by the

noise. For high SNR1, the proposed algorithm shows better BER performance than the

MMSE-COV algorithm, PMF algorithm and the conventional AF algorithm. In other

words, the proposed algorithm outperforms the MMSE-COV, PMF and AF algorithms.

In the third example, the normalized MSE (NMSE) performance of the proposed

algorithm is compared for various SNR2 while fixing SNR1 = 20dB. In the example,

the angle spread is set as △ = 5o and NS = NR = ND =4. In this example, 1000

QPSK samples are randomly generated at source node for each channel realization.

From Fig. 2.4, it can be concluded that AF and PMF algorithms produce much higher

MSE as compared to the proposed JMMSE-COV algorithm even at high SNR2. It is

clearly shown in Fig. 2.4 that the proposed JMMSE-COV algorithm offers improved

performance in terms of NMSE compared to the MMSE-COV algorithm.

In the final example, the NMSE performance of the proposed algorithm is compared

for varying SNR1 while fixing SNR2 = 20dB. In the example as shown in Fig. 2.5, the

angle of delay spread is set as △ = 5o and source, relay and destination nodes antennas

are fixed as NS = NR = ND =4. In this example, 1000 QPSK samples are randomly

generated at source node for each channel realization. From Fig. 2.5, it can be seen

that AF and PMF algorithms have much higher NMSE as compared to the proposed

JMMSE-COV algorithm at high SNR1. It can be noticed from the Fig. 2.5 that the
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proposed JMMSE-COV algorithm outperforms the MMSE-COV algorithm in terms of

NMSE.

2.5 Chapter Summary

In this chapter, the optimal structure of the non-regenerative MIMO relay matrix is

derived to minimize the MSE of the symbol estimation at the destination node with

the assumption that the covariance feedback of the relay-destination link is available

at the relay node. It is assumed that the relay knows the full CSI of the source-relay

link. Simulation results show that the derived optimal solution which minimize the

upper-bound of the MSE is achieved and the simulation results demonstrate that the

proposed scheme has better performance in terms of NMSE and BER as compared to

the conventional MSE schemes.
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MIMO Relay Design with

Covariance Feedback and Direct

Link

In this chapter, transceiver design schemes are proposed for non-regenerative MIMO re-

lay system with direct link which minimizes the MSE of the signal waveform estimation

at the destination node. In the proposed design schemes, an optimal precoding matrix

is derived with the assumption that the full CSI of the source-relay link and partial CSI

such as CCI of the relay-destination link are available at the relay node. In practical

cases, if the destination node is closer to the source node, the source-destination link

cannot be ignored. Hence, in the proposed design, it is assumed that the relay knows

the partial CSI of the source-destination link. An overview of the existing techniques

is provided in Section 3.1. In Section 3.2, the system model of the proposed precod-

ing matrix design is introduced for a non-regenerative MIMO relay system with direct

link. In Section 3.3, two non-regenerative MIMO relay precoder design schemes, such

as iterative optimal covariance algorithm and suboptimal covariance algorithm are de-

veloped to achieve the minimum MSE of the signal estimation at the destination node.

The performance of the proposed MIMO relay design schemes is demonstrated through

numerical simulations in Section 3.4. Finally, the chapter is summarized in Section 3.5.
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3.1 Overview of Existing Techniques

Recently, cooperative wireless communications attract much research interest. By de-

ploying a wireless relay in cooperative wireless communications, wireless networks cov-

erage area can be extended and reliable and cost effective wireless network applications

can be provided. In cooperative wireless communications, a relay can be deployed inside

a building or tunnel to mitigate the effects of shadowing [50].

Two types of relaying schemes, regenerative and non-regenerative , have been pro-

posed in [17, 19, 50]. In regenerative strategy, the relay decodes the information re-

ceived from source and forwards the re-encoded signal to the destination. Whereas

in non-regenerative strategy, the relay amplifies the received signal from source and

retransmits the signal to the destination. When compared with the regenerative strat-

egy, the non-regenerative strategy has a lower computational complexity and is easy to

implement in the cooperative environment.

Relay precoding algorithms [21, 22, 51–54] for non-regenerative MIMO relay systems

have been developed to maximize the capacity of the source-destination link. In these

algorithms, a precoding matrix is multiplied with the received signal at the relay node

for further signal processing. A precoding matrix is proposed to minimize the receiver

estimation error which is known as MSE of the signal at the destination node [23–26, 55–

57, 62]. The optimal precoding matrix design is investigated well in [26–28, 62–64] for

non-regenerative MIMO relay system with the assumption that the relay knows the full

CSI of the source-relay, source-destination and relay-destination links.

In practice, the environment is mostly surrounded by scatters and shadowing effects.

Due to the scattered and shadowing environments, the received signal is uncorrelated

at the destination. Hence, the full CSI of the relay-destination link and the source-

destination link is difficult to obtain at the relay node. For this model, the channel

covariance matrix is more suitable than the instantaneous channel matrix.

Optimal precoder is designed for maximizing the ergodic capacity of the non-regenerative

MIMO relay system with the assumption that the CCI of the relay-destination link is

available at the relay node [29–31, 58]. MMSE based estimators are investigated in

[32, 33] with the assumption that the CCI of the relay-destination link is known at

the relay node. However, the optimal precoding matrix with the direct link is not

investigated in [32, 33]. In practice, the source-destination link provides valuable spa-

tial diversity to the non-regenerative MIMO relay system and can be advantageously

exploited.
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Figure 3.1: Block diagram of non-regenerative MIMO relay communication system with

direct link.

In this chapter, an iterative optimal covariance algorithm is proposed to minimize

the MSE of the signal estimation at the destination in a non-regenerative MIMO relay

system with direct link. Considering that the computational complexity of the developed

optimal covariance algorithm may be high for practical implementation of the relay

system, a suboptimal covariance algorithm is proposed. In the proposed two algorithms,

it is assumed that the relay knows the full CSI of the source-relay link, the CCI of

the relay-destination link and the direct source-destination link. Simulation results

verify the performance of the proposed optimal and suboptimal covariance based MSE

algorithms.

3.2 MIMO Relay System Model with Direct Link

A typical three node non-regenerative MIMO relay system is considered as shown in

Fig. 3.1. It is assumed that the source and destination nodes have NS and ND antennas,

respectively, and relay node has NR antennas. In the considered MIMO relay system

model, it is assumed that there is a direct link between the source and destination nodes.

The signal transmission between the source and destination node is completed in two

time slots. During the first time slot, the source transmits x. The received signal at the

destination and the relay during the first time slot is given by

y0 =H0Fx+ n0

y1 =H1Fx+ n1 (3.1)
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where F ∈ C
NS×NS is a precoding matrix of the source node, H0 ∈ C

ND×NS is the

channel matrix of the direct source-destination link, x ∈ C
NS×1 is the transmitted vector

with covariance matrix E{xxH} = σ2
xINS

, n0 ∈ C
ND×1 is the circularly symmetric

complex Gaussian noise vector with zero mean and unit variance matrix, H1 ∈ C
NR×NS

is the channel matrix of the source-relay link, n1 ∈ C
NR×1 is the circularly symmetric

complex Gaussian noise vector with zero mean and covariance matrix E{n1n
H
1 } =

σ2
1INR

. The received signal at the destination in the second time slot is given by

y2 = H2GH1Fx+H2Gn1 + n2 (3.2)

whereH2 ∈ C
ND×NR is the channel matrix of the relay-destination link, G ∈ C

NR×NR is

a precoding matrix of the relay node, n2 ∈ C
ND×1 is the circularly symmetric complex

Gaussian noise vector with zero mean and covariance matrix E{n2n
H
2 } = σ2

2IND
. In a

more compact way, the signal models (3.1) and (3.2) for the non-regenerative MIMO

relay system can be written as

y,

[
y2

y0

]

=

[
H2GH1

H0

]
Fx+

[
H2Gn1 + n2

n0

]
. (3.3)

It is assumed that the relay knows the full CSI of the source-relay link and CCI of

the relay-destination link and the direct source-destination link. However, the channel

information is unavailable at the source node. The combined channel and noise matrices

can be introduced as

H ,

[
H2GH1

H0

]
(3.4)

and

n =

[
H2Gn1 + n2

n0

]
(3.5)

where H ∈ C
2ND×NS is the equivalent MIMO channel matrix, n ∈ C

2ND×1 represents

the equivalent noise vector and for simplicity, the source precoding matrix F is defined as

F = INS
. Inserting (3.4) and (3.5) into (3.3), the signal model for the non-regenerative

MIMO relay system can be written as

y = Hx+ n. (3.6)

Consider a scenario that the destination node is moving rapidly [30, 31], so the

channel is correlated at the transmitter and is uncorrelated at the receiver for the relay-

destination link and the direct source-destination link. This model is appropriate for
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an environment where the destinations is fully surrounded by local scatters [11]. With

this assumption, the channel matrices H0 and H2 can be modeled as [30–32]

H0 =Hω0Σ
1/2
0

H2 =Hω2Σ
1/2
2 (3.7)

whereHω0 ∈ C
ND×NS andHω2 ∈ C

ND×NR are Gaussian matrices having i.i.d. circularly

symmetric complex entries, Σ0 an NS×NS covariance matrix of H0 and Σ2 an NR×NR

covariance matrix of H2 at the relay side. Here, it is assumed that the destination node

feedbacks the two covariances matrices, Σ0 and Σ2, to the relay node.

A linear receiver precoder matrix W is applied at the destination to reduce imple-

mentation complexity. The estimated signal at the destination node can be written

as

x̃ = Wy = WHx+Wn. (3.8)

Since the transmitted signal from the relay is Gy1 = GH1x + Gn1, the power

constraint on the relay can be expressed as [21]

p(G) = tr
{
G(σ2

xH1H
H
1 + σ2

1INR
)GH

}
≤ Pr (3.9)

where Pr is the upper bounded average power used by the relay. Now, our goal is

to obtain G and W to minimize the MSE of the estimated signal at the destination

node. Using the precoder matrix G and the linear receiver W, the MSE function of the

estimated signal can be written as [59]

J(G,W) = tr
{
E
[
(x̃− x)(x̃− x)H

]}
. (3.10)

Mathematically, the design problem can be formulated as

(G,W) = argmin
(G,W)

J(G,W), s.t. p(G) ≤ Pr. (3.11)

After substituting (3.8) into (3.10), the MSE function (3.10) is simplified to

J(G,W) = tr
{
σ2
x

(
WH− INS

)(
WH− INS

)H
+WRnW

H
}

(3.12)

where Rn is the equivalent noise covariance matrix, given by

Rn = E
[
nnH

]
. (3.13)
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Substituting (3.5) into (3.13), the noise covariance matrix Rn is given by

Rn =E

[ [
H2Gn1 + n2

n0

] [
H2Gn1 + n2

n0

]H ]

=

[
σ2
1H2GGHHH

2 + σ2
2IND

0ND×ND

0ND×ND
IND

]
. (3.14)

Note that the constrained optimization problem (3.11) is not easy to solve directly

due to the fact that the optimization function J(G,W) is a non-linear and non-convex

function ofG andW and the power constraint is non-linear function ofG. In the follow-

ing sections an iterative based optimal covariance algorithm and suboptimal covariance

algorithm are proposed to solve the constrained non-linear optimization problem.

3.3 Proposed MIMO Relay Precoder Design

For any given precoding matrix G which satisfies the power constraint (3.9), the optimal

linear receiver W that minimizes the MSE function J(G,W) is the MMSE (Wiener

filter) receiver [59], which is given by

W = σ2
xH

H(σ2
xHHH +Rn)

−1. (3.15)

After substituting (3.15) into (3.12), the MSE function is obtained as

J(G) = σ2
xtr
{
INS

− σ2
xH

H(σ2
xHHH +Rn)

−1H
}
. (3.16)

Using the matrix inversion lemma (2.15), the MSE function (3.16) can be written as

J(G) = σ2
xtr
{[

INS
+ σ2

xH
HR−1

n H
]−1}

. (3.17)

Substituting (3.4) and (3.14) into (3.17), the MSE function can be expressed as

J(G) = σ2
xtr
{[

INS
+ σ2

xH
H
0 H0 + σ2

xH
H
1 GHHH

2

×
(
σ2
1H2GGHHH

2 +σ2
2IND

)−1
H2GH1

]−1
}
. (3.18)

Using the matrix inversion lemma (2.15), the MSE function (3.18) can be written as

J(G) = σ2
xtr
{[

INS
+ σ2

xH
H
0 H0 +

σ2
x

σ2
1

HH
1

[
INR

−
(
INR

+
σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1

]−1}
. (3.19)
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Now the problem is reduced to find the optimal G that minimize J(G) subject to the

power constraint (3.9). The eigenvalue decomposition (EVD) of Σ0 can be introduced

as

Σ0 = VΣ0ΛΣ0V
H
Σ0

(3.20)

where ΛΣ0 = diag{ΛΣ0,1 · · ·ΛΣ0,NS
} with ΛΣ0,1 ≥ · · · ≥ ΛΣ0,NS

. The columns of VΣ0

are the eigenvectors of Σ0 for the corresponding eigenvalues. Substituting (3.20) into

(3.7), the channel matrix H0 can be written as

H0 , H̃ω0Λ
1/2
Σ0

VH
Σ0

(3.21)

where H̃ω0 , Hω0VΣ0 has the same distribution asHω0 , because the unitary matrixVΣ0

does not change the statistical distribution of Hω0 . The SVD of H1 can be expressed

as

H1 = U1Λ
1/2
1 VH

1 (3.22)

where Λ1 = diag{Λ1,1 · · ·Λ1,R1} is a diagonal matrix with Λ1,1 ≥ · · · ≥ Λ1,R1 , R1 =

min(NS , NR), and the dimensions of U1 and V1 are NR × R1, NS × R1, respectively.

Now, the EVD of Σ2 is introduced as

Σ2 = VΣ2ΛΣ2V
H
Σ2

(3.23)

where ΛΣ2 = diag{ΛΣ2,1 · · ·ΛΣ2,NR
} with ΛΣ2,1 ≥ · · · ≥ ΛΣ2,NR

. The columns of VΣ2

are the eigenvectors of Σ2 for the corresponding eigenvalues. Substituting (3.23) into

(3.7), the channel matrix H2 can be rewritten as

H2 , H̃ω2Λ
1/2
Σ2

VH
Σ2

(3.24)

where H̃ω2 , Hω2VΣ2 has the same distribution as Hω2 . The optimal precoding matrix

G which minimizes (3.19) can be expressed as

G = VΣ2G̃UH
1 . (3.25)

Substituting (3.21)-(3.25) into (3.19), now the MSE function is given by

J(G̃) = σ2
xtr
{[

INS
+ σ2

xVΣ0Λ
1/2
Σ0

H̃H
ω0
H̃ω0Λ

1/2
Σ0

VH
Σ0

+
σ2
x

σ2
1

V1Λ
1/2
1 UH

1

[
INR

−D1

]
U1Λ

1/2
1 VH

1

]−1}
(3.26)

where

D1 =
(
INR

+
σ2
1

σ2
2

U1G̃
HΛ

1/2
Σ2

H̃H
ω2
H̃ω2Λ

1/2
Σ2

G̃UH
1

)−1
.
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Since UH
1 U1 = IR1 , the MSE function (3.26) can be simplified to

J(G̃) = σ2
xtr
{[

INS
+ σ2

xVΣ0Λ
1/2
Σ0

H̃H
ω0
H̃ω0Λ

1/2
Σ0

VH
Σ0

+
σ2
x

σ2
1

(
V1Λ1V

H
1 −V1Λ

1/2
1 D2Λ

1/2
1 VH

1

)]−1}
(3.27)

where

D2 =
(
IR1 +

σ2
1

σ2
2

G̃HΛ
1/2
Σ2

H̃H
ω2
H̃ω2Λ

1/2
Σ2

G̃
)−1

.

It can be seen from (3.27) that J(G̃) depends on H̃ω0 and H̃ω2 , which are random

and unknown. In the following, EHω0,2
[J(G̃)] is optimized, where EHω0,2

[.] indicates

that the expectation is taken with respect to the random matrices H̃ω0 and H̃ω2 . Now

EHω0,2
[J(G̃)] can be expressed as

EHω0,2
[J(G̃)] = σ2

xσ
2
1EHω0,2

[
tr
{[

σ2
1INS

+ σ2
xσ

2
1VΣ0Λ

1/2
Σ0

H̃H
ω0
H̃ω0Λ

1/2
Σ0

VH
Σ0

+σ2
xV1Λ1V

H
1 − σ2

xV1Λ
1/2
1 D2Λ

1/2
1 VH

1

]−1}]
. (3.28)

Now the work is left to determine G̃ of precoder matrix G. The optimal precoder

allocates power according to the eigenmodes of H1H
H
1 , Σ0 and Σ2.

Direct minimization of (3.28) for the optimal power allocation is difficult. In the

following, the lower bound of the MSE is used together with the power constraint (3.9)

to derive the optimal power allocation for the precoder matrix G. Since J(G̃) is convex

in H̃H
ω0
H̃ω0 and H̃H

ω2
H̃ω2 , which is proved in Appendix 3.A, Jensen’s inequality [65] is

used to derive the following lower bound

JL(G̃) = σ2
xσ

2
1tr
{[

σ2
1INS

+σ2
xσ

2
1VΣ0Λ

1/2
Σ0

EHω0
[H̃H

ω0
H̃ω0 ]

×Λ
1/2
Σ0

VH
Σ0

+ σ2
xV1Λ1V

H
1 − σ2

xV1Λ
1/2
1 D3Λ

1/2
1 VH

1

]−1}

where

D3 =
(
IR1 +

σ2
1

σ2
2

G̃HΛ
1/2
Σ2

EHω2

[
H̃H

ω2
H̃ω2

]
Λ

1/2
Σ2

G̃
)−1

.

