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Abstract

Recently cooperative wireless communications have attracted considerable
attention, due to their potential to provide reliable, cost effective and wide-
area coverage of wireless networks. In cooperative wireless communication
systems, relay node can be deployed in between the source and the destina-
tion nodes to reduce the transmission power from the source to neighbouring
nodes and mitigate the channel fading and shadowing effects. In this sce-
nario, the source signals travel through two hops before they are received
by the destination node. Such system is called as multiple-input multiple-
output (MIMO) relay system. In this dissertation, practical aspects of wire-
less channels such as channel uncertainty and channel estimation errors are
considered for transceiver design problems in a non-regenerative MIMO relay

system.

An optimal structure of the relay precoding matrix is derived to minimize
the mean-squared error (MSE) in the signal waveform estimation with the
assumption that the relay knows the channel covariance information (CCI)
of the relay-destination link and also the full channel state information (CSI)
of the source-relay link. The proposed scheme outperforms the conventional

relay algorithms in terms of both MSE and bit-error-rate (BER).

Next, an iterative covariance algorithm is proposed for non-regenerative
MIMO relay system with direct link. It is assumed that the full CSI of
the source-relay link and CCI of the relay-destination link as well as the
source-destination link are available at the relay node. In order to reduce
computational complexity of the proposed iterative covariance algorithm,
a suboptimal covariance algorithm is proposed. The developed iterative
covariance algorithm outperforms the conventional CCI based MSE algo-

rithms.

Next, an iterative joint source and relay precoder design is proposed for a

non-regenerative MIMO relay system with the assumption that the relay



knows the mean and CCI of the relay-destination link and the full CSI
of the source-relay link. In order to reduce computational complexity of
the proposed iterative design algorithm, a suboptimal relay-only precoder
design algorithm is proposed. The performance of the proposed iterative
joint source and relay precoder design algorithm is very close to that of the

algorithm using the full CSI.

Next, Tomlinson-Harashima (TH) precoder based non-linear transceiver de-
sign is proposed for a non-regenerative MIMO relay system, it is assumed
that the CCI of the relay-destination link is available at the relay node. First,
the structure of the optimal TH precoding matrix and the source precod-
ing matrix is derived. Then an iterative algorithm is developed to optimize
the relay precoding matrix. To reduce the computational complexity of the
iterative algorithm, a simplified precoding matrices design algorithm is pro-
posed. The proposed precoding matrices design algorithms outperform the

existing algorithms.

Finally, the transceiver design is investigated for a non-regenerative mul-
ticasting MIMO relay system, where one transmitter broadcasts common
message to multiple receivers with the aid of a relay node. The transmitter,
relay, and receivers are equipped with multiple antennas. It is assumed that
the true (unknown) channel matrices have Gaussian distribution, the esti-
mated channels are the mean value of this distribution. The channel estima-
tion errors follow the well-known Kronecker model. Two robust transceiver
design algorithms are proposed to jointly design the transmitter, relay, and
receiver matrices to minimize the maximal MSE of the signal waveform es-
timation among all receivers. In particular, it is proved that the MSE at
each receiver can be decomposed into the sum of the MSEs of the first-hop
and second-hop channels. Based on this MSE decomposition, transceiver
design algorithms are developed with low computational complexity. Nu-
merical simulations demonstrate the improved robustness of the proposed
transceiver design algorithm against the mismatch between the true and

estimated channels.
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Chapter 1

Introduction

In the next generation wireless communication systems, relaying is essential to provide
reliable and cost effective, wide-area coverage for wireless networks in a variety of ap-
plications. If the link-quality between the source and destination nodes degrades in a
cellular environment, relay nodes can be deployed in between the source-destination link
to mitigate the strong shadowing, multipath fading, path losses and high interferences.
The main aim of this thesis is to develop advanced robust signal processing algorithms
for multiple-input multiple-output (MIMO) relay communication systems. In this intro-
ductory chapter, necessary background of the MIMO relay systems is presented briefly
using partial channel state information (CSI) and an overview of the thesis contributions

is described in the following section.