Now the MSE function is simplified to

JL(G̃) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xσ

2
1NDVΣ0ΛΣ0V

H
Σ0

+σ2
xV1Λ1V

H
1 −σ2

xV1Λ
1/2
1 D4Λ

1/2
1 VH

1

]−1}
(3.29)

where

D4 =
(
IR1 +

σ2
1ND

σ2
2

G̃HΛΣ2G̃
)−1

.
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Here, it is assumed that EHω0

[
H̃H

ω0
H̃ω0

]
= EHω2

[
H̃H

ω2
H̃ω2

]
= NDINR

. Substituting

(3.22) and (3.25) into (3.9), the power constraint for the relay node can be expressed as

p(G̃) = tr
{
VΣ2G̃UH

1

(
σ2
xU1Λ1U

H
1 + σ2

1INR

)
U1G̃

HVH
Σ2

}
≤ Pr. (3.30)

Using the SVD and trace properties, the power constraint (3.30) can be simplified to

p(G̃) = tr
{
G̃
(
σ2
xΛ1 + σ2

1IR1

)
G̃H

}
≤ Pr. (3.31)

The remaining task is to optimize G̃. From (3.29) and (3.31), the constrained optimiza-

tion problem can be written as

min JL(G̃) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xσ

2
1NDVΣ0ΛΣ0V

H
Σ0

+σ2
xV1Λ1V

H
1 − σ2

xV1Λ
1/2
1 D4Λ

1/2
1 VH

1

]−1}
(3.32)

s.t. p(G̃) = tr
{
G̃
(
σ2
xΛ1 + σ2

1IR1

)
G̃H

}
≤ Pr. (3.33)

3.3.1 Optimal Covariance Algorithm

The constrained optimization problem (3.32)-(3.33) does not have a closed-form solution

due to the presence of the direct link channel H0. The problem (3.32)-(3.33) can be

solved by resorting to numerical methods, such as the projected gradient algorithm

[61]. The relay precoding matrix G̃ is optimized by solving the following constrained

optimization problem

min JL(G̃) = σ2
xσ

2
1tr
{[

B−CD4C
H
]−1}

(3.34)

s.t. p(G̃) = tr
{
G̃MG̃H

}
≤ Pr (3.35)

where

B= σ2
1INS

+ σ2
xσ

2
1NDVΣ0ΛΣ0V

H
Σ0

+ σ2
xV1Λ1V

H
1

C= σxV1Λ
1/2
1

M= σ2
xΛ1 + σ2

1IR1

The gradient of (3.34) is given by

∇JL(G̃) =
−2σ2

1ND

σ2
2

[
D4C

H
(
B−CD4C

H
)−2

CD4G̃
HΛΣ2

]H
(3.36)

where the derivatives of ∂tr(ΘX−1)/∂X = −(X−1ΘX−1)T and ∂tr(ΘX)/∂X = ΘT

are used to obtain (3.36). The problem (3.34)-(3.35) can be solved by the projected

gradient algorithm to optimize the matrix elements of G̃.
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3.3.2 Suboptimal Covariance Algorithm

Now a relay matrix design algorithm is proposed which is suboptimal, but has a sig-

nificant computational complexity reduction compared with the gradient projection-

based optimal design. Similar to [23–33], it can be assumed that the matrix G̃ =

[Λ
1/2
G ,0R1×(NR−R1)]

T , where ΛG = diag{ΛG,1 · · ·ΛG,R1}. Hence, the equation (3.25)

can be rewritten as

G = V̄Σ2Λ
1/2
G UH

1 (3.37)

where V̄Σ2 is a matrix taking the first R1 columns of VΣ2 . Then, the constrained

optimization problem is reduced to

min JL(ΛG) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xσ

2
1NDVΣ0ΛΣ0V

H
Σ0

+σ2
xV1Λ1

[
IR1−

(
IR1+

σ2
1ND

σ2
2

ΛGΛ̄Σ2

)−1]
VH

1

]−1}
(3.38)

s.t. p(ΛG) = tr
{(

σ2
xΛ1 + σ2

1IR1

)
ΛG

}
≤ Pr (3.39)

where Λ̄Σ2 = diag{ΛΣ2,1 · · ·ΛΣ2,R1}. To proceed further, the matrix inversion lemma

(2.15) is used to rewrite the MSE function (3.38) as

JL(ΛG) = σ2
xtr
{[

INS
+ σ2

xNDVΣ0ΛΣ0V
H
Σ0

+
σ2
xND

σ2
2

V1Λ1

×ΛGΛ̄Σ2

(
IR1 +

σ2
1ND

σ2
2

Λ̄Σ2ΛG

)−1
VH

1

]−1}
. (3.40)

An upper-bound of (3.40) is considered as follows. By introducing E1 =
σ2
xND

σ2
2

Λ1ΛG

Λ̄Σ2

(
IR1 +

σ2
1ND

σ2
2

Λ̄Σ2ΛG

)−1
, the MSE function (3.40) can be written as

JL(ΛG) = σ2
xtr
{[

INS
+V1E1V

H
1 + σ2

xNDVΣ0ΛΣ0V
H
Σ0

]−1}
. (3.41)

Here V̄1 = [V1,V
⊥
1 ] is introduced such that V̄1 is an Ns×Ns unitary matrix. Obviously,

if R1 = Ns, V̄1 = V1. Then (3.41) can be equivalently rewritten as

JL(ΛG) = σ2
xtr
{[

A+ σ2
xNDV̄

H
1 VΣ0ΛΣ0V

H
Σ0
V̄1

]−1}
(3.42)

where

A= INS
+
[
IR1 ,0R1×(Ns−R1)

]T
E1

[
IR1 ,0R1×(Ns−R1)

]
.

Applying the matrix inversion lemma (2.15), the MSE function (3.42) can be rewritten

as

JL(ΛG) = σ2
x

[
tr(A−1)− tr

(
A−1

(
C+A−1

)−1
A−1

)]
(3.43)
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where C = σ2
xND(V̄

H
1 VΣ0ΛΣ0V

H
Σ0
V̄1)

−1. By using the following inequality from [28]

tr
(
A−1

(
C+A−1

)−1
A−1

)

≥ tr
(
A−1

(
diag

(
C
)
+A−1

)−1
A−1

)
, (3.44)

an upper-bound of JL(ΛG) is given by

JU (ΛG) = σ2
x

[
tr(A−1)− tr

(
A−1

(
diag(C)+A−1

)−1
A−1

)]
. (3.45)

From (3.45), the diagonal elements of ΛG can be obtained by solving the following

optimization problem with scalar variables

min
{ΛG,i}

R1∑

i=1

(
σ2
1NDΛΣ2,iΛG,i + σ2

2

)
σ2
xλc,i

D5ΛG,i + σ2
2λc,i + σ2

2

(3.46)

s.t.

R1∑

i=1

(σ2
xΛ1,i + σ2

1)ΛG,i ≤ Pr (3.47)

where

D5 = (σ2
1λc,i + σ2

xΛ1,iλc,i + σ2
1)NDΛΣ2,i,

λc,i = σ2
xNDdiag

(
(V̄H

1 VΣ0ΛΣ0V
H
Σ0
V̄1)

−1
)
.

Using the KKT conditions [61], the optimal diagonal elements of ΛG,i are obtained

as

ΛG,i =
1

D5

(√
σ4
xσ

2
2NDΛ1,iΛΣ2,iλ

2
c,i

µ(σ2
xΛ1,i + σ2

1)
− σ2

2λc,i − σ2
2

)+

(3.48)

where (x)+ = max(x, 0) and µ should be chosen to meet the power constraint (3.47).

3.4 Numerical Examples

In this section, the performance of the proposed schemes is illustrated by numerical

examples. The entries of channel matrices Hω0 , H1 and Hω2 are generated as complex

Gaussian variables with zero mean and unit variances. The symbols are generated from

QPSK constellation.

The elements of covariance matrices Σ0 of H0 and Σ2 of H2 are generated by Σi,j

= J0(△π|i− j|) [11], where J0(.) is the zeroth order Bessel function of the first kind, △
the angle of fading spread. The SNRs for the direct source-destination, the source-relay

and relay-destination links are defined as SNR0 = σ2
x

σ2
0
, SNR1 = σ2

x

σ2
1
and SNR2 = Pr

NRσ2
2
.
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Figure 3.2: BER versus SNR1 while fixing NS = NR = ND = 4, △0 = 1o, △2 =

30o, SNR2 = 20dB, SNR0 = SNR1 − 10dB.
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Figure 3.3: BER versus SNR2 while fixing NS = NR = ND = 4, △0 = 1o, △2 =

30o, SNR1 = 20dB, SNR0 = SNR1 − 10dB.
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Figure 3.4: NMSE versus SNR1 while fixing NS = NR = ND = 4, △0 = 1o, △2 =

30o, SNR2 = 20dB, SNR0 = SNR1 − 10dB.
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Figure 3.5: NMSE versus SNR2 while fixing NS = NR = ND = 4, △0 = 1o, △2 =

30o, SNR1 = 20dB, SNR0 = SNR1 − 10dB.
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The performance of the proposed optimal covariance (OPT-COV) algorithm and

the suboptimal covariance (SUB-COV) algorithm is compared with the naive amplify-

and-forward (NAF) algorithm [22], the PMF algorithm [22], ROS algorithm [26], the

JMMSE-COV algorithm [32], OPT algorithm [26]. The full CSI scheme, also known

as OPT algorithm [26] provides the lower-bound of the proposed schemes. For the

proposed OPT-COV algorithm, the projected gradient method is applied to optimize

G̃ in (3.34)-(3.35).

In the first example, the BER performance of the proposed algorithms is compared

with the existing MSE algorithms. The Fig. 3.2 shows the performance of the MSE

algorithms in terms of BER versus SNR1. The non-regenerative MIMO relay system is

simulated with NS = NR = ND = 4. A scenario is considered as assumed in section 3.2

that the source node is moving rapidly. Hence, to implement the assumption in simula-

tion, the distance between the relay to destination link is fixed, where the source to relay

and source to destination distances are varied. For establishing the scenario, the SNR of

the relay-destination link is set as SNR2 = 20dB and the SNR of the source-destination

link is fixed as SNR0 = SNR1− 10dB. The angle spread is set as △0 = 1o for the direct

source-destination link and △2 = 30o for the relay-destination link. In this example,

1000 samples are randomly generated at source node for each channel realization. It

can be seen from the Fig. 3.2 that the PMF algorithm has worst performance than all

other MSE algorithms. The proposed SUB-COV algorithm performance is similar to

the JMMSE-COV and ROS algorithms. At high SNR1, the proposed OPT-COV algo-

rithm shows better BER performance than the NAF, PMF, ROS, JMMSE-COV and

SUB-COV algorithms.

In the second example, the BER performance of the proposed algorithms is com-

pared with the existing MSE algorithms. The Fig. 3.3 shows the performance of MSE

algorithms in terms of BER versus SNR2. In the example, the source, relay and desti-

nation nodes antennas of the non-regenerative MIMO relay system are set as NS = NR

= ND = 4. A scenario is considered as assumed in section 3.2 that the destination node

is moving rapidly. Hence, to implement the assumption in simulation, it is set that

the distance between the source to relay link is fixed, where the relay to destination

and source to destination distances are varied. For establishing the scenario, the SNR

values are set as SNR1 = 20dB, SNR0 = SNR1 − 10dB. The angle spread is fixed as

△0 = 1o for the direct source-destination link and △2 = 30o for the relay-destination

link. In this example, 1000 samples are randomly generated at source node for each
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channel realization. It can be noticed from the Fig. 3.3 that the proposed SUB-COV

algorithm outperforms the NAF and PMF algorithms and it performance is similar to

the JMMSE-COV algorithm. The performance of the SUB-COV algorithm is closer

to the ROS algorithm. At high SNR2 (SNR2 >10dB), the proposed OPT-COV algo-

rithm shows better BER performance than the NAF, PMF, ROS, JMMSE-COV and

SUB-COV algorithms.

In the third example, the NMSE performance of the proposed algorithm is studied

for various SNR1 while fixing SNR2 = 20dB, SNR1 = 20dB, and SNR0 = SNR1−10dB

for satisfying the assumption in the section 3.2. In the example, the angle spreads and

number of antennas are set as △0 = 1o, △2 = 30o, NS = NR = ND=4. In this example,

1000 samples are randomly generated at source node for each channel realization. It

can be noticed from the Fig. 3.4 that NAF and PMF algorithms produce much higher

NMSE as compared to the proposed SUB-COV algorithm at high SNR1. It can be

depicted from the Fig. 3.4 that the performance of the proposed SUB-COV algorithm

is similar to the ROS and JMMSE-COV algorithms. It is clearly shown in Fig. 3.4 that

the proposed OPT-COV algorithm outperforms in terms of NMSE as compared to the

NAF, PMF, JMMSE-COV, SUB-COV and ROS algorithms.

In the final example, a non-regenerative MIMO relay system is simulated with NS =

NR = ND =4. The QPSK constellations are used to modulate the symbols at the source

node. Fig. 2.5 shows the NMSE performance of the proposed algorithms for varying

SNR2 while fixing SNR1 =20dB and SNR0 = SNR1 − 10dB. Angle of the delay spread

for the source-destination link is set as △0 = 1o and the relay-destination link is set

as △2 = 30o. The simulation result is averaged over 1000 QPSK samples which are

randomly generated at source node for each channel realization. From the Fig. 3.5,

it can be noticed that the proposed SUB-COV algorithm excels the NAF and PMF

algorithms in terms of NMSE at high SNR2 (SNR2 > 5dB). The proposed OPT-COV

algorithm has a better NMSE performance as compared to the NAF, PMF, JMMSE-

COV, SUB-COV and ROS algorithms.

3.5 Chapter Summary

In this chapter, the general structure of the optimal relay precoding matrix for linear

non-regenerative MIMO relay communication systems is derived. The proposed relay

matrix minimizes the MSE of the signal waveform estimation at the destination node in
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the presence of the direct source-destination link. It is assumed that the relay knows the

full CSI of the source-relay link and the partial CSI (covariance feedback) of the direct

source-destination link and the relay-destination link. Simulation results demonstrate

that the proposed iterative based optimal covariance algorithm has improved NMSE

and BER performances compared with the conventional covariance feedback based MSE

algorithms.

3.A Appendix

Regarding the convexity of (3.28) for H̃H
ω0
H̃ω0 and H̃H

ω2
H̃ω2 , it can be noted that by

using the matrix inversion lemma (2.15), the MSE function (3.28) can be rewritten as

EHω0,2
[J(G̃)]=σ2

xσ
2
1EHω0,2

[
tr
{[

σ2
1INS

+ σ2
xσ

2
1VΣ0Λ

1/2
Σ0

[
H̃H

ω0
H̃ω0

]
Λ

1/2
Σ0

VH
Σ0

+σ2
xV1Λ

1/2
1 G̃HΛ

1/2
Σ2

(
Λ

1/2
Σ2

G̃G̃HΛ
1/2
Σ2

+
σ2
2

σ2
1

[
H̃H

ω2
H̃ω2

]−1
)−1

×Λ
1/2
Σ2

G̃Λ
1/2
1 VH

1

]−1}]
.

From [66], f(X) = X−1 is a matrix-convex function of X. Hence, the MSE function

(3.28) is a convex function for H̃H
ω0
H̃ω0 and H̃H

ω2
H̃ω2 .
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Chapter 4

MIMO Relay Design with Mean

and Covariance Feedback

In this chapter, the problem of transceiver design in a non-regenerative MIMO relay

system is addressed, where linear signal processing is applied at the source, relay and

destination nodes to minimize the MSE of the signal waveform estimation at the desti-

nation node. In the proposed design scheme, optimal structures of the source and relay

precoding matrices are derived with the assumption that the mean and CCI of the relay-

destination link and the full CSI of the source-relay link are known at the relay node.

Overview of the existing work is described in Section 4.1. In Section 4.2, a system model

of the proposed precoding matrix design is introduced for a non-regenerative MIMO re-

lay system with mean and covariance feedback. In Section 4.3, two non-regenerative

MIMO relay precoder design schemes, such as an iterative joint source and relay pre-

coder design scheme and suboptimal relay only precoder design scheme are proposed

to achieve the minimum MSE of the signal estimation at the destination node. The

performance of the proposed MIMO relay design schemes is verified through numerical

simulations which is presented in Section 4.4. Finally, the chapter is summarized in

Section 4.5.

4.1 Overview of Existing Techniques

Recently cooperative communication has attracted considerable attention, due to its

potential to provide reliable, cost effective and wide-area coverage of wireless networks.
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In cooperative communication systems, relay node can be deployed in between the source

and destination to reduce the transmission power from the source to neighbouring nodes

and mitigate the shadowing effects.

In general there are two kinds of relay strategies, including regenerative scheme and

non-regenerative scheme [17, 19, 50]. In terms of implementation complexity, the non-

regenerative scheme has a lower computational complexity, since for this scheme, the

relay node amplifies the received signal from the source node and retransmits the signal

to the destination node.

On the other hand, multiple antennas can provide spacial diversity and multiplexing

gains to wireless communication systems. This benefits can be incorporated in the

cooperative communication systems by deploying multiple antennas at the transceiver.

Due to this fact, non-regenerative MIMO relay systems have received much research

interest [21–25, 28–34, 37, 51–55, 67].

Recently, relay precoding scheme [21, 22, 51–54] for non-regenerative MIMO relaying

has been investigated to maximize the capacity between the source and destination with

further signal processing. In this scheme, the relay multiplies the received signal by a

precoding matrix and retransmits the precoded signal to the destination node. The

precoding matrix is designed to minimize the MSE of the signal waveform estimation at

the destination node [23, 25, 56, 57]. The optimal precoding matrix design is investigated

well in [23, 25, 56, 57, 67] for non-regenerative MIMO relay system with the assumption

that the relay knows the full CSI of the source-relay and relay-destination links.

In a practical system with a limited feedback rate, the assumption that the relay

knows the full CSI for the relay-destination link is not feasible, especially in the situ-

ation when the destination node is moving rapidly. The channel mean and covariance

matrices are more stable than the instantaneous channel matrix because the scattering

environment changes more slowly compared to the destination node location.

Optimal precoder is designed for maximizing the ergodic capacity of the non-regenerative

MIMO relay systems with the assumption that the CCI of the relay-destination link

is available at the relay node [29–31, 58]. Recently, MMSE based estimators are in-

vestigated in [32–34] with the assumption that the covariance channel information of

the relay-destination link is known at the relay node. An optimal transmit strategy

is proposed for maximizing the cut-set bound on the ergodic capacity of the two-hop

decode-and-forward (DF) MIMO relay systems with the mean and covariance feedback

[68]. However, the optimal precoding matrix design with the mean feedback of the
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Figure 4.1: Non-regenerative MIMO relay system

relay-destination link is not investigated for non-regenerative MIMO relay systems in

[32–34, 68].

In this chapter, an iterative joint source and relay precoder design is proposed to

minimize the MSE of the symbol estimation in a non-regenerative MIMO relay system,

when the mean and covariance information for the relay-destination link are available

at the relay node. It is considered that the computational complexity of the developed

iterative scheme may be high for practical implementation of the relay system. Hence,

a suboptimal relay-only precoder design scheme is proposed. In the proposed two al-

gorithms, it is assumed that the relay knows the full CSI of the source-relay link and

mean and CCI of the relay-destination link. Simulation results verify the performance

of the proposed optimal and suboptimal mean and covariance based algorithms.

4.2 System Model and Problem Formulation

Consider a non-regenerative MIMO relay system as shown in Fig. 4.1, where the source,

relay and destination nodes have NS , NR and ND antennas, respectively. It is assumed

that there is no direct link between the source and destination nodes due to long distance

between these two points. The data transmission takes place over two hops. The

received signal at the relay during the first hop is given by

y1 = H1Fx+ n1 (4.1)

where H1 ∈ C
NR×NS is the channel matrix of the source-relay link, F ∈ C

NS×NS is the

source precoding matrix, x ∈ CNS×1 is the transmitted signal vector with covariance

matrix E{xxH} = σ2
xINS

, n1 ∈ C
NR×1 is the circularly symmetric complex Gaussian
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noise vector with zero mean and covariance matrix E{n1n
H
1 } = σ2

1INR
. The received

signal at the destination in the second hop is given by

y2 = H2GH1Fx+H2Gn1 + n2 (4.2)

whereH2 ∈ C
ND×NR is the channel matrix of the relay-destination link, G ∈ C

NR×NR is

the relay precoding matrix, n2 ∈ C
ND×1 is the circularly symmetric complex Gaussian

noise vector with zero mean and covariance matrix E{n2n
H
2 } = σ2

2IND
. The combined

channel and noise matrices can be written

H = H2GH1F (4.3)

and

n = H2Gn1 + n2 (4.4)

where H ∈ C
ND×NS is the equivalent MIMO channel matrix, and n ∈ C

ND×1 represents

the equivalent noise vector. Now (4.2) can be written as

y2 = Hx+ n. (4.5)

Consider a scenario that the channel of the relay-destination link is correlated at the

transmit antennas and is uncorrelated at the receive antennas. This model is suitable

for an environment where the relay is not surrounded by local scatterers [11] and the

destination node is hindered by local scatterers [30, 31]. With this assumption, the

channel matrix H2 can be modeled as

H2 = H̄µ +HωΣ
1/2 (4.6)

where H̄µ ∈ C
ND×NR is the mean of H2, Hω is an ND × NR Gaussian matrix having

i.i.d. circularly symmetric complex entries with zero mean and unit variance, and Σ is

an NR ×NR covariance matrix of H2 at the relay side.

At destination node, linear receiver W is applied to reduce implementation com-

plexity. Hence, the estimated signal at the destination node can be expressed as

x̃ = WHx+Wn. (4.7)

It is assumed that the average power at the source and relay are upper bounded by

Ps and Pr. Since the transmitted signal from the relay is Gy1 = GH1Fx +Gn1, the

power constraint on the source and relay can be expressed as

p(F)=σ2
xtr
{
FHF

}
≤ Ps

p(F,G)=tr
{
G(σ2

xH1FF
HHH

1 + σ2
1INR

)GH
}
≤ Pr. (4.8)
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Our goal is to design F, G and W so as to obtain the estimated signal which minimizes

the following MSE function subject to the power constraints (4.8).

J(F,G,W) = tr
{
E
{
(x̃− x)(x̃− x)H

}}
(4.9)

Mathematically, this problem can be formulated as

(F,G,W)=argmin
(F,G,W)

J(F,G,W),

s.t. p(F)≤Ps,

p(F,G)≤Pr. (4.10)

After substituting (4.7) into (4.9), the MSE function (4.9) is simplified to

J(F,G,W)=tr
{
σ2
x

(
WH− INS

)(
WH− INS

)H

+WRnW
H
}

(4.11)

where Rn is the equivalent noise covariance matrix, given by

Rn=E
{
nnH

}

=E
{(

H2Gn1 + n2

)(
H2Gn1 + n2

)H}

=σ2
1H2GGHHH

2 + σ2
2IND

. (4.12)

Note that directly solving the constrained MSE function (4.10) is difficult due to

the fact that both the objective function J(F,G,W) and the power constraint p(F,G)

are non-linear and non-convex function of F, G and W.

In the following section a suboptimal approach will be used to tackle the constrained

non-linear optimization problem. First, the problem will be solved for the optimal

linear receiver W for any given precoding matrices F and G which satisfies the power

constraints (4.8). Then, an iterative source and relay precoder design is proposed for

obtaining the source and relay precoding matrices F and G by solving a closely related

constrained optimization problem. In order to reduce computational complexity of the

proposed iterative scheme, a suboptimal relay-only precoder design is proposed.

4.3 Proposed Optimal Transceiver Design Algorithms

For any given precoding matrices F and G which satisfy the power constraint at the

source and relay nodes (4.8), the optimal linear receiver W that minimizes the MSE
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function J(F,G,W) is the same as the MMSE (Wiener filter) receiver [59], which is

given by

W = σ2
xH

H(σ2
xHHH +Rn)

−1. (4.13)

After substituting (4.13) into (4.11), the MSE function is obtained as

J(F,G) = σ2
xtr
{
INS

− σ2
xH

H(σ2
xHHH +Rn)

−1H
}
. (4.14)

Using the following matrix inversion lemma [60]

(A+BCD)−1=A−1 −A−1B(DA−1B+C−1)−1DA−1, (4.15)

the MSE function (4.14) can be written as

J(F,G) = σ2
xtr
{[

INS
+ σ2

xH
HR−1

n H
]−1}

. (4.16)

Substituting (4.3) and (4.12) into (4.16), the MSE function can be expressed as

J(F,G)=σ2
xtr
{[

INS
+ σ2

xF
HHH

1 GHHH
2

×
(
σ2
1H2GGHHH

2 + σ2
2IND

)−1
H2GH1F

]−1}
. (4.17)

Using the matrix inversion lemma (4.15), the MSE function (4.17) can be written

as

J(F,G)=σ2
xtr
{[

INS
+

σ2
x

σ2
1

FHHH
1

[
INR

−
(
INR

+
σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1F

]−1}
. (4.18)

Now the problem is reduced to find the optimal precoder matrices F and G that

minimize J(F,G) subject to the power constraints (4.8). Observing the MSE function

(4.18) and power constraints (4.8), it is readily noticed that the optimization problem

is not easy to solve with the current form. Hence, the optimization problem should be

converted into scalar-valued optimization problem. The SVD and EVD properties of

the matrix is used to simplify the optimization problem into scalar form. Hence, SVD

of H1 can be written as

H1 = U1Λ
1/2
1 VH

1 (4.19)

where Λ1 = diag{Λ1,1 · · ·Λ1,NR
} is a diagonal matrix with Λ1,1 ≥ · · · ≥ Λ1,NR

, U1 and

V1 are the singular matrices of H1. To diagonalize (4.18), F can be selected as [28]

F = V1Λ
1/2
F UF (4.20)
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where ΛF = diag{ΛF,1 · · ·ΛF,NR
} is a diagonal matrix with ΛF,1 ≥ · · · ≥ ΛF,NR

and UF

is a unitary matrix. The EVD of Σ can be expressed as

Σ = VΣΛΣV
H
Σ (4.21)

where ΛΣ = diag{ΛΣ,1 · · ·ΛΣ,NS
} with ΛΣ,1 ≥ · · · ≥ ΛΣ,NS

. The columns of VΣ are the

eigenvectors of Σ for the corresponding eigenvalues. Substituting (4.21) into (4.6), the

channel matrix H2 can be written as

H2 , H̄µ + H̃ωΛ
1/2
Σ VH

Σ (4.22)

where H̃ω , HωVΣ. Here, H̃ω has the same distribution as Hω, because the unitary

matrix VΣ does not change the statistical distribution of Hω. Due to the similar

statistical distribution, the H̃ω is an ND ×NR Gaussian matrix having i.i.d. circularly

symmetric complex entries. Let’s assume that the optimal precoding matrix G which

minimizes (4.18) can be expressed as

G = VΣΛ
1/2
G UH

1 (4.23)

where ΛG = diag{ΛG,1 · · ·ΛG,NR
}. Substituting (4.19) - (4.23) in (4.18), now the MSE

function is given by

J(ΛF ,ΛG)=σ2
xtr
{[

INS
+

σ2
x

σ2
1

UH
F Λ

1/2
F Λ

1/2
1 UH

1

×
[
INR

−D1

]
U1Λ

1/2
1 Λ

1/2
F UF

]−1}
(4.24)

where

D1=
(
INR

+
σ2
1

σ2
2

U1Λ
1/2
G VH

Σ

[
H̄µ + H̃ωΛ

1/2
Σ VH

Σ

]H

×
[
H̄µ + H̃ωΛ

1/2
Σ VH

Σ

]
VΣΛ

1/2
G UH

1

)−1
.

Using the SVD and trace properties, the MSE function (4.24) can be simplified to

J(ΛF ,ΛG)=σ2
xtr
{[

INS
+

σ2
x

σ2
1

Λ
1/2
F Λ

1/2
1

[
INR

−D2

]
Λ

1/2
1 Λ

1/2
F

]−1}
(4.25)

where

D2=
(
INR

+
σ2
1

σ2
2

Λ
1/2
G VH

Σ

[
H̄H

µ H̄µ + H̄H
µ H̃ωΛ

1/2
Σ VH

Σ

+VΣΛ
1/2
Σ H̃H

ω H̄µ +VΣΛ
1/2
Σ H̃H

ω H̃ωΛ
1/2
Σ VH

Σ

]
VΣΛ

1/2
G

)−1
.
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It can be seen from (4.25) that J(ΛF ,ΛG) depends on H̃ω, which is random and un-

known. In the following, E
H̃ω

{J(ΛF ,ΛG)} is optimized, where E
H̃ω

{.} indicates that

the expectation is taken with respect to the random matrix H̃ω. Now E
H̃ω

{J(ΛF ,ΛG)}
can be expressed as

E
H̃ω

{J(ΛF ,ΛG)}=σ2
xσ

2
1EH̃ω

[
tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1

×
[
INR

−D2

]
Λ

1/2
1 Λ

1/2
F

]−1}]
. (4.26)

Now the work is left to determine the diagonal elements ΛF and ΛG of precoder

matrices F and G. Direct minimization of (4.26) for the optimal power allocation is

difficult. In the following, the lower bound of the MSE is used together with the power

constraint (4.8) to derive the suboptimal power allocation for the precoder matrices F

and G. Since J(ΛF ,ΛG) is convex in H̃H
ω H̃ω, which is proved in Appendix 4.A and has

the following lower bound using Jensen’s inequality [65]

E
H̃ω

{JL(ΛF ,ΛG)}=σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1

×
[
INR

−D3

]
Λ

1/2
1 Λ

1/2
F

]−1}
(4.27)

where

D3=
(
INR

+
σ2
1

σ2
2

Λ
1/2
G VH

Σ

(
H̄H

µ H̄µ + E
H̃ω

{
H̄H

µ H̃ω

}
Λ

1/2
Σ VH

Σ

+VΣΛ
1/2
Σ E

H̃ω

{
H̃H

ω H̄µ

}
+VΣΛ

1/2
Σ E

H̃ω

{
H̃H

ω H̃ω

}
Λ

1/2
Σ VH

Σ

)
VΣΛ

1/2
G

)−1
.

Using the properties of Gaussian random matrices with i.i.d circularly symmetric

complex entries, E
H̃ω

{
H̃H

ω H̃ω

}
= NDINR, EH̃ω

{
H̄H

µ H̃ω

}
= E

H̃ω

{
H̃H

ω H̄µ

}
= 0 and

taking the expectation on (4.27) with respect to E
H̃ω

, the MSE function can be written

as

JL(ΛF ,ΛG)=σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1

×
[
INR

−D4

]
Λ

1/2
1 Λ

1/2
F

]−1}
(4.28)

where

D4=
(
INR

+
σ2
1

σ2
2

Λ
1/2
G VH

Σ

[
H̄H

µ H̄µ +NDVΣΛΣV
H
Σ

]
VΣΛ

1/2
G

)−1
.

After using the SVD properties, the MSE function (4.28) can be simplified to

JL(ΛF ,ΛG)=σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1

×
[
INR

−D5

]
Λ

1/2
1 Λ

1/2
F

]−1}
(4.29)
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where

D5 =
(
INR

+
σ2
1

σ2
2

Λ
1/2
G (VH

Σ H̄H
µ H̄µVΣ +NDΛΣ)Λ

1/2
G

)−1
.

To proceed further, using the matrix inversion lemma (4.15), the MSE function

(4.29) can be written as

JL(ΛF ,ΛG)=σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1 Λ

1/2
G

×
[
ΛG +

σ2
2

σ2
1

(
VH

Σ H̄H
µ H̄µVΣ +NDΛΣ

)−1]−1
Λ

1/2
G Λ

1/2
1 Λ

1/2
F

]−1}
.(4.30)

Applying the matrix inversion lemma (4.15), the MSE function (4.30) can be written

as

JL(ΛF ,ΛG)=σ2
xtr
{[

INS
− 1

σ2
1

Λ
1/2
F Λ

1/2
1 Λ

1/2
G

( 1

σ2
1

Λ
1/2
G Λ

1/2
1 ΛFΛ

1/2
1 Λ

1/2
G +C

)−1

×Λ
1/2
G Λ

1/2
1 Λ

1/2
F

]}
(4.31)

where

C =
1

σ2
x

[
ΛG +

σ2
2

σ2
1

(
VH

Σ H̄H
µ H̄µVΣ +NDΛΣ

)−1]
.

An upper-bound of (4.31) is considered. Hence, the MSE function (4.31) can be

rewritten as

JL(ΛF ,ΛG)=σ2
x

[
tr
(
A−1

)
− tr

(
A−1EH

(
EA−1EH +C

)−1
EA−1

)]
(4.32)

where

A=INS
,

E=
1

σ1
Λ

1/2
G Λ

1/2
1 Λ

1/2
F .

By using the following inequality from [28]

tr
(
A−1EH

(
EA−1EH +C

)−1
EA−1

)

≥ tr
(
A−1EH

(
EA−1EH + diag

(
C
))−1

EA−1
)
, (4.33)

an upper-bound of JL(ΛF ,ΛG) is given by

JU (ΛF ,ΛG)=σ2
xtr
{[

INS
−
(
ΛFΛ1ΛG + σ2

1λC

)−1
ΛFΛ1ΛG

]}
(4.34)

where

λC=
1

σ2
x

diag
[
ΛG +

σ2
2

σ2
1

(
VH

Σ H̄H
µ H̄µVΣ +NDΛΣ

)−1]
. (4.35)
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Inserting (4.20) into (4.8), the power constraint for the source node can be expressed

as

p(ΛF ) = σ2
xtr
{
ΛF

}
≤ Ps. (4.36)

Substituting (4.19) and (4.23) into (4.8), the power constraint for the relay node can

be expressed as

p(ΛF ,ΛG)=tr
{
VΣΛ

1/2
G UH

1

(
σ2
xU1Λ

1/2
1 ΛFΛ

1/2
1 UH

1 + σ2
1INR

)

×U1Λ
1/2
G VH

Σ

}
≤ Pr. (4.37)

Using the SVD and trace properties, the power constraint (4.37) can be simplified to

p(ΛF ,ΛG) = tr
{(

σ2
xΛ1ΛF + σ2

1INR

)
ΛG

}
≤ Pr. (4.38)

4.3.1 Joint Source and Relay Precoder Design

In this section, a joint source and relay procder design is proposed to obtain the diagonal

elements of ΛF , ΛG. From (4.34), (4.36) and (4.38), the diagonal elements of ΛF , ΛG

can be obtained by solving the following constrained optimization problem with scalar

variables

min JU (ΛF ,ΛG)=

NS∑

i=1

σ2
xσ

2
1λC,i

Λ1,iΛF,iΛG,i + σ2
1λC,i

(4.39)

s.t. p(ΛF )=σ2
x

NS∑

i=1

ΛF,i ≤ Ps, (4.40)

p(ΛF ,ΛG)=

NS∑

i=1

(
σ2
xΛ1,iΛF,i + σ2

1

)
ΛG,i ≤ Pr. (4.41)

Using the KKT conditions [61], the optimal diagonal elements of ΛF,i and ΛG,i are

obtained as

ΛF,i =
1

Λ1,iΛG,i

(√
σ2
1λC,iΛ1,iΛG,i

µs + µrΛ1,iΛG,i
− σ2

1λC,i

)+

(4.42)

ΛG,i =
1

Λ1,iΛF,i

(√
σ2
xσ

2
1λC,iΛ1,iΛF,i

µr(σ2
xΛ1,iΛF,i + σ2

1)
− σ2

1λC,i

)+

(4.43)

where (x)+ = max(x, 0), µs and µr should be chosen to meet the power constraints

(4.40) and (4.41).

It can be seen from (4.42) and (4.43) that the diagonal elements of ΛF,i, ΛG,i matrices

are function of each other, so directly solving the diagonal elements of the matrices are
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too difficult. To avoid this difficulty, an iterative algorithm is proposed to compute the

diagonal elements of ΛF,i and ΛG,i.

In this algorithm, initialize ΛF = INs and ΛG = INs . Then calculate λC with (4.35),

and calculate the water filling variables µr and µs to satisfy the power constraints (4.8)

at the source and destination nodes. Update ΛF and ΛG according to (4.42) and

(4.43) respectively. ΛF and ΛG are iteratively updated until ||Λ′
F −ΛF || ≤ 0.0001 and

||Λ′
G −ΛG|| ≤ 0.0001. Here Λ′

F and Λ′
G are the two recent calculated values of ΛF and

ΛG.

4.3.2 Relay-only Precoder Design

In this section, a suboptimal algorithm is proposed to obtain the diagonal elements

of ΛG while fixing ΛF . It is assumed that ΛF = INS
, the constrained optimization

problem (4.39) to (4.41) can be rewritten in scalar form as

min JU (ΛG)=

NS∑

i=1

σ2
xσ

2
1λC,i

Λ1,iΛG,i + σ2
1λC,i

(4.44)

s.t. p(ΛG)=

NS∑

i=1

(
σ2
xΛ1,i + σ2

1

)
ΛG,i ≤ Pr. (4.45)

Using the KKT conditions [61], the optimal diagonal elements of ΛG,i are obtained

as

ΛG,i =
1

Λ1,i

(√
σ2
xσ

2
1λC,iΛ1,i

µr(σ2
xΛ1,i + σ2

1)
− σ2

1λC,i

)+

(4.46)

where µr should be chosen to meet the power constraint (4.45).

4.4 Numerical Examples

In this section, the performance of the proposed algorithms is verified by numerical

examples. The unitary matrix, UF , of the source precoder matrix (4.20) is generated

by the NS-point discrete Fourier-transform matrix. The channel matrices H1 and Hω

are generated as complex Gaussian variables with zero mean and unit variance. The

mean, H̄µ, of H2 is randomly generated as

H̄µ=




0.33 + 0.47i, 1.03 − 0.96i, 0.88 − 0.17i, −0.94 + 0.82i
0.58 + 0.01i, 0.93 − 0.08i,−0.56 − 0.12i, 1.02 − 0.32i
0.73 − 0.05i, 0.49 − 0.56i,−0.36 − 0.67i, −0.39 + 0.72i
−0.62 − 1.72i, 0.51 + 0.95i, 1.00 − 0.88i, −0.09 − 0.05i



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Figure 4.2: BER versus SNR1 while fixing SNR2 = 20dB.

The elements of covariance matrix Σ of H2 is generated by Σi,j = J0(△π|i−j|) [11],
where J0(.) is the zeroth order Bessel function of the first kind, △ the angle of fading

spread. The SNRs for the source-relay and relay-destination links are defined as follows

SNR1 =
σ2
x

σ2
1
, SNR2 =

Pr

NRσ2
1
.

The performance of the proposed schemes is compared with the PMF [22], JMMSE

[23], JMMSE-COV [32] algorithms, and the iterative joint source, relay and destination

algorithm (JSRD-ITE) [67]. The JSRD-ITE algorithm provides the lower-bound of the

proposed schemes.

In the first example, a non-regenerative MIMO relay system is simulated with

NS = NR = ND = 4. The angle spread is set as △ = 30o. The symbols are gen-

erated from 1000 QPSK constellation at the source node. The Fig. 4.2 shows the

performance of the MSE algorithms in terms of BER versus SNR1 while fixing SNR2

= 20dB. The proposed suboptimal relay-only (SUB-RO) algorithm shows better BER

performance over all range of SNR1 than the PMF and JMMSE-COV algorithms. For

SNR1 ≤ 15dB, the BER performance of the SUB-RO algorithm is closer to that of the

JMMSE algorithm. For SNR1 ≥ 15dB, the proposed SUB-RO algorithm outperforms

the JMMSE algorithm. The proposed iterative joint source and relay (JSR-ITE) algo-

rithm outperforms the JMMSE-COV, SUB-RO and JMMSE algorithms over the tested
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Figure 4.3: BER versus SNR2 while fixing SNR1 = 20dB.
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Figure 4.4: NMSE versus SNR1 while fixing SNR2 = 20dB.
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Figure 4.5: NMSE versus SNR2 while fixing SNR1 = 20dB.

range of SNR1.

In the second example, the BER performance of the MSE algorithms is compared for

various SNR2 while fixing SNR1= 20dB and the MIMO relay system is simulated with

NS = NR = ND=4. The angle of the delay spread is fixed as △ = 30o. 1000 randomly

generated QPSK constellations are transmitted from source node for each channel re-

alization. It can be noticed from the Fig. 4.3 that the proposed SUB-RO algorithm

has better performance than the PMF, JMMSE-COV and JMMSE algorithms. It can

be noticed from the Fig. 4.3 that the performance of the proposed JSR-ITE algorithm

outshines the JMMSE-COV, SUB-RO and JMMSE algorithms over the tested range of

SNR2.

In the third example, the NMSE performance of the MSE algorithms is investigated

for various SNR1 while fixing SNR2 = 20dB. In the simulation, the delay spread angle is

set to△ = 30o and the number of antennas at the source, relay and destination nodes are

set as NS = NR = ND=4. In the example, 1000 QPSK samples are randomly generated

at source node for each channel realization. From Fig. 4.4, it can be concluded that

PMF, JMMSE-COV, JMMSE algorithms produce much higher NMSE as compared to

the proposed SUB-RO algorithm at high SNR (SNR1 >10dB). It is clearly shown in

Fig. 4.4 that the proposed JSR-ITE algorithm offers improved performance in terms of
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NMSE compared to the PMF, JMMSE-COV, SUB-RO and JMMSE algorithms over

the entire range of SNR1.

In the final example, the performance of the MSE algorithms is studied for varying

SNR2 while fixing SNR1 = 20dB. In this example, the number of antennas in the

source, relay and destination nodes are fixed as NS = NR = ND =4 and the angle

of delay spread is set as △ = 30o. 1000 QPSK symbols are randomly generated at

the source node for each channel realization. It can be observed from the Fig. 4.5

that the proposed SUB-RO algorithm has a better NMSE performance than the PMF,

JMMSE-COV, JMMSE algorithms. It can be notice from the Fig. 4.5 that the proposed

JSR-ITE algorithm always outperforms the PMF, JMMSE-COV, SUB-RO and JMMSE

algorithms over the entire range of SNR2.