1.1 MIMO Wireless Communication Systems

Due to high demand in multimedia applications, next-generation wireless communica-
tion systems are expected to support higher data rate compared to the current systems.
However, wireless communication channel is strongly impaired by multi-path fading.
The multi-path fading effects can severely degrade the performance of wireless com-
munication systems in terms of quality and reliability of the received signal at the
receiver. Designing the high data rate, high reliability wireless communication systems
is extremely challenging task.

MIMO technology provides a number of benefits that it effectively mitigates the
multi-path fading as well as resource constraints [1]. Wireless system’s spectral efficiency

can be improved by deploying multiple antennas at the transmitter and receiver ends.



Chapter 1. Introduction

By deploying multiple antennas at the transmitter and receiver ends, higher data rate
can be achieved without increasing the additional power or bandwidth expenditure as
compared to the single-input single-output (SISO) systems. By spatially multiplexing
several data streams onto the MIMO channel, the system can provide an additional
degree-of-freedom which leads to increase in the channel capacity [2-8]. The advantage
of a MIMO system is that it has the ability to convert multipath fading into a benefit
for the user [2, 9-11]. The performance improvements resulting from the use of MIMO

systems are due to the following unique features of MIMO configuration [5, 7].

e Array gain: Due to a coherent combining effect of the received signals at the
receiver, increases the receive signal-to-noise ratio (SNR). Achieving array gain
requires CSI between the transmitter and receiver and depends on the number of

transmit and receive antennas.

e Spatial diversity gain: In wireless communication systems, the received signal level
undergoes multi-path fading. The spatial diversity gain mitigates the fading effects
of wireless channels. Spatial diversity gain depends on signal being transmitted
over multiple copies of the transmitted signals in time, frequency, or space. Spatial
diversity is preferred over time/frequency diversity as it does not incur any cost
in transmission time or bandwidth. A MIMO channel with M transmit and Mg

receive antennas can achieve Mt Mpth-order spatial diversity.

e MIMO systems provide higher data rate through spatial multiplexing gain which
is achieved by transmitting independent data streams from different antennas. By
exploiting the spatial information of the signal, the receiver can separate the dif-
ferent streams, and the capacity scales linearly, with minimum number of transmit

antennas and receiver antennas, i.e., min{Mr, Mg} [7, 9].

e Interference occurs due to multiple users operating in the same time and frequency
band. When multiple antennas are used, spatial filters preserve the signals com-
ing from a certain spatial location, while suppressing signals from other spatial
locations. Therefore, MIMO systems can separate signals which differ in spatial
dimensions, just as a conventional filter which can separate signals of different fre-
quency band. Interference mitigation can also be implemented at the transmitter,
where the aim is to minimize the interference power sent towards the co-channel

users while delivering the signal to the intended user.
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However, it can be noticed that in general, it may not be possible to exploit all the
benefits of MIMO technology simultaneously due to conflicting demands on the spatial
degrees of freedom between spatial diversity gain and spatial multiplexing gain. The
level of these conflicts are resolved based on the type of signaling scheme and transceiver
design [5].

MIMO technologies have become the core of many components in the next-generation
wireless standards viz. the mobile communication systems, long-term evolution (LTE)
systems, and the IEEE 802.xx family of standards viz. IEEE 802.16e, IEEE 802.16j,
IEEE 802.16m, and IEEE 802.11n [12]. MIMO technology is compatible with any mod-
ulation scheme, hence future wireless standards will use MIMO techniques to achieve

higher data rate.

1.2 MIMO Relay Communication Systems

Wireless relaying is essential to provide reliable and cost effective, wide-area coverage
for wireless networks in a variety of applications. In a cellular environment, a relay can
be deployed in areas where there are strong shadowing effects, such as inside buildings
and tunnels. For mobile ad-hoc networks, relaying is essential not only to overcome
shadowing due to obstacles but also to reduce transmission power from source to neigh-
bouring nodes [13-16]. For tactical applications, dynamic deployment of relays is useful
to enhance the networks reliability, throughput, and minimize interception by unwanted
users.

There are two types of relay strategies: regenerative scheme and non-regenerative
scheme [17-19]. In regenerative strategy, the relay decodes the information received
from source and forwards the re-encoded signal to the destination. Whereas in non-
regenerative strategy, the relay amplifies the received signal from source and retrans-
mits the signal to the destination. Compared with the regenerative scheme, the non-
regenerative strategy has a lower computational complexity and is easy to implement
in a cooperative environment.