4.5 Chapter Summary

In this chapter, the optimal structure of the source and relay precoder matrices of the

non-regenerative MIMO relay system is derived to minimize the MSE of the symbol

estimation at the destination node with the assumption that the mean and covariance

feedback of the relay-destination link are available at the relay node. It is assumed

that the relay knows the full CSI of the source-relay link. Simulation results show that

the proposed schemes, which minimize the upper-bound of the MSE is achieved and

its demonstrate that the proposed scheme has better performance in terms of NMSE

and BER as compared to the conventional full CSI and covariance feedback based MSE

schemes.

4.A Appendix

In this section, the convexity of the MSE function (4.26) for H̃H
ω H̃ω is proved. A set

of ND ×NR positive definite Hermitian matrix is Z. Using the inversion lemma (4.15),

the MSE function (4.26) can be rewritten as

EZ[J(F,G)]=σ2
xσ

2
1EZ

[
tr
{[

σ2
1INS

σ2
xΛ

1/2
F Λ

1/2
1 Λ

1/2
G VH

Σ

×
(
VΣΛGV

H
Σ +

σ2
2

σ2
1

[
ZHZ

]−1)−1
Λ

1/2
1 Λ

1/2
F

]−1}]
(4.47)

where

Z=
(
H̄H

µ + H̃ωΛ
1/2
Σ VH

Σ

)
.
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From [65], f(Z) = Z−1 is a matrix-convex function of Z. Hence, the MSE function

(4.47) is a convex function for ZHZ.

54



Chapter 5

Non-linear MIMO Relay Design

with Covariance Feedback

In this chapter, the performance of the TH precoder based non-linear transceiver design

is investigated for a non-regenerative MIMO relay system assuming that the full CSI of

the source-relay link is known, while only the CCI of the relay-destination link is avail-

able at the relay node. Overview of the existing work is described in Section 5.1. The

system model and problem formulation are presented in Section 5.2. In Section 5.3, the

optimal structure of the TH precoding, the source precoding and the relay precoding

matrices are derived to minimize the MSE of the signal waveform estimation at the des-

tination node. Numerical examples are shown in Section 5.4 to verify the performance

of the proposed algorithms, and chapter summary is drawn in Section 5.5.

5.1 Overview of Existing Techniques

In cooperative communication systems, relay nodes can be deployed between the source

and destination nodes to mitigate the channel shadowing effect and provide system

spatial diversity. Therefore, cooperative communication has great potential in extending

the network coverage and increasing the system throughput with reduced infrastructure

cost, and thus, has attracted much research interest recently [19, 50].

Wireless relays can be regenerative or non-regenerative [17, 19, 50, 69]. In the regen-

erative relay strategy, the relay decodes the received signals from the source node and

retransmits the re-encoded information to the destination node. In the non-regenerative
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relay strategy [17], the relay node simply amplifies (including a possible linear transfor-

mation) the received signals from the source node and retransmits the amplified signals

to the destination node. Therefore, the complexity and the processing delay of the

non-regenerative strategy are generally much smaller than the regenerative strategies.

On the other hand, MIMO systems can provide spatial diversity and multiplexing

gains to wireless communication systems [20]. When nodes in a relay network have

multiple transmit/receive dimensions, such a system is called as MIMO relay system.

In [21, 22, 51–54], relay precoder designs for a two-hop non-regenerative MIMO relay

system have been proposed to maximize the mutual information between the source and

destination nodes. In [23–28, 55–57], relay precoding algorithms have been developed

to minimize the MSE of the signal waveform estimation at the destination node. The

precoder designs in [21–28, 51–53, 55–57] assume that the full CSI of the source-relay

and relay-destination links is available at the relay node.

However, in practical relay communication systems, the exact CSI is unknown and

therefore, has to be estimated. There is always mismatch between the true and the

estimated CSI due to channel noise, quantization errors and outdated channel estimates.

A more practical assumption is that only partial information of the relay-destination

channel is available at the relay node. In [29–31, 58], relay precoding matrix design has

been investigated for maximizing the ergodic capacity of the relay system with the CCI

of the relay-destination channel. Robust broadcasting schemes have been developed

in [70] to minimize the transmission power necessary to guarantee that the quality-

of-service (QoS) requirements are satisfied for all channels within bounded uncertainty

regions around the transmitters estimate of each users channel. MMSE based transceiver

designs have been addressed in [32–35] with the assumption that the relay knows the

CCI of the relay-destination link and the full CSI of the source-relay link.

In the work of [29–35], linear transceiver design has been considered for MIMO relay

systems, i.e., linear source/relay precoders and linear MMSE receiver. Compared with

linear transceivers, non-linear transceivers have a better BER performance. Recently,

non-linear transceiver based non-regenerative MIMO relay system design has been pro-

posed [36, 37]. Non-linear transceiver can be implemented at the receiver as a DFE

and/or at the transmitter in the form of a TH precoder. In general, the TH precoding

scheme has a better BER performance than the DFE-based transceiver design, as the

latter one suffers from error propagation.
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The performance of the TH precoding scheme has been well studied for one-hop

MIMO systems [38, 39, 71, 72]. In [73], a TH-based pre-filtering algorithm has been

designed for multi-antenna multi-user systems where the base station allocates the trans-

mit power according to the QoS requirement of each active user. A unified approach has

been developed in [74] for transceiver optimization in MIMO systems with TH precoding

at the transmitter and linear equalization at the receiver. In [75], a multiuser MIMO TH

precoding algorithm has been proposed based on quantized CSI at the transmitter side.

Recently, the TH precoding scheme has been introduced to non-regenerative MIMO

relay systems [40] with the assumption that the full CSI of the entire channel is known

at the relay node. In [41–43], imperfect CSI has been considered for designing the TH

precoding based non-regenerative MIMO relay systems. Due to the nonlinearity nature

of the precoding scheme, the TH precoding is highly sensitive to the time-varying nature

of the wireless channel [44]. Hence, covariance information based non-linear transceiver

design is more appropriate in such scenario.

In this chapter, a TH precoder-based transceiver design is proposed for two-hop

non-regenerative MIMO relay systems where the full CSI of the source-relay link is

known, while only the CCI of the relay-destination link is available at the relay node.

In particular, it is assumed that the channel of the relay-destination link is correlated at

the transmit antennas and uncorrelated at the receive antennas. This model is suitable

for an environment where the relay is not surrounded by local scatterers [11] and the

destination node is located amongst rich scatterers [30, 31]. Similar to [23, 25, 32, 33],

it is assumed that there is no direct link between the source and destination nodes.

Moreover, a TH precoder is considered at the source node. The relay precoder is assumed

as a linear precoder and the destination node is considered as a linear MMSE receiver.

A transceiver design is proposed that minimizes the MSE of the signal waveform

estimation at the destination node. First, the structure of the optimal TH precoder

is derived and the source precoder is as a function of the relay precoder. Then, an

iterative algorithm is proposed to optimize the relay precoding matrix by exploiting the

link between the mutual information and the weighted MMSE functions [76, 77]. To

reduce the computational complexity of the proposed iterative algorithm, a simplified

precoding matrices design algorithm is proposed. Numerical simulations are carried out

to compare the performance of the proposed precoding matrices design algorithms with

existing schemes. Simulation results show that both proposed algorithms outperform

existing TH precoder based MIMO transceiver optimization algorithms in terms of
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BER. Moreover, the system BER yielded by the proposed algorithms is very close to

that of the system with the perfect CSI. Furthermore, the BER performance of the

simplified precoding matrices design algorithm is very close to that of the iterative

algorithm. Therefore, the simplified algorithm is very attractive for practical MIMO

relay communication systems.

5.2 System Model and Problem Formulation

A two-hop non-regenerative MIMO relay system is considered as shown in Fig. 5.1,

where the source, relay, and destination nodes have NS , NR, and ND antennas, respec-

tively. It is assumed that there is no direct link between the source and destination due

to the long distance between these two nodes. It is also assumed that NS ≤ NR, ND,

so that NS independent data streams can be transmitted.
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Figure 5.1: Block diagram of a non-regenerative MIMO relay system with TH precoder.

As shown in Fig. 5.1, the non-regenerative MIMO relay system has two precoders,

i.e, a TH-based source precoder and a relay precoder. At the receiver, a linear MMSE

receiver filter is considered. At the transmitter side, the source signal vector a ∈ C
NS×1

is first fed into the TH precoder. The TH precoder performs a successive cancelation op-

eration which can be implemented through a feedback matrix B and a modulo operation

MODm(·) expressed as

MODm(x) = x− 2
√
m
⌊x+

√
m

2
√
m

⌋
. (5.1)

Here m is the number of constellation points in the modulation scheme and ⌊·⌋ denotes

the floor operation. The signal vector after the modulo operation can be denoted as x,
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whose nth element can be written as

xn = an −
n−1∑

l=1

[B]k,lxl + en, n = 1, · · · , NS . (5.2)

where [B]k,l is the (k, l)-th element of B, en = 2
√
mqn, and qn is a complex-valued

quantity with integer real and imaginary components that reduces xn within the region

of R = {xR + jxI |xR, xI ∈ (−√
m,

√
m)}. By introducing e = [e1, · · · , eNS

]T , (5.2) can

be expressed in matrix-vector form as

x = C−1v (5.3)

where C = B+ IK is a lower triangular matrix with unit diagonal elements, v = a+ e,

and In denotes the n×n identity matrix, and x has the covariance matrix of E{xxH} =

σ2
xINS

. The data transmission from source to destination is completed in two time slots.

At the first time slot, the source node linearly precodes x as

s = Fx (5.4)

and transmits s to the relay node, where F ∈ C
NS×NS is the source precoding matrix.

The received signal vector at the relay is given by

y1 = H1Fx+ n1 (5.5)

where H1 ∈ C
NR×NS is the channel matrix of the source-relay link, n1 ∈ C

NR×1 is

the circularly symmetric complex Gaussian noise vector with zero mean and covariance

matrix E{n1n
H
1 } = σ2

1INR
. At the second time slot, the relay linearly precodes y1 as

x2 = Gy1 = GH1Fx+Gn1 (5.6)

and forwards x2 to the destination, where G ∈ C
NR×NR is the relay precoding matrix.

The received signal vector at the destination is given by

y2 = H2x2 + n2 = H2GH1Fx+H2Gn1 + n2 (5.7)

where H2 ∈ C
ND×NR is the channel matrix of the relay-destination link, n2 ∈ C

ND×1 is

the circularly symmetric complex Gaussian noise vector with zero mean and covariance

matrix E{n2n
H
2 } = σ2

2IND
. The combined H and n matrices can be written as

H = H2GH1F, n = H2Gn1 + n2 (5.8)
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where H ∈ C
ND×NS is the equivalent MIMO channel matrix between the source and

destination nodes, and n ∈ C
ND×1 represents the equivalent noise vector. Now (5.7)

can be rewritten as

y2 = Hx+ n. (5.9)

It is assumed that the relay node knows the instantaneous CSI of H1, which can be

obtained at the relay node through training sequence from the source node. To obtain

the instantaneous CSI of H2 at the relay node, the channel H2 must be fed back to

the relay node from the destination node. When the relay-destination channel varies

rapidly, a large signalling overhead for feedback of H2 is required and this may not be

feasible since the rate of feedback link is often limited in practical wireless communi-

cation systems. Hence, in the proposed design, it is assumed that only the covariance

information of H2, which is much more stable than the instantaneous information of H2,

is known at the relay node. In particular, a scenario is considered where the channel of

the relay-destination link is correlated at the transmit antennas and uncorrelated at the

receive antennas. For example, this scenario can occur in a relay communication system

where the relay node is located at the top of a radio mast and a mobile destination node

is in an urban area [31]. With this assumption, the channel matrix H2 can be modelled

as

H2 = HωΣ
1
2 (5.10)

where Hω is an ND × NR Gaussian matrix having i.i.d. circularly symmetric complex

entries with zero mean and unit variance, and Σ is an NR × NR covariance matrix of

H2 at the relay side. Note that the covariance matrix Σ is assumed to be known to the

relay node and Hω is unown to the relay node.

At the destination node, a linear receiver with weight matrix W is applied due to its

implementation simplicity. Hence, the estimated signal vector at the destination node

can be expressed as

ṽ = Wy2 = WHx+Wn. (5.11)

It is assumed that the average transmission power at the source and relay is upper

bounded by ps and pr, respectively. Based on (5.4) and (5.6), the power constraints at

the source and relay nodes can be expressed as

P (F)=σ2
xtr
{
FFH

}
≤ ps (5.12)

Q1(F,G)=tr
{
G(σ2

xH1FF
HHH

1 + σ2
1INR

)GH
}
≤ pr (5.13)
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Our goal is to design C, F, G, and W to obtain the estimated signal ṽ which minimizes

the following MSE cost function subjecting to the power constraints (5.12) and (5.13)

J1(C,F,G,W) = tr
{
E
{
(ṽ − v)(ṽ − v)H

}}
. (5.14)

Note that once ṽ is obtained, a can be recovered from (5.1). After substituting (5.11)

into (5.14), the MSE cost function (5.14) can be written as

J1(C,F,G,W)=tr
{
σ2
x(WH−C)(WH−C)H

+WRnW
H
}

(5.15)

where Rn = E{nnH} is the equivalent noise covariance matrix given by

Rn = σ2
1H2GGHHH

2 + σ2
2IND

. (5.16)

Based on (5.12), (5.13), and (5.15), the optimal precoding matrices design problem

can be formulated as

min
C,F,G,W

J1(C,F,G,W)

s.t. P (F) ≤ ps

Q1(F,G) ≤ pr. (5.17)

Directly solving the problem (5.17) is difficult due to the fact that J1(C,F,G,W) is a

non-linear and nonconvex function of C, F, G, and W. In the following section, optimal

and suboptimal approaches are proposed to solve the problem (5.17). Firstly, the opti-

mal structure of C and F are derived as a function of G. Then an iterative algorithm

is proposed to optimize the relay precoding matrix G. Finally, a simplified precoding

matrices design is developed to reduce the complexity of the iterative algorithm.

5.3 Proposed Transceiver Design Algorithms

Since concurrently finding the optimum C, F, and G in (5.17) is not possible, hence the

optimization problem in (5.17) is reformulated into three subproblems. In the proposed

first subproblem, the lower triangular matrix C is derived as a function of F, and G,

and then, second subproblem optimizes the source precoder matrix F. In the third

subproblem, an iterative approach is proposed to obtain the relay precoder matrix G.

Due to the computational complexity of the prposed iterative approach, a simplified

precoding matrices design is proposed in the subsequent subsection.
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5.3.1 Tomlinson-Harashima Precoder Design

For any given precoding matrices C, F, and G which satisfy the power constraints at

the source and relay nodes (5.12) and (5.13), the weight matrix W of the optimal linear

receiver that minimizes the MSE function J1(C,F,G,W) is the well known MMSE

receiver (Wiener filter) which is given by [59]

W = σ2
xCHH(σ2

xHHH +Rn)
−1. (5.18)

After substituting (5.18) back into (5.15), the MSE function can be written as

J2(C,F,G)=σ2
xtr
{
C
(
INS

− σ2
xH

H

×(σ2
xHHH +Rn)

−1H
)
CH
}
. (5.19)

By using the following matrix inversion lemma [60]

(A+BCD)−1=A−1 −A−1B

×(DA−1B+C−1)−1DA−1, (5.20)

the MSE function (5.19) can be written as

J2(C,F,G)=tr
{
C
(
σ−2
x INS

+HHR−1
n H

)−1
CH
}

=tr
{
C
(
σ−2
x INS

+ FHM̃HM̃F
)−1

CH
}

(5.21)

where

M̃ =
(
σ2
1H2GGHHH

2 + σ2
2IND

)− 1
2
H2GH1. (5.22)

To proceed further, the MSE function (5.21) is minimized with respect to the lower

triangular and unit diagonal matrix C. The optimum C is given in [38] and can be

written as

Copt = DL−1 (5.23)

where

LLH=
(
σ−2
x INS

+ FHM̃HM̃F
)−1

(5.24)

is the Cholesky factorization. Here L is a lower triangular matrix and D is a diagonal

matrix which scales the diagonal elements of C to unit, and given by

D = diag{[L]1,1, · · · , [L]NS ,NS
}. (5.25)
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Substituting (5.23)-(5.25) back into (5.21), the MSE function can be written as

J3(F,G)=

NS∑

i=1

[L]2i,i ≥ NS

(
NS∏

i=1

[L]i,i

)2/NS

. (5.26)

Using the arithmetic-geometric inequality (AGI), the inequality in (5.26) can be

obtained and the equality can be achieved when [L]i,i = [L]j,j, i 6= j.

5.3.2 Source Precoding Matrix Design

It can be seen from (5.24) that [L]i,i depends on the source precoding matrix F. Hence,

in this subsection, F is derived which minimizes the objective function (5.26). This

problem is solved in [39, 71] and [78]. The EVD of M̃HM̃ can be defined as

M̃HM̃ = VM̃ΛM̃VH
M̃

(5.27)

where VM̃ is the eigenvector matrix of M̃ and ΛM̃ = diag{ΛM̃,1, · · · ,ΛM̃,NS
} is the

diagonal eigenvalue matrix with ΛM̃,1 ≥ · · · ≥ ΛM̃,NS
.

Lemma 5.1 [40, 79]. The optimal source precoding matrix as the solution to the prob-

lem (5.17) can be expressed as

Fopt = ρVM̃ΦF (5.28)

where ΦF is a unitary matrix and ρ is chosen to satisfy the power constraint (5.12).

Substituting (5.27) and (5.28) back into (5.24), the Cholesky factorization (5.24)

can be written as

LLH=ΦH
F Σ̃

1
2 Σ̃

1
2ΦF (5.29)

where

Σ̃
1
2 =

(
σ−2
x INS

+ ρ2ΛM̃

)− 1
2
.

Applying the geometric mean decomposition (GMD) [80–82] to Σ̃
1
2 , Σ̃

1
2 can be written

as

Σ̃
1
2 = QRPH (5.30)
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where Q and P are semi-unitary matrices and R is an upper triangular matrix with

identical diagonal entries given by

[R]ii =

(
NS∏

k=1

(
σ−2
x + ρ2ΛM̃,k

)− 1
2

)1/NS

, i = 1, · · · , NS .

Substituting (5.30) back into (5.29), LLH can be written as

LLH = ΦH
F PRHRPHΦF . (5.31)

ΦF is assumed as ΦF = P to achieve the lower bound in (5.26), then (5.31) can be

simplified as

LLH = RHR. (5.32)

From (5.32), it can be concluded that L = RH . By substituting (5.32) back into

(5.26), the MSE function can be depicted as

J4(G)=

NS∑

i=1

[R]2i,i

=NS

NS∏

k=1

(
σ−2
x + ρ2ΛM̃,k

)−1/NS . (5.33)

After substituting (5.28) back into (5.13), the relay power constraint (5.13) can be

written as

Q2(G) = tr
{
G(σ2

xρ
2H1H

H
1 + σ2

1INR
)GH

}
≤ pr. (5.34)

Now the relay precoding matrix optimization problem can be formulated as

min
G

J4(G) s.t. Q2(G) ≤ pr. (5.35)

5.3.3 Relay Precoding Matrix Design

In this subsection, the optimum G is derived. It is worth to note that the eigenvalues of

(5.22) are a non-linear function of G and the optimization problem (5.35) is not convex.

To solve the problem (5.35), the equivalent MSE function can be considered as

NS∏

k=1

(
σ−2
x + ρ2ΛM̃,k

)
=
∣∣∣σ−2

x INS
+ ρ2M̃HM̃

∣∣∣. (5.36)

Here | · | denotes the matrix determinant. Substituting (5.36) into (5.35) and taking the

log operation to the cost function, the optimization problem (5.35) can be reformulated

as
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min
G

−X s.t. Q2(G) ≤ pr (5.37)

where

X=log |A−1|

A=
(
ρ−2σ−2

x INS
+HH

1 GHHH
2 R−1

n H2GH1

)−1
. (5.38)

It is worth noting that if H2 is known at the relay node, (5.37) has a closed-form

solution [25]. However, as the exact H2 is unknown, it is impossible to solve the problem

(5.37). To overcome this difficulty, the mean value of −X is consider as given by the

following problem

min
G

EH2{−X} s.t. Q2(G) ≤ pr (5.39)

where EH2{·} denotes the statistical expectation with respect to H2.

It is noticed that due to the matrix determinant operator in X, the closed-form

expression of the objective function in (5.39), if possible to obtain, is a very complicated

function of G, which makes the problem (5.39) difficult to solve. To overcome this

challenge, the following theorem is applied.

Theorem 5.1 The problem (5.37) has the same Karush-Kuhn-Tucker (KKT) condi-

tions on G as the problem of

min
G,Ω

tr{ΩA} − log |Ω| (5.40)

s.t. Q2(G) ≤ pr (5.41)

when the Hermitian weight matrix Ω takes value of

Ω = A−1. (5.42)

Moreover, with given G, the weight matrix Ω minimizing (5.40) is given by (5.42).

Proof: See Appendix 5.A. �

Based on Theorem 5.1, the problem (5.37) can be solved using an iterative approach,

where in each iteration, with Ω from the previous iteration, first, G is optimized by

solving the problem (5.40)-(5.41). Then Ω is updated as (5.42) using G obtained in the

current iteration. Note that the conditional updates of G and Ω may either decrease

or maintain but cannot increase the objective function (5.40). Monotonic convergence
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of the iterative algorithm towards (at least) a locally optimal solution follows directly

from this observation. As Ω is unknown due to an unknown H2. Hence, Ω̄ is used and

it can be expressed as

Ω̄=EH2{Ω}

=EH2{A−1}

=ρ−2σ−2
x INS

+ EH2{M̃HM̃} (5.43)

where

EH2{M̃HM̃}

=HH
1 EH2{GHHH

2 R−1
n H2G}H1

≤σ−2
1 HH

1

[
INR

−σ2
2(σ

2
1G

HEH2{HH
2 H2}G+σ2

2INR
)−1
]
H1

=σ−2
1 HH

1

[
INR

−σ2
2(σ

2
1NDG

HΣG+ σ2
2INR

)−1
]
H1. (5.44)

Substituting (5.38) into (5.40), for a given Ω̄, the objective function of G can be ex-

pressed as

T1(G)=tr
{
Ω̄
[
ρ−2σ−2

x INS
+HH

1 GHHH
2

×
(
σ2
1H2GGHHH

2 +σ2
2IND

)−1
H2GH1

]−1}
. (5.45)

Now the problem is reduced to find the optimal G that minimizes T1(G) subjecting to

the relay power constraint (5.34). Using the matrix inversion lemma (5.20), (5.45) can

be rewritten as

T1(G)=tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 HH
1

[
INR

−
(
INR

+
σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1

]−1}
. (5.46)

The SVD of H1 can be introduced as

H1 = U1Λ
1
2
1 V

H
1 (5.47)

where Λ1 = diag{Λ1,1, · · · ,Λ1,NS
} is a diagonal matrix with Λ1,1 ≥ · · · ≥ Λ1,NS

, U1 ∈
C
NR×NS and V1 ∈ C

NS×NS are the singularvector matrices of H1. The EVD of Σ can

written as

Σ = VΣΛΣV
H
Σ (5.48)
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where ΛΣ = diag{ΛΣ,1, · · · ,ΛΣ,NR
} with ΛΣ,1 ≥ · · · ≥ ΛΣ,NR

. Substituting (5.48) back

into (5.10), the channel matrix H2 can be written as

H2 = H̃ωΛ
1
2
ΣV

H
Σ (5.49)

where H̃ω , HωVΣ has the same distribution as Hω, as the unitary matrix VΣ does not

change the statistical distribution of Hω. Thus, H̃ω is an ND ×NR complex Gaussian

matrix having i.i.d. circularly symmetric entries. It can be shown that the optimal G

minimizing (5.46) can be expressed as

G = VΣG̃UH
1 . (5.50)

It can be seen from (5.50) that the optimal G allocates power according to the eigen-

modes of H1H
H
1 and Σ, and G̃ is needed to be determined.

Substituting (5.47)-(5.50) back into (5.46), (5.46) can be obtained as

T1(G̃)=tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1 U

H
1

×(INR
−D1)U1Λ

1
2
1 V

H
1

]−1}
(5.51)

where

D1 =
(
INR

+
σ2
1

σ2
2

U1G̃
HΛ

1
2
ΣH̃

H
ω H̃ωΛ

1
2
ΣG̃UH

1

)−1
.

Using UH
1 U1 = INS

, (5.51) can be simplified to

T1(G̃)=tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

×(INR
−D2)Λ

1
2
1 V

H
1

]−1}
(5.52)

where

D2 =
(
INR

+
σ2
1

σ2
2

G̃HΛ
1
2
ΣH̃

H
ω H̃ωΛ

1
2
ΣG̃
)−1

.

It can be seen from (5.52) that T1(G̃) depends on H̃ω, which is random and unknown. In

the following, E
H̃ω

{T1(G̃)} is optimized, where E
H̃ω

{·} indicates that the expectation

is taken with respect to the random matrix H̃ω. Now E
H̃ω

{T1(G̃)} can be expressed as

E
H̃ω

{T1(G̃)}=E
H̃ω

{
tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

×(INR
−D2)Λ

1
2
1 V

H
1

]−1}}
. (5.53)

Direct minimization of (5.53) over G̃ is difficult due to the expectation operation.

In the following, a lower bound of (5.53) is exploited together with the power constraint

(5.34) to derive the suboptimal G̃ for the precoding matrix G.
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Theorem 5.2 A lower bound of (5.53) is given by

T2(G̃)=tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

[
INR

−
(
INR

+
σ2
1ND

σ2
2

G̃HΛΣG̃
)−1]

Λ
1
2
1V

H
1

]−1}
. (5.54)

Proof: See Appendix 5.B. �

Substituting (5.47) and (5.50) back into (5.34), the power constraint at the relay

node can be simplified to

Q3(G̃) = tr
{
G̃(ρ2σ2

xΛ1 + σ2
1INR

)G̃H
}
≤ pr. (5.55)

From (5.54) and (5.55), the problem of optimizing G̃ can be written as

min
G̃

T2(G̃) s.t. Q3(G̃) ≤ pr. (5.56)

The problem (5.56) does not have a closed-form solution due to the presence of Ω in

the objective function. The problem (5.56) can be solved by resorting to numerical

methods, such as the projected gradient algorithm [61]. By introducing

B=σ2
1INS

+ ρ2σ2
xV1Λ1V

H
1

K=ρ2σ2
xV1Λ

1
2
1

D4=
(
INR

+
σ2
1ND

σ2
2

G̃HΛΣG̃
)−1

T2(G̃) can be rewritten as

T2(G̃) , ρ2σ2
xσ

2
1tr
{
Ω̄(B−KD4K

H)−1
}
. (5.57)

The gradient of (5.57) is given by

∇G̃T2=
−2σ4

1σ
2
xρ

2ND

σ2
2

(
D4K

H
(
B−KD4K

H
)−1

Ω̄

×
(
B−KD4K

H
)−1

KD4G̃
HΛΣ

)H
. (5.58)

The procedure of applying the projected gradient algorithm to solve the problem

(5.56) is summarized in Table 5.1, where the superscript (n) denotes the variables at

the nth iteration, tn and γn are the step size parameters at the nth iteration, max abs(·)
denotes the maximum among the absolute value of all elements in a matrix, and ε is a

positive constant close to 0. The step size parameters tn and γn are chosen by the Armijo
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Table 5.1: Procedure of solving the problem (5.56) using the projected gradient algorithm

1. Initialize the algorithm at a feasible G̃(0); Set n = 0.

2. Compute the gradient of T2(G̃
(n)) as (5.58);

Project (Ğ(n)) = G̃(n) − tn∇G̃(n)T2 to the set of Q3(Ḡ
(n)) = pr to obtain Ḡ(n);

Update G̃ with G̃(n+1) = G̃(n) + γn(Ḡ
(n) − G̃(n)).

3. If max abs(G̃(n+1) − G̃(n)) ≤ ε, then end.

Otherwise, let n := n+ 1 and go to Step 2).

rule [83], i.e., tn = t is a constant through all iterations, while at the nth iteration, γn is

set to be βmn . Here mn is the minimal nonnegative integer that satisfies the inequality

of T2(G̃
(n+1))−T2(G̃

(n)) ≤ αβmntr
((

∇G̃(n)T2

)H(
Ḡ(n)−G̃(n)

))
, α and β are constants.

According to [83], usually α is chosen close to 0, for example α ∈ [10−5, 10−1], and a

proper choice of β is normally from 0.1 to 0.5.

The procedure of the iterative precoding matrices design algorithm developed in

Sections 5.3.1–5.3.3 are summarized in Table 5.2, where the superscript (m) denotes

the variables at the mth iteration.

Table 5.2: Procedure of the proposed iterative precoding matrices design algorithm

1. Initialize the algorithm with Ω̄(0) =
√

ps/NSINS
; Set m = 0.

2. Update G̃(m) by solving the problem (5.56) using the projected gradient algorithm

listed in Table 5.1.

3. Update Ω̄(m+1) by (5.43); If max abs(Ω̄(m+1) − Ω̄(m)) ≤ ε, then go to Step 4).

Otherwise, let m := m+ 1 and go to Step 2).

4. Obtain Fopt as (5.28), and Copt by (5.23) with M̃HM̃ replaced by EH2{M̃HM̃}
in (5.44).
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5.3.4 Simplified Precoding Matrices Design

In this subsection, a precoding matrices design algorithm is proposed which has a sig-

nificant computational complexity reduction compared with the iterative algorithm in

Table 5.2. In this algorithm, a lower bound of the MSE function is obtained by using

the arithmetic-geometric mean inequality [60], which is given by the following lemma.

Lemma 5.2 For a positive semidefinite (PSD) matrix A ∈ C
N×N , there is

|A|1/N ≤ tr(A)/N (5.59)

where the equality is achieved whenA is a diagonal matrix with equal diagonal elements.

Using Lemma 5.2, a lower bound of the MSE function (5.21) can be written as

∣∣σ−2
x INS

+ FHM̃HM̃F
∣∣−1/NS

≤ tr
{
C(σ−2

x INS
+ FHM̃HM̃F)−1CH

}
/NS . (5.60)

Since minimizing |A|−1 is equivalent to maximizing |A| [60], the source and relay

precoding matrices design problem can be reformulated as

max
F,G

X(F,G)

s.t. P (F) ≤ ps

Q1(F,G) ≤ pr (5.61)

where the objective function X(F,G) can be expressed as

X(F,G)=log
∣∣σ−2

x INS
+ FHM̃HM̃F

∣∣

=log
∣∣σ−2

x INS
+ FHHH

1 GHHH
2

×
(
σ2
1H2GGHHH

2 + σ2
2IND

)−1
H2GH1F

∣∣

=log
∣∣∣σ−2

x INS
+ σ−2

1 FHHH
1

[
INR

−
(
INR

+
σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1F

∣∣∣. (5.62)

Here the matrix inversion lemma (5.20) is applied to obtain the last equation. From

[84], it can be defined that if the matrix is diagonal, then the determinant of a positive

definite matrix is maximized. Hence, without loss of generality, the source precoding

matrix F can be expressed in terms of the following decomposition

F = V1Λ
1
2
FΦF (5.63)

70



Chapter 5. Non-linear MIMO Relay Design with Covariance Feedback

where ΛF = diag{ΛF,1 · · ·ΛF,NS
}, and ΦF is a unitary matrix defined later. It can be

assumed that the matrix G which maximizes (5.62) can be expressed as

G = VΣ,1Λ
1
2
GU

H
1 (5.64)

where VΣ,1 contains NS columns of VΣ associated with the largest NS eigenvalues of

Σ, and ΛG = diag{ΛG,1, · · · ,ΛG,NS
}. Substituting (5.47), (5.49), (5.63) and (5.64) in

(5.62), X(F,G) can be written as

X(F,G) = log
∣∣∣σ−2

x INS
+σ−2

1 Λ
1
2
FΛ

1
2
1 (INS

−D5)Λ
1
2
1 Λ

1
2
F

∣∣∣ (5.65)

where

D5 =
(
INS

+
σ2
1

σ2
2

Λ
1
2
GΛ

1
2
Σ,1H̃

H
ω,1H̃ω,1Λ

1
2
Σ,1Λ

1
2
G

)−1

and H̃ω,1 is a matrix containing the left-most NS columns of H̃ω. It can be seen from

(5.65) that X(F,G) depends on H̃ω,1, which is random and unknown. In the following,

E
H̃ω,1

{X(F,G)} is optimized which is given by

E
H̃ω,1

{X(F,G)}=E
H̃ω,1

{
log
∣∣∣σ−2

x INS
+ σ−2

1 Λ
1
2
FΛ

1
2
1

×(INS
−D5)Λ

1
2
1 Λ

1
2
F

∣∣∣
}
. (5.66)

Due to the expectation operation, maximizing (5.66) with respect to ΛF and ΛG is

difficult. In the following, an upper bound of E
H̃ω,1

{X(F,G)} is used together with the

power constraints (5.12) and (5.13) to derive the suboptimal power allocation for the

precoding matrices F and G.

Theorem 5.3 The function

f(Z) = log
∣∣∣INS

+ σ2
xσ

−2
1 Λ

1
2
FΛ

1
2
1

[
INS

−
(
INS

+
σ2
1

σ2
2

Λ
1
2
GΛ

1
2
Σ,1ZΛ

1
2
Σ,1Λ

1
2
G

)−1]
Λ

1
2
1Λ

1
2
F

∣∣∣ (5.67)

is concave with respect to a PSD Z.

Proof: See Appendix 5.C. �

According to Theorem 5.3, X(F,G) is concave in H̃H
ω,1H̃ω,1. Hence, EH̃ω,1

{X(F,G)}
has the following upper bound by using the Jensen’s inequality [65]

XU = log
∣∣∣σ−2

x INS
+ σ−2

1 Λ
1
2
FΛ

1
2
1 (INS

−D6)Λ
1
2
1 Λ

1
2
F

∣∣∣ (5.68)

71



Chapter 5. Non-linear MIMO Relay Design with Covariance Feedback

where

D6 =
(
INS

+
σ2
1

σ2
2

Λ
1
2
GΛ

1
2
ΣEH̃ω,1

{
H̃H

ω,1H̃ω,1

}
Λ

1
2
ΣΛ

1
2
G

)−1
.

Using the property of Gaussian random matrices with i.i.d. circularly symmetric com-

plex entries, it is assumed that E
H̃ω,1

{
H̃H

ω,1H̃ω,1

}
= NDINS

, and (5.68) can be simplified

to

XU , log
∣∣σ−2

x INS
+ σ−2

1 ΛFΛ1(INS
−D7)

∣∣ (5.69)

where

D7 =
(
INS

+
σ2
1ND

σ2
2

ΛGΛΣ

)−1
.

By substituting (5.47), (5.63), and (5.64) back into (5.12) and (5.13), the power

constraints at source and relay nodes can be simplified to

σ2
xtr{ΛF } ≤ ps (5.70)

tr{(σ2
xΛFΛ1 + σ2

1INS
)ΛG} ≤ pr. (5.71)

Based on (5.69)-(5.71), the diagonal elements of ΛF and ΛG can be obtained by solving

the following constrained optimization problem with scalar variables

max
{ΛF,i},{ΛG,i}

NS∑

i=1

log
(
σ−2
x +

NDΛF,iΛ1,iΛG,iΛΣ,i

σ2
1NDΛG,iΛΣ,i + σ2

2

)
(5.72)

s.t.

NS∑

i=1

σ2
xΛF,i ≤ ps (5.73)

NS∑

i=1

(
σ2
xΛF,iΛ1,i + σ2

1

)
ΛG,i ≤ pr (5.74)

where {ΛF,i},ΛF,1, · · · ,ΛF,NS
, {ΛG,i},ΛG,1, · · · ,ΛG,NS

. Two new variables, ai and

bi, are introduced which can be defined as

ai,σ2
xΛF,i, i = 1, · · · , NS (5.75)

bi,(σ2
xΛF,iΛ1,i + σ2

1

)
ΛG,i, i = 1, · · · , NS . (5.76)
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Substituting (5.75) and (5.76) back into (5.72)-(5.74), the problem (5.72)-(5.74) can be

rewritten as

max
{ai},{bi}

NS∑

i=1

log
(aiΛ1,i + σ2

1)(NDbiΛΣ,i + σ2
2)

σ2
x(σ

2
1NDΛΣ,ibi + aiΛ1,iσ2

2 + σ2
2σ

2
1)

(5.77)

s.t.

NS∑

i=1

ai ≤ ps, ai ≥ 0, i = 1, · · · , NS (5.78)

NS∑

i=1

bi ≤ pr, bi ≥ 0, i = 1, · · · , NS (5.79)

where {ai} , a1, · · · , aNS
and {bi} , b1, · · · , bNS

.

Using the KKT conditions, the solution to the problem (5.77)-(5.79) is given by

ai=ϕai

[√
b2iΛ

2
Σ,i

σ4
2

+
4biΛ1,iΛΣ,i

µsNDσ2
1σ

2
2

− biΛΣ,i

σ2
2

− 2

ND

]+
(5.80)

bi=ϕbi

[√
a2iΛ

2
1,i

σ4
1

+
4NDaiΛ1,iΛΣ,i

µrσ2
1σ

2
2

− aiΛ1,i

σ2
1

− 2

]+
(5.81)

i = 1, · · · , NS

where [x]+ = max(x, 0), µs and µr are the Lagrangian multipliers chosen to meet the

power constraints (5.78) and (5.79), and

ϕai =
σ2
1ND

2Λ1,i
, ϕbi =

σ2
2

2NDΛΣ,i
, i = 1, · · · , NS . (5.82)

The detailed derivation of (5.80) and (5.81) is shown in Appendix 5.D.

It can be seen from (5.80) and (5.81) that {ai} and {bi} are functions of each other.

Thus, directly solving (5.80) and (5.81) is difficult. To avoid this difficulty, an iterative

algorithm is proposed to compute {ai} and {bi}. This algorithm is initialized with

ai =
√

ps/NS , i = 1, · · · , NS . At each iteration, first {bi} is optimized according to

(5.81) based on the initial value of {ai}. Then {ai} is optimized following (5.80) using

{bi}. {ai} and {bi} are updated iteratively until convergence. Finally, the diagonal

elements of ΛF and ΛG can be obtained by from (5.75) and (5.76).

After obtaining the optimal source and relay precoding matrices, the structure of

the unitary matrix ΦF and the lower triangular matrix C are determined. The optimal

C is given in (5.23). Substituting (5.47), (5.49), (5.63), and (5.64) back into (5.24), the

Cholesky factorization (5.24) can be written as

LLH=ΦH
F Ψ̃

1
2 Ψ̃

1
2ΦF (5.83)
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where

Ψ̃
1
2 =

(
σ−2
x INS

+ σ−2
1 ΛFΛ1(INR

−D7)
)− 1

2 . (5.84)

The proof of (5.84) can be found in [32]. Applying the GMD [81] to Ψ̃
1
2 , Ψ̃

1
2 can be

written as
(
σ−2
x INS

+ σ−2
1 ΛFΛ1(INR

−D7)
)− 1

2 = Q2R2P
H
2 . (5.85)

Substituting (5.85) back into (5.83), the Cholesky factorization (5.83) can be written as

LLH = ΦH
F P2R

H
2 R2P

H
2 ΦF . Similar to (5.31) and (5.32), the unitary matrix ΦF can

be chosen as ΦF = P2.

5.4 Numerical Examples

In this section, the performance of the proposed precoder design algorithms is investi-

gated through numerical simulations. The channel matrices H1 and Hω have complex

Gaussian entries with zero mean and unit variance.

The elements of the covariance matrix Σ of H2 is generated by [Σ]i,j = J0(2π|i −
j| △ dt/λc) [11], where J0(·) is the zeroth order Bessel function of the first kind, △ is

the angle of fading spread, λc is the wavelength at the center frequency, and dt is the

spacing of transmit antennas. k is defined as k = λc/△dt. Unless explicitly mentioned,

the N and k are set as N = 4 and k = 3 in the simulations. The signal-to-noise ratios

(SNRs) for the source-relay and relay-destination links are defined as SNR1 = σ2
x

σ2
1
and

SNR2 = Pr

NRσ2
2
, respectively. The signal-to-noise ratios (SNRs) for the source-relay and

relay-destination links are defined as SNR1 =
σ2
x

σ2
1
and SNR2 =

Pr

NRσ2
2
, respectively.