On the other hand, MIMO system can provide spatial diversity and multiplex-
ing gains to wireless communication systems [20]. When nodes in a relay network
have multiple transmit /receive antennas, such system is termed a MIMO relay system.
Transceiver designs for a two-hop non-regenerative MIMO relay system have been pro-

posed to maximize the mutual information (MI) between the source-destination link
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[21, 22]. Relay precoding algorithms have been investigated to minimize the mean-
squared error (MSE) of the signal waveform estimation at the destination node [23-28].
The proposed precoder designs in [21-28] have been developed with the assumption
that the full CSI of the source-relay and relay-destination links is available at the relay
node.

However, in practice, the environment is mostly surrounded by scatters and shad-
owing effects. Due to the scattered and shadowing environments, the received signal
is uncorrelated at the destination. Hence, the full CSI of the wireless channel is too
difficult to estimate at the relay node. Hence, a more practical assumption is that only
partial information of the wireless channel is available at the relay node. Relay precoder
design schemes have been proposed in [29-31] for maximizing the ergodic capacity of a
non-regenerative MIMO relay system with the assumption that the channel covariance
information (CCI) of the relay-destination link is available at the relay node. Minimum
MSE (MMSE) based transceiver designs have been investigated in [32-35] with the as-
sumption that CCI of the relay-destination link and the full CSI of the source-relay link
is known at the relay node.

Linear transceiver designs have been considered for non-regenerative MIMO relay
systems in the work of [29, 30, 32-35]. Compared with linear transceivers, non-linear
transceivers have a better MSE and bit-error-rate (BER) performances. Recently,
non-linear transceiver based non-regenerative MIMO relay system designs have been
proposed in [36, 37]. Non-linear transceiver can be incorporated at the receiver as a
decision-feedback equalizer (DFE) and/or at the transmitter in the form of a Tomlinson-
Harashima (TH) precoder. In general, the TH precoding based non-linear transceiver
design provides better MSE and BER performances than the DFE-based transceiver
design, as the latter suffers from error propagation.

The performance of the TH precoding scheme has been well studied for single-hop
MIMO systems [38], [39]. Recently, the TH precoding scheme has also been developed
for dual-hop non-regenerative MIMO relay systems [40] with the assumption that the
full CSI of the wireless channel is available at the relay node. In [40-43], channel
uncertainty has been considered for designing the TH precoding based non-regenerative
MIMO relay systems. Due to the non-linear nature of the precoding scheme, the TH
precoding is highly sensitive to the time-varying nature of the wireless channel [44].

The foregoing algorithms are developed by assuming that the exact CSI of the

channels is available at the relay node. However, in practical communication systems,
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the exact CSI is not available, and therefore, has to be estimated. There is always a
mismatch between the true and estimated CSI. Hence, the performance of the earlier
proposed algorithms will degrade due to such CSI mismatch. Furthermore, the proposed
algorithms are not tested under multiple receivers.

Recently, a two-hop non-regenerative multicasting MIMO relay system has been
investigated in [45, 46] where one transmitter multicasts common message to multiple
receivers with the aid of a relay node. The transmitter, relay, and receivers are all
equipped with multiple antennas. The multicasting transceiver design in [45, 46] is
proposed with the assumption that the full CSI of all channels is available at the relay
node. As described earlier, in the practical communication systems, the exact CSI is
not available, and therefore, has to be estimated. There is always a mismatch between
the true and estimated CSI. Hence, the performance of the algorithm in [45, 46] will

also degrade due to such CSI mismatch.

1.3 Thesis Objectives

The objective of this research is to develop new and innovative robust transceiver de-
sign schemes for a non-regenerative MIMO relay system to minimize the MSE of the
estimated signal at the destination node. Distinctively, the objectives of this research

are to:

e develop new and innovative MMSE based robust transceiver design schemes for
MIMO relay systems with theoretical justifications using computationally efficient

convex optimization algorithms.

e investigate the currently popular transceiver design approaches to minimize the

MSE of the MIMO relay systems for further improvement.

e evaluate and validate the effectiveness of the proposed transceiver design schemes

using numerical analysis and computer simulation.