First, the impact of initialization to the performance of the proposed algorithms is

studied. The following three initializations are tried for the optimal precoder design

(OPT-TH-cov) algorithm in Table 5.2: Initialization 1 is given in Table 5.2. In Ini-

tialization 2, Ω̄ = c1D, where c1 =
√

ps/NS and D is a 4 × 4 diagonal matrix whose

main diagonal elements are [
√
2, 1,

√
0.5,

√
0.5]. For Initialization 3, Ω̄ is set as Ω̄ = c1U,

whereU is a 4×4 random Hermitian matrix. For the suboptimal precoder design (SUB-

TH-cov) algorithm in Section III.D, the following two starting points are attempted:

Initialization 1 as given after (5.82) and Initialization 2 where a1 = a2 =
√

2ps/NS

and a3 = a4 = 0. It is observed that the proposed algorithms converge for the various

initialization methods tested. Fig. 5.2 shows the BER performance of the two proposed

algorithms using the initialization points tested. It can be seen from Fig. 5.2 that the
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SUB−TH−cov, initialization 2

SUB−TH−cov, initialization 1

OPT−TH−cov, initialization 3

OPT−TH−cov, initialization 2

OPT−TH−cov, initialization 1

Figure 5.2: BER versus SNR1 at different number of initialization points while fixing

SNR2 = 20dB.

system BER yielded by different starting points is quite small, and Initialization 1 has

the lowest BER. Therefore, for the rest of simulations, Initialization 1 is used for both

proposed algorithms.

In the following simulations, the performance of two proposed algorithms is com-

pared with the linear transceiver-based precoding scheme such as the joint MMSE

(JMMSE) scheme [23], the TH precoding based scheme with the full CSI (TH-FCSI)

[40], TH-robust [85], TH-L-robust [43], and M-Schur-convex [41] schemes. Note that in

contrast to other algorithms, the JMMSE and TH-FCSI schemes require the full CSI of

the relay-destination link.

In the second example, a two-hop non-regenerative MIMO relay system is simulated

with NS = NR = ND = 4 and the information-carrying symbols are generated from

16-QAM constellations. In the example, the angle of correlation coefficient is set as

k = 3. Fig. 5.3 shows the BER performance of all algorithms tested versus SNR1 while

fixing SNR2 = 20dB. It can be seen from Fig. 5.3 that as expected, the TH-FCSI scheme

has the lowest system BER. It can also be observed that over the whole range of SNR1,

the two proposed algorithms significantly outperform the JMMSE, TH-robust, TH-L-

robust, and M-Schur-convex schemes in terms of BER. Moreover, for the whole range
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Figure 5.3: BER versus SNR1 while fixing SNR2 = 20dB.

of SNR1, the BER performance of the SUB-TH-cov algorithm is very close to that of

the OPT-TH-cov algorithm.

In the third example, the performance of the proposed two MSE algorithms is in-

vestigated in terms of BER performance. In the example, a two-hop non-regenerative

MIMO relay system with NS = NR = ND = 4 is considered and the information-

carrying symbols are generated from 16-QAM constellations for each channel realiza-

tion. The correlated coefficient is chosen as k = 3. Fig. 5.4 shows the performance

of seven algorithms in terms of BER versus SNR2 while fixing SNR1 = 20dB. It can

be noted from Fig. 5.4 that the proposed OPT-TH-cov and SUB-TH-cov algorithms

show better BER performance over the whole range of SNR2 than the existing schemes.

Moreover, the system BER yielded by the proposed algorithms is very close to that of

the system with the perfect CSI (TH-FCSI scheme).

In the fourth example, a two-hop non-regenerative MIMO relay system is consid-

ered with NS = NR = ND = 4 and the 1000 symbols are generated from 16-QAM

constellations at the source node. Fig. 5.5 shows the BER performance comparison of

the algorithms tested versus SNR1 for k = 3 and k = 10 when SNR2 is fixed at 20dB.

It can be seen from Fig. 5.5 that for both value of k, the proposed OPT-TH-cov and

SUB-TH-cov algorithms show better BER performance over the whole range of SNR1
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Figure 5.4: BER versus SNR2 while fixing SNR1 = 20dB.
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Figure 5.5: BER versus SNR2 at different correlation coefficient k while fixing SNR2 =

20dB.
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Figure 5.6: BER versus SNR1 at different number of antennas while fixing SNR2 = 20dB.

than the JMMSE, TH-robust, TH-L-robust, and M-Schur-convex schemes in terms of

BER. The BER performance of the proposed OPT-TH-cov and SUB-TH-cov scheme

is closer to that of the TH-FSCI scheme when k is large (i.e., the elements of H2 are

highly correlated).

In the last example, a non-regenerative MIMO relay system is simulated and ran-

domly 1000 16-QAM symbols are generated at the source node for each channel realiza-

tion. The correlated coefficient at the relay-destination link is chosen as k = 3. Fig. 5.6

shows the performance of all algorithms in terms of BER versus SNR1 for N = 2 and

N = 4, while fixing SNR2 = 20dB. It can be observed that the proposed OPT-TH-cov

and SUB-TH-cov algorithms outperform the JMMSE, TH-robust, TH-L-robust, and M-

Schur-convex schemes over the whole range of SNR1. It can also be seen from Fig. 5.6

that with increasing number of antennas at the source, relay, and destination nodes, the

BER performance of all algorithms improve. Finally, computational complexity of the

proposed SUB-TH-cov and OPT-TH-cov algorithms is compared. In the SUB-TH-cov

algorithm, the complexity order of matrix inversion, matrix GMD, and matrix SVD is

O(N3). Since the complexity of solving the problem (5.77)-(5.79) is much lower than the

matrix operations mentioned above, the complexity order of the SUB-TH-cov algorithm

is O(N3). In each iteration of the proposed OPT-TH-cov algorithm, the major oper-
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Table 5.3: Average Number of Iterations Required by the OPT-TH-cov Algorithm Till

Convergence

SNR1(dB) 0 5 10 15 20 25 30

Number of Iterations 3 4 6 8 10 12 12

ation is to update the relay matrix using the projected gradient method, which has a

complexity order of O(I1N
3). Here I1 is the number of projected gradient steps required

to reach a stationary point. The overall computational complexity of the OPT-TH-cov

algorithm also depends on the number of iterations required till convergence, which is

shown in Table 5.3. Obviously, the SUB-TH-cov algorithm has a much lower overall

computational complexity than the OPT-TH-cov algorithm. Thus, the SUB-TH-cov

algorithm is very attractive for practical MIMO relay communication systems.

5.5 Chapter Summary

In this chapter, the challenging issue of precoding matrices optimization problem is

addressed for a TH-based two-hop MIMO relay system where the full CSI of the source-

relay link is known, while only the CCI of the relay-destination link is available at the

relay node. The structure of the optimal TH precoding matrix and the source precoding

matrix are derived that minimize the MSE of the signal waveform estimation at the

destination. Then an iterative algorithm is developed to optimize the relay precoding

matrix. A simplified precoding matrices design algorithm is proposed which has lower

computational complexity than the iterative algorithm. Numerical results show that

the proposed precoding matrices design schemes outperform existing algorithms.

5.A Proof of Theorem 5.1

The Lagrangian function associated with the problem (5.37) can be written as

L1 = −X + µ(Q2(G)− pr) (5.86)
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where µ is the Lagrangian multiplier. ∇GL1 = 2(∂L1
∂G )∗ is denoted as the gradient of

(5.86). The KKT conditions [61] of the problem (5.37) on G are given by

∇GL1 = 0 (5.87)

µ(Q2(G)− pr) = 0 (5.88)

Q2(G) ≤ pr. (5.89)

Using ∂ ln |X|
∂X = X−T , ∂tr(AX−1)

∂X = −(X−1AX−1)T , and ∂tr(XA)
∂X = AT , ∇GL1 can be

written as

∇GL1=−2HH
2 R−1

n H2GH1AHH
1

+2σ2
1H

H
2 R−1

n H2GH1AHH
1 GHHH

2 R−1
n H2G

+2µσ2
xGH1FF

HHH
1 . (5.90)

The Lagrangian function of the problem (5.40)-(5.41) associated with G can be

written as

L2 = tr{ΩA}+ µ(Q2(G)− pr). (5.91)

The KKT conditions of the problem (5.40)-(5.41) on G are given by

∇GL2 = 0 (5.92)

µ(Q2(G)− pr) = 0 (5.93)

Q2(G) ≤ pr. (5.94)

The gradient ∇GL2 of the Lagrangian function (5.91) can be derived as

∇GL2=−2HH
2 R−1

n H2GH1AΩAHH
1

+2σ2
1H

H
2 R−1

n H2GH1AΩAHH
1 GHHH

2 R−1
n H2G

+2µσ2
xGH1FF

HHH
1 . (5.95)

By comparing (5.87)-(5.90) with (5.92)-(5.95), it can be observed that the KKT

conditions of the problem (5.40)-(5.41) are equal to those of the problem (5.37) when

(5.42) holds. The derivative of (5.40) with respect to Ω can be written as

∂(tr{ΩA} − log |Ω|)
∂Ω

= AT − (Ω−1)T (5.96)

By equating (5.96) to zero, (5.42) is obtained. Thus with given G, the weight matrix

Ω minimizing (5.40) is given by (5.42).
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5.B Proof of Theorem 5.2

First, the following definition and lemma are introduced.

Definition 5.1 [65]. Let Φ be a matrix-convex function. The Jensen’s inequality for

matrix valued functions is given by E{Φ(X)} ≥ Φ(E{X}), where E{·} is expectation

on the random matrix X.

Lemma 5.3 [86]. For positive definite Hermitian matrix X, the matrix-valued function

Φ(X) = X−1 is matrix-convex. Therefore, from Definition 1, there is E{X−1} ≥
(E{X})−1.

The Theorem 5.2 is proved as follows. By using the matrix inversion lemma (5.20),

(5.53) can be written as

E
H̃ω

{T1(G̃)}=E
H̃ω

{
tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1 G̃

H

×Λ
1
2
Σ

(
Λ

1
2
ΣG̃G̃HΛ

1
2
Σ +

σ2
2

σ2
1

[
H̃H

ω H̃ω

]−1
)−1

×Λ
1
2
ΣG̃Λ

1
2
1 V

H
1

]−1}}
. (5.97)

By applying Lemma 5.3 to (5.97), (5.97) can be rewritten as

E
H̃ω

{T1(G̃)}≥tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1 G̃

HΛ
1
2
Σ

×
(
Λ

1
2
ΣG̃G̃HΛ

1
2
Σ +

σ2
2

σ2
1

E
H̃ω

{
H̃H

ω H̃ω

}−1)−1

×Λ
1
2
ΣG̃Λ

1
2
1 V

H
1

]−1}

=tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

×(INR
−D3)Λ

1
2
1 V

H
1

]−1}
(5.98)

where

D3 =
(
INR

+
σ2
1

σ2
2

G̃HΛ
1
2
ΣEH̃ω

{H̃H
ω H̃ω}Λ

1
2
ΣG̃
)−1

.

Using E
H̃ω

{H̃H
ω H̃ω} = NDINR

, E
H̃ω

{T1(G̃)} is obtained as E
H̃ω

{T1(G̃)} ≥ T2(G̃).
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5.C Proof of Theorem 5.3

For the sake of notational simplicity, let introduce T
1
2
1 , σx

σ1
Λ

1
2
FΛ

1
2
1 and T

1
2
2 , σ1

σ2
Λ

1
2
GΛ

1
2
Σ,1.

Then (5.67) can be written as

f(Z)=log
∣∣INS

+T
1
2
1

(
INS

−
(
INS

+T
1
2
2ZT

1
2
2

)−1)
T

1
2
1

∣∣

=log
∣∣INS

+T
1
2
1T

1
2
2 (T2 + Z−1)−1T

1
2
2T

1
2
1

∣∣

=log |T1T2 +T2 + Z−1| − log |T2 + Z−1|

=log |INS
+T3Z| − log |INS

+T2Z| (5.99)

where T3 , T1T2 + T2. The concavity of (5.C) can be proven by considering an

arbitrary line [87] given by Z = X+ tY ≥ 0. Then can be rewritten as

g(t)=log |INS
+T3(X+ tY)| − log |INS

+T2(X+ tY)|

=log
∣∣INS

+T
1
2
3 (X+ tY)T

1
2
3

∣∣

− log
∣∣INS

+T
1
2
2 (X+ tY)T

1
2
2
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=log |INS
+ tP3| − log |INS

+ tP2|+ ξ

=

NS∑

n=1

(log(1 + tλ3,n)− log(1 + tλ2,n)) + ξ (5.100)

where ξ , log |INS
+ T3X| − log |INS

+ T2X|, λi,n, i = 2, 3, n = 1, · · · , NS , are the

eigenvalues of Pi, and for i = 2, 3,

Pi =
(
INS

+T
1
2
i XT

1
2
i

)− 1
2T

1
2
i YT

1
2
i

(
INS

+T
1
2
i XT

1
2
i

)− 1
2 .

The second-order derivative of (5.100) is

g′′(t)=

NS∑

n=1

(
λ2
2,n

(1 + tλ2,n)2
−

λ2
3,n

(1 + tλ3,n)2

)

=

NS∑

n=1

(λ2,n − λ3,n)(λ2,n + λ3,n + 2tλ2,nλ2,n)

(1 + tλ2,n)2(1 + tλ3,n)2
. (5.101)

Let introduce λ(X) as the eigenvalue of X. Using the property of λ(AB) = λ(BA),

λ(Pi) can be written as

λ(Pi)=λ
(
T

1
2
i

(
INS

+T
1
2
i XT

1
2
i

)−1
T

1
2
i Y
)

=λ
(
Y

1
2

(
T−1

i +X
)−1

Y
1
2

)
, i = 1, 2. (5.102)

Since T3 ≥ T2, it can be seen from (5.102) that λ(P3) ≥ λ(P2), i.e., λ3,n ≥ λ2,n,

n = 1, · · · , NS . As a result, from (5.101), g′′(t) can be defined as g′′(t) ≤ 0. Therefore,

it can be concluded that f(Z) is concave.
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5.D Derivation of (5.80) and (5.81)

The Lagrangian function of (5.77) can be written as

L=−
NS∑

i=1

log
(aiΛ1,i + σ2

1)(NDbiΛΣ,i + σ2
2)

σ2
x(σ

2
1NDΛΣ,ibi + aiΛ1,iσ2

2 + σ2
2σ

2
1)

+µs

(
NS∑

i=1

ai − ps

)
+ µr

(
NS∑

i=1

bi − pr

)
(5.103)

where µs ≥ 0 and µr ≥ 0 are the Lagrangian multipliers. The KKT conditions of the

Lagrangian function (5.103) can be written as

∂L

∂ai
=− σ2

1NDbiΛΣ,iΛ1,i

(aiΛ1,i + σ2
1)(σ

2
1NDbiΛΣ,i + σ2

2aiΛ1,i + σ2
2σ

2
1)

+µs = 0 (5.104)

∂L

∂bi
=− σ2

2NDaiΛΣ,iΛ1,i

(NDbiΛΣ,i + σ2
2)(σ

2
1NDbiΛΣ,i + σ2

2aiΛ1,i + σ2
2σ

2
1)

+µr = 0 (5.105)

µs

(
NS∑

i=1

ai − ps

)
= 0, µs ≥ 0, ai ≥ 0, i = 1, · · · , NS

µr

(
NS∑

i=1

bi − pr

)
= 0, µr ≥ 0, bi ≥ 0, i = 1, · · · , NS .

Using (5.104) and (5.105) and after some manipulations, the optimum ai and bi can

be obtained as given by (5.80) and (5.81).
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Chapter 6

Robust Design for Multicasting

MIMO Relay Systems

In this chapter, the transceiver design is investigated for non-regenerative multicasting

MIMO relay systems, where one transmitter broadcasts common message to multiple

receivers with the aid of a relay node. The transmitter, relay, and receivers are all

equipped with multiple antennas. It is assumed that the true (unknown) channel ma-

trices have Gaussian distribution, with the estimated channels as the mean value, and

the channel estimation errors follow the well-known Kronecker model. In Section 6.1,

overview of the existing multicasting techniques is introduced. The system model of

the proposed non-regenerative multicasting MIMO relay networks is described in Sec-

tion 6.2. In Section 6.3, an optimal robust transceiver design algorithm is proposed

to jointly design the transmitter, relay, and receiver matrices to minimize the maximal

MSE of the signal waveform estimation among all receivers. In Section 6.4, an alter-

native suboptimal transceiver design algorithm is developed with low computational

complexity. Section 6.5 shows the numerical simulations which demonstrate the im-

proved robustness of the proposed transceiver design algorithm against the mismatch

between the true and estimated channels. Finally, the chapter is briefly summarized in

Section 6.6.

84



Chapter 6. Robust Design for Multicasting MIMO Relay Systems

6.1 Overview of Existing Techniques

In many practical communication systems, one source node transmits common infor-

mation to multiple receivers simultaneously. These systems are referred to as multicast

broadcasting or multicasting systems. Recently, multicasting systems have attracted

much research interest, due to the increasing demand for mobile applications such as

location based video broadcasting and streaming media.

The wireless channel has the multicast broadcasting nature, making it suitable for

multicasting applications. However, the wireless system performance may be degraded

due to the channel fading and shadowing effects. By deploying multi-antenna and beam-

forming techniques at the transmitter and receivers, the channel shadowing effect can be

mitigated [7]. Next generation wireless standards such as WiMAX 802.16m and 3GPP

LTE-Advanced have already included technologies which enable better multicasting so-

lutions based on multi-antenna and beamforming techniques [88].

Due to the nonconvex nature of the problem, designing the optimal transmit beam-

forming vector for multicasting is difficult in general. Capacity limits of multi-antenna

multicasting channel have been studied in [89], and the channel spatial correlation effect

on the channel capacity has been investigated in [90]. In [91], transmit beamforming

vectors for physical layer multicasting have been designed with the assumption that the

CSI is available at the transmitter. In the multicasting systems [88–93], single-antenna

has been assumed at the receivers. Recently multicasting systems with multi-antenna

receivers have been investigated in [94–98].

In the case of long distance between the transmitter and receivers, relay node is

necessary to efficiently mitigate the pathloss of wireless channel. In [99], a cooperative

protocol for multicasting systems with multiple transmit antenna is proposed with the

assumption that the users are equipped with single antenna. A two-hop MIMO relay

multicasting system has been proposed in [45, 46] where one transmitter multicasts

common message to multiple receivers with the aid of a relay node, and the transmitter,

relay, and receivers are all equipped with multiple antennas. It is also assumed in

[45, 46] that the full CSI of all channels is available at the relay node. However, in

practical communication systems, the exact CSI is not available, and therefore, has to

be estimated. There is always mismatch between the true and estimated CSI. Hence,

the performance of the algorithm in [45, 46] will degrade due to such CSI mismatch.

In this chapter, transceiver design algorithms are proposed for multicasting MIMO

relay systems which are robust against the CSI mismatch. Similar to [45, 46], the
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transmitter, relay, and receivers in the system are all equipped with multiple antennas.

However, different to [45, 46], the true channel matrices have Gaussian distribution,

with the estimated channels as the mean value, and the channel estimation errors follow

the well-known Kronecker model [85, 100–105]. An optimal robust transceiver design

algorithm is developed to jointly design the transmitter, relay, and receiver matrices to

minimize the maximal MSE of the signal waveform estimation among all receivers. It

can be mentioned that although robust transceiver design has been studied for single-

user MIMO relay systems [40, 101, 102, 106, 107], and multiuser MIMO relay systems

[108]. Due to the computational complexity of the proposed optimal robust transceiver

design algorithm, an alternative computationally reduced suboptimal robust transceiver

design algorithm is proposed.

In the proposed two algorithms, it is proved that the MSE at each receiver can be

decomposed into the sum of the MSEs of the first-hop and second-hop channels, which

extends the result of MSE decomposition [109] from MIMO relay systems with perfect

CSI to practical MIMO relay systems such as imperfect CSI. Based on this MSE decom-

position, transceiver design algorithms are developed with low computational complex-

ity. It is shown that under some mild condition, the transmitter and relay precoding

matrices can be optimized separately. In particular, the transmitter precoding matrix

optimization problem has a closed-form solution, while the relay precoding matrix can

be optimized through solving a convex semidefinite programming (SDP) problem [87].

Numerical simulations demonstrate the improved robustness of the proposed algorithms

against the CSI mismatch.

6.2 System Model

A two-hop non-regenerative MIMO relay multicasting system is considered with L re-

ceivers as shown in Fig. 6.1, where the transmitter and relay have NS and NR antennas,

respectively. For simplicity, it is assumed that each receiver has ND antennas. It is

assumed that due to severe pathloss, there is no direct link between the transmitter and

receivers. The data transmission takes place over two time slots. The received signal at

the relay during the first time slot is given by

yr = H1Fx+ n1 (6.1)

where x ∈ C
NB×1 is the source signal vector satisfying E{xxH} = INB

, NB is chosen to

satisfy NB ≤ min (NS , NR, ND), H1 ∈ C
NR×NS is the MIMO channel matrix between
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1X
~

X

LX
~

Figure 6.1: Block diagram of a two-hop non-regenerative multicasting MIMO relay system.

the transmitter and relay, F ∈ C
NS×NB is the transmitter precoding matrix, and n1 ∈

C
NR×1 is the additive noise vector at the relay. Here In represents the n × n identity

matrix. At the second time slot, the relay node linear precodes yr with the relay

precoding matrix G ∈ C
NR×NR , and broadcasts the linearly precoded signal vector

xr = Gyr (6.2)

to all receivers. The received signal at the ith receiver can be written as

yd,i = H2,iGH1Fx+H2,iGn1 + n2,i, i = 1, · · · , L (6.3)

where H2,i ∈ C
ND×NR is the MIMO channel matrix between the relay and the ith

receiver, n2,i ∈ C
ND×1 is the additive noise vector at the ith receiver. It is assumed

that all noises are i.i.d. with zero mean and unit variance.

In general, the instantaneous CSI is required for the optimal design of the precoding

matrices F and G. However, in practice, the exact CSI is not available due to channel

estimation errors. In fact, the exact CSI H1 and H2,i can be modeled as [102, 103, 110,

111]

H1=Ĥ1 +∆1 (6.4)

H2,i=Ĥ2,i +∆2,i, i = 1, · · · , L (6.5)

where Ĥ1 and Ĥ2,i are the estimated transmitter-relay and relay-ith receiver channel

matrices, respectively, ∆1 and ∆2,i are the corresponding channel estimation error

matrices. It is assumed that ∆1 and ∆2,i satisfy the Gaussian-Kronecker model as
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[102, 103, 112–115]

∆1∼CN

(
0,Σ1⊗ΨT

1

)
(6.6)

∆2,i∼CN

(
0,Σ2,i⊗ΨT

2,i

)
, i = 1, · · · , L (6.7)

where Σ1 and ΨT
1 are the row and column covariance matrices of ∆1, respectively, and

similarly, Σ2,i andΨT
2,i are the row and column covariance matrices of ∆2,i, respectively.

From (6.4)-(6.7), the channel matrices H1 and H2,i can be modeled as [102]

H1=Ĥ1 +Σ
1
2
1 Hω1Ψ

1
2
1 (6.8)

H2,i=Ĥ2,i +Σ
1
2
2,iHω2,iΨ

1
2
2,i, i = 1, · · · , L (6.9)

where Hω1 and Hω2,i are complex Gaussian random matrices whose entries are i.i.d.

with zero mean and unit variance.

At the ith receiver, a linear receiver with the weight matrix Wi is applied to retrieve

the source signal vector x. Hence, the estimated signal at the ith receiver can be

expressed as

x̃i = Wi yd,i, i = 1, · · · , L. (6.10)

Using (6.3) and (6.10), the MSE of the signal waveform estimation at the ith receiver

is given by

Mi(Wi,G,F)=E
{
tr
{
(Wiyd,i − x)(Wiyd,i − x)H

}}

=tr
{(

WiH2,iGH1F− INB

)

×
(
WiH2,iGH1F− INB

)H
+WiRn,iW

H
i

}
(6.11)

where Rn,i is the equivalent noise covariance matrix given by

Rn,i = H2,iGGHHH
2,i + IND

.

The power constraints on the transmitter can be written as

P (F) = tr{FFH} ≤ Ps. (6.12)

From (6.2), the transmission power consumed by the relay node can be written as

P (G)=E{tr{xrx
H
r }}

=tr{G(H1FF
HHH

1 + INR
)GH} ≤ Pr. (6.13)
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6.3 Proposed Optimal Robust Transceiver Design Algo-

rithm

It can be seen from (6.11) that if the exact H1 and H2,i are unavailable at the receivers,

it is impossible to design Wi that optimizes Mi(Wi,G,F) in (6.11). If Wi is designed,

F, and G based only on Ĥ1 and Ĥ2,i, there can be a great performance degradation

due to the mismatch between H1, H2,i and Ĥ1, Ĥ2,i. Instead of optimizing (6.11), Wi,

F, and G are designed to minimize

Ji(Wi,G,F) , EH1,H2,i{Mi(Wi,G,F)}

where the statistical expectation is carried out with respect to H1 and H2,i, with the

distribution given in (6.8) and (6.9).

Lemma 6.1 [116] For H ∼ CN(Ĥ,Σ⊗ΨT ) and any constant matrix A, there is

EH

{
HAHH

}
=ĤAĤH + tr

{
AΨ

}
Σ (6.14)

By applying Lemma 6.1 in (6.14) to (6.11), Ji(Wi,G,F) can obtained as

Ji(Wi,G,F)=tr
{
INB

+Wi

(
Ĥ2,iGΞGHĤH

2,i + tr
{
GΞGHΨ2,i

}
Σ2,i

+IND

)
WH

i −WiĤ2,iGĤ1F−FHĤH
1 GHĤH

2,iW
H
i

}
(6.15)

where

Ξ = Ĥ1FF
HĤH

1 + tr{FFHΨ1}Σ1 + INR
.

For any given F and G, the optimal Wi that minimizes the MSE function (6.15) is

the well known MMSE receiver (Wiener filter) which is given by [59]

Wi=FHĤH
1 GHĤH

2,i

(
Ĥ2,iGΞGHĤH

2,i

+tr{GΞGHΨ2,i}Σ2,i + IND

)−1
(6.16)

By substituting (6.16) back into (6.15), the objective function (6.15) can be written as

Ji(G,F)=tr
{
INB

−FHĤH
1 GHĤH

2,i

(
Ĥ2,iGΞGHĤH

2,i

+tr{GΞGHΨ2,i}Σ2,i + IND

)−1
Ĥ2,iGĤ1F

}
. (6.17)

Since the true H1 is unknown, the averaged transmission power is considered at the

relay node, which can be calculated from (6.13) as

EH1{P (G)}=EH1{tr{G(H1FF
HHH

1 + INR
)GH}}

=tr{GΞGH}. (6.18)
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In the proposed transceiver design, the main aim is to minimize the maximum of

(6.17) among all receivers subjecting to the transmitter and relay power constraints,

which can be written as the following optimization problem.

min
F,G

max
i

Ji(G,F) (6.19)

s.t. tr
{
GΞGH

}
≤ Pr (6.20)

tr{FFH} ≤ Ps (6.21)

where (6.20) and (6.21) are the transmission power constraints at the relay node and the

transmitter, respectively, and Pr > 0, Ps > 0 are the corresponding power budgets. The

min-max problem (6.19)-(6.21) is very hard to solve due to the complicated objective

function (6.19). In the following, a low computational complexity approach is proposed

to optimize F and G. The following theorem shows the optimal structure of G as the

solution to the problem (6.19)-(6.21).

Theorem 6.1 The optimal relay precoding matrix G for each transmitter-relay-receiver

link can be expressed as

G = TWr = TFHĤH
1 Ξ−1 (6.22)

where Wr , FHĤH
1 Ξ−1 can be viewed as the linear MMSE receiver at the relay node,

and T is unknown and can be viewed as the precoding matrix at the transmit side of the

second-hop MIMO multicasting channel. Using G in (6.22), the MSE of the estimated

signal at the ith receiver (6.17) can be reformulated as the sum of two MSE functions

Ji(T,F)=tr
{
(INB

+FHĤH
1 Υ−1Ĥ1F)

−1
}
+ tr

{[
R−1+THĤH

2,i

×
(
tr
{
TRTHΨ2,i

}
Σ2,i + IND

)−1
Ĥ2,iT

]−1}
(6.23)

where

Υ=tr{FFHΨ1}Σ1 + INR
(6.24)

R=FHĤH
1

(
Ĥ1FF

HĤH
1 +Υ

)−1
Ĥ1F. (6.25)

Proof: See Appendix 6.A. �

Interestingly, Theorem 6.1 extends the MSE matrix decomposition from relay sys-

tems with perfect CSI to two-hop relay systems with imperfect CSI. In fact, the first
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term in (6.23) is the MSE of the first-hop signal waveform estimation at the relay node

given by

EH1{E{tr{(Wryr − x)(Wryr − x)H}}}

=EH1{tr{(WrH1F−INB
)(WrH1F−INB

)H+WrW
H
r }}

=tr{WrΞWH
r −WrĤ1F− FHĤH

1 WH
r + INB

}

=tr
{
(INB

+FHĤH
1 Υ−1Ĥ1F)

−1
}

while the second term in (6.23) can be viewed as the increment of the MSE introduced

by the second-hop.

Using (6.22), the power consumption at the relay node (6.18) can be rewritten as

tr(TRTH). Hence, the problem (6.19)-(6.21) can be rewritten as

min
F,T

max
i

Ji(T,F) (6.26)

s.t. tr{TRTH} ≤ Pr (6.27)

tr{FFH} ≤ Ps. (6.28)

Using the matrix inversion lemma [60]

(A+BCD)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1 (6.29)

R in (6.25) can be expressed as

R=FHĤH
1

(
Υ−1 −Υ−1Ĥ1F

×
(
FHĤH

1 Υ−1Ĥ1F+ INB

)−1
FHĤH

1 Υ−1
)
Ĥ1F

=FHĤH
1 Υ−1Ĥ1F

(
FHĤH

1 Υ−1Ĥ1F+ INB

)−1
. (6.30)

In the case of small CSI mismatch, i.e., tr{FFHΨ1}Σ1 is much smaller compared with

INR
, Υ can be approximated as INR

. Consequently it can be seen from (6.30) that R

can be approximated as INB
when FHĤH

1 Ĥ1F is much greater than INB
. Therefore,

the problem (6.26)-(6.28) can be approximated as

min
F,T

max
i

tr{(INB
+ FHĤH

1 Υ−1Ĥ1F)
−1}

+tr{(INB
+THĤH

2,iK
−1
i Ĥ2,iT)−1} (6.31)

s.t. tr{TTH} ≤ Pr (6.32)

tr{FFH} ≤ Ps (6.33)
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where Ki = tr
{
TTHΨ2,i

}
Σ2,i + IND

, i = 1, · · · , L.
It can be observed from the problem (6.31)-(6.33) that the first trace term in the

objective function (6.31) does not depend on T, while the value of the second trace term

in (6.31) is not affected by F. Therefore, the problem (6.31)-(6.33) can be decomposed

into the problem of optimizing F as

min
F

tr{(INB
+ FHĤH

1 Υ−1Ĥ1F)
−1} (6.34)

s.t. tr{FFH} ≤ Ps (6.35)

and the problem which optimizes T as

min
T

max
i

tr{(INB
+THĤH

2,iK
−1
i Ĥ2,iT)−1} (6.36)

s.t. tr{TTH} ≤ Pr. (6.37)

6.3.1 Optimization of F

When Ψ1 = INS
, i.e., the columns of ∆1 are uncorrelated, from (6.24) Υ can be

defined as Υ = tr{FFH}Σ1 + INR
. It can be easily shown that the optimal solution

of the problem (6.34)-(6.35) must meet equality at constraint (6.35), i.e., the optimal

F should satisfy tr{FFH} = Ps. In this case, Υ = PsΣ1 + INR
does not depend on F,

and the problem (6.34)-(6.35) has a closed-form solution as shown later.

However, for the general case of Ψ1 6= INS
, Υ is a function of F, which makes

the problem (6.34)-(6.35) difficult to solve. To overcome this challenge, the following

inequality [102] is applied

tr
{
FFHΨ1

}
≤ PsλM(Ψ1) (6.38)

where λM(·) stands for the maximal eigenvalue of a matrix. From (6.38), an upper-

bound of (6.34) is given by

tr{(INB
+ FHĤH

1 Υ−1Ĥ1F)
−1}

≤ tr{(INB
+FHĤH

1 (PsλM(Ψ1)Σ1+INR
)−1Ĥ1F)

−1}. (6.39)

Interestingly, the equality in (6.39) holds when Ψ1 = INS
, as in this case λM(Ψ1) = 1.

Based on the discussion above, let introduce

A , ĤH
1 (PsλM(Ψ1)Σ1+INR

)−1Ĥ1.
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The problem (6.34)-(6.35) is modified to the following transmitter precoding matrix

optimization problem

min
F

tr{(INB
+ FHAF)−1} (6.40)

s.t. tr{FFH} ≤ Ps. (6.41)

Let introduce the EVD of A as A = UAΛAU
H
A , where the diagonal elements of ΛA

are sorted in a decreasing order. It can be shown that the solution to the problem

(6.40)-(6.41) is given by

F = UA,1Λ
1
2
F (6.42)

where UA,1 contains the leftmost NB columns of UA associated with the largest NB

eigenvalues and ΛF is a diagonal matrix. Using (6.42), the problem (6.40)-(6.41) can

be written as the following constrained optimization problem with scalar variables

min
{λF,i}

NB∑

i=1

1

1 + λF,iλA,i
(6.43)

s.t.

NB∑

i=1

λF,i ≤ Ps (6.44)

λF,i ≥ 0, i = 1, · · · , NB (6.45)

where λF,i and λA,i, i = 1, · · · , NB , are the ith diagonal elements of ΛF and ΛA,

respectively, and {λF,i} = {λF,1, · · · , λF,NB
}. The problem (6.43)-(6.45) has the well-

known water-filling solution as

λF,i =
1

λA,i

(√
λA,i

µ
− 1

)+

, i = 1, · · · , NB

where (x)+ = max(x, 0), and µ > 0 satisfies the nonlinear equation of
∑NB

i=1
1

λA,i

(√λA,i

µ −
1
)+

= Ps.

6.3.2 Optimization of T

Similar to the technique used in optimizing F, the tr
{
TTHΨ2,i

}
can be defined as

tr
{
TTHΨ2,i

}
≤ PrλM(Ψ2,i). Let introduce

Bi , ĤH
2,i(PrλM(Ψ2,i)Σ2,i + IND

)−1Ĥ2,i, i = 1, · · · , L.
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The problem (6.36)-(6.37) can be modified to the following problem

min
T

max
i

tr{(INB
+THBiT)−1} (6.46)

s.t. tr{TTH} ≤ Pr. (6.47)

Using the matrix identity of tr{(Im+Am×nBn×m)−1} = tr{(In+Bn×mAm×n)
−1}+

m− n, the min-max problem ((6.46))-(6.47) can be written as

min
Q

max
i

tr
{(

IND
+B

1
2
i QB

H
2
i

)−1}
+NB −ND (6.48)

s.t. tr
(
Q
)
≤ Pr (6.49)

Q � 0 (6.50)

whereQ = TTH andQ � 0 denotes thatQ is a PSD matrix. Let introduce a real valued

slack variable ρ and PSD matrices Zi with
(
IND

+B
1
2
i QB

H
2
i

)−1 � Zi, i = 1, · · · , L, where
A � B means that B −A is PSD. By using the Schur complement [87], the problem

(6.48)-(6.50) can be equivalently rewritten as

min
ρ,Q,{Zi}

ρ (6.51)

s.t. tr(Zi) ≤ ρ, i = 1, · · · , L (6.52)

tr
(
Q
)
≤ Pr (6.53)

(
Zi IND

IND
IND

+B
1
2
i QB

H
2
i

)
� 0, i = 1, · · · , L (6.54)

Q � 0 (6.55)

where {Zi} = {Z1, · · · ,ZL}. The problem (6.51)-(6.55) is a convex SDP problem and

can be solved by the convex programming toolbox CVX [117].

6.4 Proposed Suboptimal Robust Transceiver Design Al-

gorithm

For any given precoding matrices F and G which satisfy the power constraints at the

transmitter and relay node (6.12) and (6.13), the weight matrix Wi minimizing (6.11)

is the well known MMSE filter which is given by [59]

Wi=FHHH
1 GHHH

2,i

×(H2,iGH1FF
HHH

1 GHHH
2,i +Rn,i)

−1. (6.56)
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After substituting (6.56) into (6.11) and using the matrix inversion lemma (6.29) the

MSE of the signal waveform estimation at the ith receiver is given by

Ji(G,F) = tr
{[

INB
+ H̄H

i R−1
n,iH̄i

]−1}
(6.57)

where H̄i = H2,iGH1F.

From (6.12), (6.13), and (6.57), the linear transceiver design problem can be formu-

lated as

min
G,F

max
i

Ji(G,F)

s.t. tr
{
G(H1FF

HHH
1 + INR

)GH
}
≤ Pr

tr
{
FFH

}
≤ Ps (6.58)

Note that directly solving the min-max problem (6.58) is difficult due to the complicated

function of Ji(G,F). In the following, a low computational complexity approach is

proposed to solve the problem (6.58).

It can be shown similar to [109] that the optimal relay precoding matrix G for each

link can be expressed as

G = TDH (6.59)

where D = (H1FF
HH1+INR

)−1H1F and T can be considered as the precoding matrix

at the transmit side of the second-hop MIMO multicasting channel.

Using the relay precoding matrix G (6.59), the MSE of the estimated signal at the

ith receiver can be reformulated as the sum of two individual MSE [109] functions

Ji(T,F)=tr
{[

INB
+ FHHH

1 H1F
]−1}

+tr
{[

R−1 +THHH
2,iH2,iT

]−1}
, i = 1, · · · , L

where

R = FHHH
1

(
H1FF

HHH
1 + INR

)−1
H1F. (6.60)

Interestingly, the first term in (6.60) is the MSE of estimating x from the signal vector

(6.1) received at the relay node using the MMSE receiver with the weight matrix D,

while the second term in (6.60) can be viewed as the increment of the MSE introduced

by the second-hop.
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Using the relay precoding matrix G in (6.59), the power consumption at the relay

power can be rewritten as tr(TRTH). Hence, the problem (6.58) can be equivalently

rewritten as the following problem

min
F,T

max
i

Ji(T,F)

s.t. tr
{
TRTH

}
≤ Pr

tr
{
FFH

}
≤ Ps. (6.61)

Using the matrix inversion lemma (6.29), the matrix R (6.60) can be expressed as

R=FHHH
1

(
INR

−H1F

×
(
FHHH

1 H1F+ INB

)−1
FHHH

1

)
H1F

=FHHH
1 H1F

(
FHHH

1 H1F+ INB

)−1
(6.62)

It can observed from (6.62) that with increase in the transmitter power Ps, F
HHH

1 H1F

approaches infinity and for large Ps value, FHHH
1 H1F ≫ INB

. Hence, R can be

approximated as INB
for large Ps value [109]. Therefore, the problem (6.61) can be

formulated as

min
F,T

max
i

tr
{[

INB
+ FHHH

1 H1F
]−1}

+tr
{[

INB
+THHH

2,iH2,iT
]−1}

s.t. tr
{
TTH

}
≤ Pr,

tr
{
FFH

}
≤ Ps (6.63)

It can be noticed from (6.63) that T has no influence on the first term of the

objective function (6.63) and F has no influence on the second term as well. Hence,

the optimization problem (6.63) can be divided into the following transmitter precoding

matrix optimization problem

min
F

tr
{[

INB
+ FHHH

1 H1F
]−1}

s.t. tr
{
FFH

}
≤ Ps (6.64)

and the relay precoding matrix optimization problem can be expressed as

min
T

max
i

tr
{[

INB
+THHH

2,iH2,iT
]−1}

s.t. tr
{
TTH

}
≤ Pr. (6.65)
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Lemma 6.2 Let f(X) be a function of random matrix X having finite expectation

E(X). If f is a matrix-convex function, then E[f(X)] � f(E[X]) [87].