1.4 Thesis Overview and Contributions

In next generation wireless communication systems, multiple users equipped with mul-
tiple antennas will transmit simultaneously to the base station with multiple receive

antennas and vice versa [47, 48]. However, in the case of long source-destination link
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distance, relay node is necessary to efficiently mitigate the pathloss of wireless channel.
Non-regenerative MIMO relays are very useful in extending the network coverage and
improving the link quality of the network.

Recently, relay precoding schemes have been proposed [23—28] to minimize the MSE
of the signal waveform estimation at the destination node. The precoder designs in [21—
28] assume that the full CSI of the source-relay and relay-destination links is available at
the relay node. However, the exact CSI is not available at the relay node. Hence, a more
practical assumption is that only partial CSI of the wireless channel is available at the
relay node. MMSE based linear transceiver designs [32-35] and non-linear transceiver
design [49] have been proposed with the assumption that the CCI of the relay-destination
link and the full CSI of the source-relay link are known at the relay node.

However, in practical communication systems, the CSI is unknown at the relay
node, and therefore, has to be estimated. There is always mismatch between the true
and the estimated CSI due to channel noise, quantization errors and outdated channel
estimates. Hence, the performance of the earlier proposed algorithms will be degraded
due to such CSI mismatch. Therefore, in this thesis, it is assumed that the true channel
matrices have Gaussian distribution, with the estimated channels as the mean value,
and the channel estimation errors follow the well-known Kronecker model. Based on this
assumption, robust advanced signal processing algorithms are proposed to jointly design
the transmitter, relay, and receiver matrices to minimize the maximal mean MSE of the
non-regenerative multicasting MIMO relay systems. The proposed joint source and relay
optimization problems for non-regenerative MIMO relay systems are highly nonconvex,
in nature, hence, main contribution of this thesis is that the nonconvex optimization
problems are transformed into suitable forms which can be efficiently solved by using
standard convex optimization tools.

In Chapter 2, the problem of transceiver design is addressed for a non-regenerative
MIMO relay system with the assumption that CCI of the relay-destination link and
the full CSI of the source-relay link are known at the relay node. Chapter 3, a design
scheme is proposed for a non-regenerative MIMO relay system with covariance feed-
back and direct link. In the proposed design scheme, it is assumed that the full CSI
of the source-relay link and partial channel state information such as CCI of the relay-
destination link are available at the relay node. The problem of transceiver design in a
non-regenerative MIMO relay system is investigated in Chapter 4 with the assumption

that the mean and CCI of the relay-destination link and the full CSI of the source-relay
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link are known at the relay node. In Chapter 5, the performance of the TH precoder
based non-linear transceiver design is investigated for a non-regenerative MIMO relay
system with the assumption that the full CSI of the source-relay link is known, while
only the CCI of the relay-destination link is available at the relay node. Chapter 6
proposes a robust transceiver design for a non-regenerative multicasting MIMO relay
system with the assumption that the actual CSI is assumed as a Gaussian random ma-
trix with the estimated CSI as the mean value, and estimated errors of the channels are
derived from the well-known Kronecker model. Chapter 7 summarizes the thesis and

highlights some interesting future works.

Chapter 2: MIMO Relay Design with Covariance Feedback

In this chapter, the optimal structure of the non-regenerative MIMO relay matrix is
derived which minimizes the MSE of the symbol estimation at the destination node. It
is assumed that the covariance feedback of the relay-destination link is available at the
relay node. It is further assumed that the full CSI of the source-relay link is known at
the relay node. Simulation results demonstrate that the proposed scheme has better
performance in terms of MSE and BER as compared to the conventional MSE schemes
proposed in the literature for non-regenerative MIMO relay schemes.

Chapter 2 is based on the following conference publication:

e L. Gopal, Y. Rong, and Z. Zang, “Joint MMSE transceiver design in non-regenerative
MIMO relay systems with covariance feedback”, in Proc. 17th Asia-Pacific Conf.
Commun., Sabah, Malaysia, Oct. 2-5, 2011.