6.4.1 Optimization of F

It can be noticed from (6.64) that the problem is reduced to find the optimal precoding

matrix F to minimize the MSE of the received signal at the relay node. However, as

the exact H1 is unknown, the problem (6.64) cannot be solved. If F is optimized based

on Ĥ1, there might be great performance degradation due to the mismatch between H1

and Ĥ1. Thus, instead of minimizing M(F) = tr{(INB
+FHHH

1 H1F)
−1}, E∆1{M(F)}

is minimized, where the expectation is over the distribution of ∆1.

However, the exact expression of E∆1{M(F)} is difficult to obtain. Using the channel

estimation error model (6.4) and Lemma 6.2, the lower bound of E∆1{M(F)} can be

written as

E∆1{M(F)}�tr
{(

INB
+ FHE∆1{HH

1 H1}F
)−1}

=tr
{(

INB
+ FHAF

)−1}
(6.66)

where A = ĤH
1 Ĥ1+tr

{
Σ1

}
Ψ1. Using (6.66), the source precoding matrix optimization

problem can be written as

min
F

tr
{(

INB
+ FHAF

)−1}

s.t. tr
{
FFH

}
≤ Ps. (6.67)

Let introduce the EVD of the matrix A

A = UAΛAU
H
A (6.68)

where the diagonal elements of A are sorted in a decreasing order. It can be shown that

the solution to the problem (6.67) is given by

F = UA,1Λ
1
2
F (6.69)

where UA,1 contains the leftmost NB columns of UA associated with the largest NB

eigenvalues and ΛF is a diagonal matrix. After substituting (6.68) and (6.69) into

(6.67), the problem (6.67) can be written as the following optimization problem with
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scalar variables

min
{λF,i}

NB∑

i=1

1

1 + λF,iλA,i
(6.70)

s.t.

NB∑

i=1

λF,i ≤ Ps (6.71)

λF,i ≥ 0, i = 1, · · · , NB (6.72)

where λF,i and λA,i, i = 1, · · · , NB , are the ith diagonal elements of ΛF and ΛA,

respectively, and {λF,i} = {λF,1, · · · , λF,NB
}. The problem (6.70)-(6.72) has the well-

known water-filling solution as [61]

λF,i =
1

λA,i

(√
λA,i

µ
− 1

)+

, i = 1, · · · , NB

where (x)+ = max(x, 0), and µ > 0 satisfies the nonlinear equation of
∑NB

i=1
1

λA,i

(√λA,i

µ −
1
)+

= Ps.

6.4.2 Optimization of T

It can be seen from (6.65) that the problem is reduced to find the optimal precoding

matrix T to minimize the maximal MSE of the received signal at the receiver. Similar

to the approach for optimizing F, using the channel estimation error model (6.5) and

Lemma 6.2, the objective function can be written as

E∆2,i{tr{(INB
+THHH

2,iH2,iT)−1}}

� tr
{[

INB
+THE∆2,i{HH

2,iH2,i}T
]−1}

= tr{(INB
+THBiT)−1} (6.73)

where Bi = ĤH
2,iĤ2,i + tr

{
Σ2,i

}
Ψ2,i. Using (6.73), the problem of optimizing T can be

written as

min
T

max
i

tr
{[

INB
+THBiT

]−1}

s.t. tr
(
TTH

)
≤ Pr. (6.74)

Using the matrix identity tr
{[
Im+Am×nBn×m

]−1}
= tr

{[
In+Bn×mAm×n

]−1}
+
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m− n the min-max problem (6.74) can be written as

min
Q

max
i

tr
{[

IND
+B

1
2
i QB

1
2
i

]−1}
+NB −ND

s.t. tr
(
Q
)
≤ Pr

Q � 0 (6.75)

where Q = TTH and Q � 0 denotes that Q is a PSD matrix. Let introduce a PSD ma-

trix Zi with
[
IND

+B
1
2
i QB

1
2
i

]−1 � Zi, i = 1, · · · , L and a real valued slack variable ρ. By

using the Schur complement [87], the optimization problem (6.75) can be reformulated

as

min
ρ, Q, Zi

ρ

s.t. tr
(
Zi

)
≤ ρ, i = 1, · · · , L

tr
(
Q
)
≤ Pr(

Zi IND

IND
IND

+B
1
2
i QB

1
2
i

)
� 0, i = 1, · · · , L

Q � 0. (6.76)

The optimization problem (6.76) is a convex SDP problem and the convex programming

toolbox CVX [117] can be used to solve the SDP problem.

6.5 Numerical Examples

In this section, the performance of the proposed two robust transceiver design algorithms

is investigated for multicasting MIMO relay systems through numerical simulations. A

two-hop non-regenerative multicasting MIMO relay system is simulated with NB =

NS = NR = ND = 4. The information-carrying symbols are modulated using the

QPSK constellations. The SNRs of the first-hop and second-hop channels are defined

as SNR1 = Ps/NS and SNR2 = Pr/NR, respectively. SNR1 is set as SNR1 = 30dB. In

the simulations, the correlation matrices of the channel estimation errors are modeled
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as [102, 118]

Ψ1=Ψ2,i =




1 α α2 α3

α 1 α α2

α2 α 1 α
α3 α2 α 1


 , i = 1, · · · , L

Σ1=Σ2,i = σ2
e




1 β β2 β3

β 1 β β2

β2 β 1 β
β3 β2 β 1


 , i = 1, · · · , L

where 0 ≤ α, β ≤ 1 are correlation coefficients, and σ2
e measures the variance of the

estimated error. The estimated channel matrices Ĥ1 and Ĥ2,i are generated based on

the following distributions

Ĥ1∼CN

(
0,

1− σ2
e

σ2
e

Σ1⊗ΨT
1

)

Ĥ2,i∼CN

(
0,

1− σ2
e

σ2
e

Σ2,i⊗ΨT
2,i

)
, i = 1, · · · , L.

The performance of the proposed robust transceiver design algorithms is compared

namely, optimal robust (opt-robust) and suboptimal robust (sub-opt-robust), with the

non-robust algorithm developed in [45] in terms of both MSE and BER.

In the first simulation example, the performance of the proposed algorithms is stud-

ied at different level of σ2
e . Fig. 6.2 shows the NMSE performance of the MSE algorithms

versus SNR2 with L = 2 and α = β = 0. It can be depicted from Fig. 6.2 that the

proposed sub-opt-robust algorithm outperforms the non-robust algorithm in terms of

MSE. It can be observed from Fig. 6.2 that over the whole range of SNR2, the proposed

opt-robust algorithm significantly outperforms the sub-opt-robust and non-robust al-

gorithms in terms of MSE. As expected, for all algorithms, the system MSE decreases

when σ2
e is reduced.

For this example, the BER yielded by all algorithms versus SNR2 is shown in Fig. 6.3.

It can be clearly noticed from Fig. 6.3 that the proposed sub-opt-robust transceiver de-

sign algorithm produces much lower BER compared with the non-robust algorithm.

It can be concluded from Fig. 6.3 that the proposed opt-robust transceiver design al-

gorithm yields much lower BER compared with the sub-opt-robust and non-robust

algorithms.

In the second example, the performance of the proposed algorithms is investigated

at different α or β. Fig. 6.4 demonstrates the NMSE of all algorithms versus SNR2 at
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Figure 6.2: NMSE versus SNR2 at different σ2

e . L = 2 and α = β = 0.
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Figure 6.3: BER versus SNR2 at different σ2

e . L = 2 and α = β = 0.
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Figure 6.4: NMSE versus SNR2 at different α. L = 2, σ2

e = 0.005, and β = 0.

different α with L = 2, σ2
e = 0.005, and β = 0. From Fig. 6.4, it can be noticed that the

proposed sub-opt-robust algorithm has a comparable performance than the non-robust

algorithm. It can be seen from Fig. 6.4 that the proposed opt-robust algorithm provides

a better MSE performance than the sub-opt-robust and non-robust algorithms for all

the α tested. Moreover, the MSE yielded by all algorithms increases with α. This is due

to the fact that as α increases, the correlation among the elements of channel matrices

increase, leading to the loss of spatial diversity.

For this example, the NMSE performance of all algorithms is shown in Fig. 6.5 for

different β with L = 2, σ2
e = 0.005, and α = 0. Similar to Fig. 6.4, It can be seen

from Fig. 6.5 that the proposed opt-robust algorithm outperforms the sub-opt-robust

and non-robust designs, and the NMSE of all algorithms increases with β.

In the third simulation example, the performance of the proposed algorithms is

studied with different number of receivers L. In Fig. 6.6, the NMSE performance of the

proposed robust transceiver designs is compared at different L as a function of SNR2

with σ2
e = 0.005 and α = β = 0. It can be seen from Fig. 6.6 that the NMSE of the

proposed sub-opt-robust algorithm increases while increasing the number of receivers.

It can be noted from Fig. 6.6 that as the number of receivers is increased, the NMSE of

the proposed opt-robust algorithm increases. This is reasonable since it is more likely
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Figure 6.5: NMSE versus SNR2 at different β. L = 2, σ2

e = 0.005, and α = 0.
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Figure 6.6: NMSE versus SNR2 at different L. σ2

e = 0.005 and α = β = 0.
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Figure 6.7: BER versus SNR2 at different L. σ2

e = 0.005 and α = β = 0.

to find a worse relay-receiver channel among the increased number of users and the

worst-user MSE is chosen as the objective function.

For this example, the BER performance of the proposed algorithms is demonstrated

in Fig. 6.7. It can be noted from Fig. 6.7 that similar to Fig. 6.6, the BER of the

proposed algorithms increases with the number of receivers.

6.6 Chapter Summary

In this chapter, the challenging issues of robust transceiver optimization problems are

addressed for multicasting MIMO relay systems when there is mismatch between the

true and estimated channel matrices. The true channel matrices are assumed as Gaus-

sian random matrices with the estimated channels as the mean value, and estimation

error follows the well-known Kronecker model. In the proposed algorithms, the transmit-

ter, relay, and receiver matrices are jointly optimized to minimize the maximal MSE of

the signal waveform estimation at all destination nodes. Simulation results demonstrate

that the proposed two robust transceiver design algorithms outperform the non-robust

algorithm.
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6.A Proof of Theorem 6.1

Let introduce

Pi , tr
{
GΞGHΨ2,i

}
Σ2,i + IND

, i = 1, · · · , L. (6.77)

The MSE function in (6.17) can be rewritten as

Ji(G,F)=tr{INB
−FHĤH

1 GHĤH
2,i

(
Ĥ2,iG(Ĥ1FF

HĤH
1 +Υ)

×GHĤH
2,i +Pi

)−1
Ĥ2,iGĤ1F}. (6.78)

By introducing

G̃ , GΥ
1
2 , H̃1 , Υ− 1

2 Ĥ1, H̃2,i , P
− 1

2
i Ĥ2,i (6.79)

The (6.78) can be rewritten as

Ji(G̃,F)=tr{INB
−FHH̃H

1 G̃HH̃H
2,i

(
H̃2,iG̃(H̃1FF

HH̃H
1 + INR

)

×G̃HH̃H
2,i + IND

)−1
H̃2,iG̃H̃1F}

=tr
{[

INB
+FHH̃H

1 G̃HH̃H
2,i

(
H̃2,iG̃G̃HH̃H

2,i + IND

)−1

×H̃2,iG̃H̃1F
]−1}

(6.80)

where the matrix inversion lemma (6.29) has been applied to obtain (6.80). Using (6.79),

the constraint (6.20) can be rewritten as

tr
{
G̃(H̃1FFH̃

H
1 + INR

)G̃H
}
≤ Pr (6.81)

Based on (6.21), (6.80), and (6.81), the MMSE-based transceiver optimization prob-

lem for the ith receiver can be written as

min
F,G̃

Ji(G̃,F) (6.82)

s.t. tr
{
G̃(H̃1FFH̃

H
1 + INR

)G̃H
}
≤ Pr (6.83)

tr{FFH} ≤ Ps (6.84)

It can be shown similar to [109] that the optimal G̃ as the solution to the problem

(6.82)-(6.84) can be written as

G̃ = TFHH̃H
1 (H̃1FF

HH̃H
1 + INR

)−1 (6.85)
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And the objective function (6.82) can be decomposed into two MSE terms.

Ji(T,F)=tr{(INB
+ FHH̃H

1 H̃1F)
−1}

+tr{(R̃−1 +THH̃H
2,iH̃2,iT)−1} (6.86)

where

R̃ = FHH̃H
1 (H̃1FF

HH̃H
1 + INR

)−1H̃1F. (6.87)

Substituting G̃ and H̃1 in (6.79) and Υ in (6.24) into (6.85), G can be written as

G = TFHĤH
1 Ξ−1,

which proves (6.22). By Substituting H̃1 in (6.79) into (6.87), R̃ can be obtained as

R̃ = FHĤH
1 (Ĥ1FF

HĤH
1 +Υ)−1Ĥ1F = R

in (6.25). Moreover, by substituting (6.22) into (6.77), Pi can be written as

Pi=tr
{
TFHĤH

1 Ξ−1Ĥ1FT
HΨ2,i

}
Σ2,i + IND

=tr
{
TRTHΨ2,i

}
Σ2,i + IND

(6.88)

Thus, from (6.79) and (6.86), Ji(T,F) can be written as

Ji(T,F)=tr{(INB
+FHĤH

1 Υ−1Ĥ1F)
−1}

+tr{(R−1 +THĤH
2,iP

−1
i Ĥ2,iT)−1}. (6.89)

Finally, by substituting (6.88) into (6.89), (6.23) is proved.
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Conclusions and Future Work

In wireless communication systems, incorporating relay node between the transmitter

and receiver is essential to provide reliable and cost effective, wide-area coverage for

wireless networks in a variety of applications. Recent studies show that performing lin-

ear precoding at the relay in a non-regenerative MIMO relay system can provide higher

rate data transmission than a single-antenna system in a scattered environment. In

this dissertation, practical communication aspects of MIMO relay channel have been

analyzed. The fundamental limits of MIMO relay channels with different degrees of

CSI have been studied. Firstly, MIMO relay transceiver design has been analyzed with

the assumption that the channel covariance information of the relay-destination link is

available at the relay node. Next, joint design of the source and relay precoding matrices

has been investigated in detail with the assumption that the mean and covariance in-

formation between the relay to destination nodes are available at the relay node. Then,

the work has been extended to non-linear transceiver design with the assumption that

the covariance information of the relay-destination link is available at the relay node.

Finally, the transceiver design problem has been extended to multicasting MIMO relay

systems.

7.1 Concluding Remarks

In this thesis, robust transceiver designs for non-regenerative MIMO relay systems have

been investigated under channel uncertainty conditions. In Chapter 2, the optimal relay

design problem has been considered for the non-regenerative MIMO relay communica-

tion system based on MMSE criterion. In the proposed design, it has been assumed that
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the channel uncertainty condition has been considered between the relay-destination

link. In the proposed design, nonconvex problem has been converted into convex prob-

lem and the problem is solved by conventional optimization tool. Simulation results

demonstrate the effectiveness of the proposed design.

Then in Chapter 3, linear non-regenerative MIMO relay technique has been proposed

to minimize the MSE of the signal waveform estimation at the destination node. In the

proposed design, the existing results are generalized on the structure of the optimal

relay amplifying matrix by considering the direct source-destination link. Further, it is

assumed that channel uncertainty condition is considered between the relay-destination

link and the source-destination link. Two design schemes are proposed to solve the

transceiver design problem. In the proposed iterative design algorithm, the noncon-

vex optimization problem is converted into convex optimization problem and solved

by projected gradient approach. Simulation results show that the proposed iterative

algorithms outperform the existing covariance feedback based algorithms.

In Chapter 4, the general structures of the optimal source and relay precoding matri-

ces have been derived for a linear non-regenerative MIMO relay communication system

with channel uncertainty conditions between the relay-destination link. Two transceiver

design schemes have been proposed to minimize the MSE of the symbol estimation at

the destination with the assumption that the mean and covariance feedback of the relay-

destination link is available at the relay node. In particular, it is shown that for both

proposed design algorithms, the source and relay precoding matrices diagonalize the

source-relay-destination channel.

Then in Chapter 5, the optimal TH, source, relay and receiver matrices design prob-

lem has been considered for a two-hop MIMO relay system based on MMSE criterion.

In the proposed transceiver design scheme, it has been assumed that the full CSI of the

source-relay link is known, while only the CCI of the relay-destination link is available

at the relay node. Two transceiver design schemes are developed to solve the highly

nonconvex joint TH, source, relay and receiver precoding matrix optimization problem.

In the proposed iterative algorithm, the optimization problem is solved using the pro-

jected gradient approach. In particular, it is shown in the simplified algorithm that

for given source precoding matrix, the optimal relay precoding matrix diagonalizes the

source-relay-destination channel.

Finally in Chapter 6, robust multicasting optimization problem is considered in

the downlink multiuser MIMO relay system where one transmitter multicasts common
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message to multiple receivers through a relay node. In the proposed transceiver design,

joint source and relay precoding design problem is investigated for multicasting non-

regenerative MIMO relay system. In the proposed design scheme, the transmitter, relay,

and receiver matrices are jointly optimized to minimize the maximal MSE of the signal

waveform estimation among all receivers subject to power constraints at the transmitter

and relay node. Due to the computation complexity of the proposed design scheme, a

low complexity design scheme is proposed with mild approximation. In particular, it is

shown that under (moderately) high source-relay link SNR assumption, both proposed

transceiver design schemes are formulated as standard SDP problems and are efficiently

solved using existing solvers.

7.2 Future Works

In this thesis, few advanced signal processing algorithms have been developed for non-

regenerative MIMO relay systems with the assumption that the wireless channels un-

dergo channel uncertainty conditions such as partial CSI and channel estimation errors.

However, there are still many possibilities for extending this dissertation work. In Chap-

ter 2, the optimal structure of the non-regenerative MIMO relay precoding matrix has

been derived with the assumption that the relay knows the CCI of the relay-destination

link and the full channel state information of the source-relay link. However, in the

study, optimization of the source precoding matrix has been omitted and channel infor-

mation of the source-relay link is considered as a full CSI. Hence, in the future work,

the omitted parameters can be incorporated to obtain a closed form solution.

It will also be interesting to investigate the performance of the non-regenerative

relaying algorithm in Chapter 3 with the assumption that the relay knows the covariance

information of the source-destination link and relay-destination link. In the proposed

non-regenerative MIMO relay systems, it has been assumed that there is a direct link

between the source and destination nodes. In the future work, it can be assumed that

the covariance information of the source-relay link is available at the relay node.

Extended work of the Chapter 2 has been investigated in Chapter 4. In the Chap-

ter 4, an iterative joint source and relay precoder design scheme has been proposed to

minimize the MSE of the symbol estimation at the destination with the assumption that

the mean and covariance feedback of the relay-destination link is available at the relay.

it has been assumed that the relay knows the full CSI of the source-relay link. In the
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future work, the proposed transceiver designs in Chapter 4 can be extended with the

assumption that mean and covariance information of the source-relay link are available

at the relay node. For getting a closed form solution, direct link can be considered for

obtaining the optimal transceiver design.

In Chapter 5, the performance of the TH precoder based non-linear transceiver

design has been investigated for a non-regenerative MIMO relay system assuming that

the full CSI of the source-relay link is known, while only the CCI of the relay-destination

link is available at the relay node. In future work, it can be analyzed with the assumption

that the mean and covariance information of all channels are available at the relay node.

Recently, there has been a growing interest on beamforming problems for mul-

ticasting in the non-regenerative MIMO relay systems. The existing dual-hop non-

regenerative MIMO relay schemes have been extended to dual-hop non-regenerative mul-

ticasting MIMO relay systems in Chapter 6. The challenging issue of robust transceiver

optimization has been investigated for multicasting MIMO relay systems when there is

mismatch between the true and estimated channel matrices. The min-max MSE prob-

lem has been solved for multicasting multiple data streams. However, the min-max rate

problem for multiple-stream multicasting still remains open as a challenging problem.
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