Chapter 3: MIMO Relay Design with CCI Feedback and Direct Link

In this chapter, a design scheme for non-regenerative MIMO relay system is developed
to minimize the MSE of the signal estimation at the destination node. In the proposed
design scheme, an optimal precoding matrix is derived with the assumption that the full
CSI of the source-relay link and partial CSI such as CCI of the relay-destination link are
available at the relay node. In practical cases, if the destination is closer to the source,
the source-destination link cannot be ignored. Hence, in this chapter, it is assumed
that the partial CSI of the source-destination link is known at the relay node. Based on
this assumption, an iterative optimal covariance algorithm is developed to achieve the
minimum MSE of the estimated signal at the destination node. Numerical examples
show that the developed optimal covariance algorithm outperforms the conventional
CCI based MSE algorithms.
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The material in Chapter 3 is based on the following conference publication:

e L. Gopal, Y. Rong, and Z. Zang, “Channel covariance information based transceiver
design for AF MIMO relay systems with direct Link”, in Proc. 18th Asia-Pacific
Conf. Commun., Jeju Iceland, South Korea, Oct. 15-17, 2012.

Chapter 4: MIMO Relay Design with Mean and Covariance Feedback

In this chapter, the problem of transceiver design in a non-regenerative MIMO relay
system is addressed, where linear signal processing is applied at the source, relay and
destination nodes to minimize the MSE of the signal waveform estimation at the desti-
nation node. In the proposed design scheme, optimal structure of the source and relay
precoding matrices are obtained with the assumption that the mean and CCI of the
relay-destination link and the full CSI of the source-relay link are known at the relay
node. Based on this assumption, an iterative joint source and relay precoder design
is proposed to achieve the minimum MSE of the estimated signal at the destination
node. In order to reduce computational complexity of the proposed iterative design,
a suboptimal relay-only precoder design is proposed. Numerical examples show that
the performance of the proposed iterative joint source and relay precoder design is very
close to that of the algorithm using full CSI.

Chapter 4 is based on the following conference publication:

e L. Gopal, Y. Rong, and Z. Zang, “MMSE based transceiver design for MIMO
relay systems with mean and covariance feedback”, in Proc. 77th IEEE Veh.
Tech. Conf., Dresden, Germany, Jun. 2-5, 2013.

Chapter 5: Non-linear MIMO Relay Design with Covariance Feedback

In this chapter, the performance of the TH precoder based non-linear transceiver design
is investigated for a non-regenerative MIMO relay system with the assumption that the
full CSI of the source-relay link is known, while only the CCI of the relay-destination
link is available at the relay node. First, the optimal structure of the TH precoding
matrix and the source precoding matrix are derived to minimize the MSE of the signal
waveform estimation at the destination. Then, an iterative algorithm to optimize the
relay precoding matrix is developed. To reduce the computational complexity of the it-
erative algorithm, a simplified precoding matrices design scheme is proposed. Numerical
results show that the proposed precoding matrices design schemes outperform existing
algorithms.

The material in Chapter 5 is based on the following journal submission:
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e L. Gopal, Y. Rong, and Z. Zang, “Tomlinson-Harashima precoding based transceiver
design for MIMO relay systems with channel covariance information”, IEEE Trans.

Wireless Commun., to appear, 2015.

Chapter 6: Robust Design for Multicasting MIMO Relay Systems

The increasing demand for mobile applications such as streaming media, software up-
dates, and location-based services involving group communications has triggered the
need for wireless multicasting technology. The broadcasting nature of the wireless chan-
nel makes it naturally suitable for multicasting applications, since a single transmission
may be simultaneously received by a number of users. However, wireless channel is
subject to signal fading. By exploiting the spatial diversity, multi-antenna techniques
can be applied to combat channel fading [7]. Hence, in this chapter, the transceiver de-
sign is investigated for non-regenerative multicasting MIMO relay systems, where one
transmitter broadcasts common message to multiple receivers with the aid of a relay
node and it is assumed that the transmitter, relay, and receivers are all equipped with
multiple antennas. In the proposed design, it is assumed that the true channel matrices
have Gaussian distribution, with the estimated channels as the mean value, and the
channel estimation errors follow the well-known Kronecker model. In this chapter, two
robust algorithms are proposed, namely suboptimal robust and optimal robust algo-
rithms, to jointly design the transmitter, relay, and receiver matrices to minimize the
maximal MSE of the signal waveform estimation among all receivers. In particular,
it is proved that the MSE at each receiver can be decomposed into the sum of the
MSEs of the first-hop and second-hop channels. Based on this MSE decomposition,
transceiver design algorithms are developed with low computational complexity. Nu-
merical simulations demonstrate the improved robustness of the proposed transceiver
design algorithms against the mismatch between the true and estimated channels.

Chapter 6 is based on the following journal submission:

e L. Gopal, Y. Rong, and Z. Zang, “Robust MMSE transceiver design for nonregen-
erative multicasting MIMO relay systems”, IEEE Trans. Signal Process., revised
and resubmitted, May. 2015.

and conference submission:

e L. Gopal, Y. Rong, and Z. Zang, “Simplified robust design for nonrenerative
multicasting MIMO relay systems”, in Proc. 22nd Int. Conf. Telecommun.,
Sydney, Australia, Apr. 27-29, 2015.
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1.5 Notations

The notations used in this thesis are as follows: Lower case letters are used to denote
scalars, e.g. s, n. Bold face lower case letters denote vectors, e.g. s, n. Bold face upper
case letters are reserved for matrices, e.g. S, N. For matrices, ()7, (:)*, ()%, (-)~!, and
(-)T denote transpose, conjugate, Hermitian transpose, inverse, and pseudo-inverse oper-
ations, respectively. rank(-) and tr(-) denote the rank and trace of matrices, respectively.
® denotes the matrix kronecker product. E[] represents the statistical expectation. An
N dimensional identity matrix is denoted as either Iy or I. Note that the scope of any

variable in each chapter is limited to that particular chapter.

10



Chapter 2

MIMO Relay Design with

Covariance Feedback

In this chapter, the transceiver design in a non-regenerative MIMO relay system is
addressed by deriving the optimal structure of the relay precoding matrix. Linear
signal processing is applied at the relay and destination nodes to minimize the MSE of
the estimated signal waveform. The optimal structure of the relay precoding matrix is
derived with the assumption that the CCI of the relay-destination link and the full CSI
of the source-relay link are known at the relay node. Following, a review of previous
contribution available in the literature is presented in Section 2.1, system model of a two-
hop non-regenerative MIMO relay system is introduced in Section 2.2. The MIMO relay
precoder design algorithm is proposed in Section 2.3. Simulation results are presented
in Section 2.4 to justify the significance of the proposed algorithms before summarizing

the chapter in Section 2.5.

2.1 Overview of Existing Techniques

Wireless relaying is essential to provide reliable, cost effective and wide-area coverage
for wireless networks in a variety of applications. In a cellular environment, a relay
can be deployed in areas where there are strong shadowing effects, such as inside the
buildings and tunnels. For mobile ad-hoc networks, relaying is essential not only to
overcome shadowing due to obstacles but also to reduce transmission power from source

to neighbouring nodes. For tactical applications, dynamic deployment of relays is useful

11



Chapter 2. MIMO Relay Design with Covariance Feedback

to enhance the network reliability, throughput, and minimize interception by unwanted
users.

There are two types of relay strategies: non-regenerative scheme and regenera-
tive scheme [17-19, 50]. Compared with the regenerative scheme, the non-regenerative
scheme is easy to implement, and thus is embraced by industry.

A relay precoding scheme in non-regenerative MIMO relaying has been proposed to
increase the capacity between the source and destination with further signal processing
[21, 22, 51-54]. In this scheme, the relay multiplies the received signal by a linear
precoding matrix and retransmits the precoded signal to the destination. The precoding
matrix is designed by minimizing the MSE of the estimated signal waveform at the
destination node [23-25, 55-57]. An optimal precoding matrix based on the maximum
SNR criterion is developed in [24, 55]. A unified framework is developed to jointly
optimize the source precoding matrix and the relay amplifying matrix for a broad class
of objective functions [25]. The full CSI for entire link is assumed to be available at the
relay node [23-25, 55-57].

In a practical system with a limited feedback rate, the assumption that the full
CSI for the relay-destination link is known at the relay node is not feasible, especially
in the situation when the mobile node is moving rapidly. The covariance matrix is
more stable than the instantaneous channel matrix because the scattering environment
changes more slowly compared to the mobile location. The precoding matrix is derived
for maximizing the ergodic capacity when only the partial CSI for the relay-destination
link is available at the relay node in [29-31, 58]. A covariance feedback based MMSE
estimator is proposed in [33] and the estimator is only suitable for a MIMO relay system,
where the number of antennas at the destination is greater than the relay antennas.

In this chapter, optimal precoder design is proposed to minimize the MSE of the
estimated signal in a non-regenerative MIMO relay system, when the covariance infor-
mation for the relay-destination link is available at the relay. It is assumed that the
full CSI of the source-relay link and CCI of the relay destination link are known at the
relay node. By restraining power consumption at the relay node, the optimal precoding
matrix is derived to minimize the MSE of the estimated signal at the destination node.
The proposed algorithm is not constrained by the number of antennas at the destina-
tion as in [33]. Simulation results presented in Section 2.4 show the effectiveness of the

proposed MSE scheme.
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2.2 MIMO Relay System Model without Direct Link

In this section, the non-regenerative MIMO relay system is considered as shown in
Fig. 2.1, where the source, relay and destination nodes have Ng, Ng and Np antennas,
respectively. In this system model, it is assumed that there is no direct link exist between

the source and destination nodes due to long distance between these two nodes. The

Source Destination

Figure 2.1: Block diagram of linear non-regenerative MIMO relay communication system

without direct link.

data transmission takes place over two time slots. The received signal at the relay node

during the first time slot is given by
yi = HiFx+ny (21)

where F € CNs*Ns ig a precoding matrix of the source node, H; € CVe*Ns i the
channel matrix of the source-relay link, x € CNVs*! is the transmitted vector with
covariance matrix E{xx} = 02Iy,, n; € CVr*! is the circularly symmetric complex
Gaussian noise vector with zero mean and covariance matrix E{ninf’} = 6?Iy,. The

received signal at the destination node during the second time slot is given by
y2 = HoGH Fx + HoGn; + no (22)

where Hy € CNo*NR is the channel matrix of the relay-destination link, G € CNrxNr
is a precoding matrix of the relay, ny € CV2*! is the circularly symmetric complex
Gaussian noise vector with zero mean and covariance matrix E{nsnf} = 03Iy,. The

combined channel and noise matrices can be introduced

H= O'xHQGHl (23)
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and
n=HsGn; +ny (24)

where H € CVNp*Ns ig the equivalent MIMO channel matrix, and n € CN¥P*! represents
the equivalent noise vector and for simplicity, the source precoding matrix F is assumed

as F =Iy,. Now (2.2) can be written as
y2 = Hx + n. (2.5)

Similar to [30, 31], it is assumed that the channel of the relay-destination link is
correlated at the transmit antennas and is uncorrelated at the receive antennas. The
model is suitable for an environment where the relay is not influenced by local scatters
and the destination is fully surrounded by local scatters [11]. It is assumed that Hs can
be expressed as

H, = H,x!/? (2.6)

where H,, is an Np x Ni Gaussian matrix having independent and identically dis-
tributed (i.i.d.) circularly symmetric complex entries with zero mean and unit variance,
and X is an Np X Np covariance matrix of Hy at the relay end. To reduce implemen-
tation complexity, linear receiver precoder matrix W is applied at the destination, the
estimated signal is given by

%X = WHx + Wn. (2.7)

It is assumed that the average power used by the source is upper bounded by P,
and the average power used by the relay is upper bounded by P.. Since the transmitted
signal from the relay is Gy; = GH1x + Gnj, the power constraint on the relay can be

expressed as
p(G) = tr{G((;ngH{f n J%INR)GH} <P. (2.8)

Our goal is to design G and W so as to obtain the estimated signal which minimizes

the following MSE function subject to the power constraint (2.8).
J(G, W) = tr{E [(5{ —x)(% — x)H} } (2.9)
Mathematically, this problem can be formulated as

(G,W) = argmin J(G, W),
(G,W)

st.p(G) < P (2.10)
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After substituting (2.7) into (2.9), the MSE function (2.9) is simplified to
H
J(G,W):tr{ag(WH—INs) (WH—INS> +WRnWH} (2.11)
where R,, is the equivalent noise covariance matrix, given by

R,=F {nnH}
=F |:(H2GII1 + n2) (Hanl + IIQ)H}
=0iH,GGTHE + 021y, (2.12)

Note that directly solving the constrained optimization problem (2.10) is difficult
due to the fact that both the cost function J(G, W) and the power constraint are non-
linear function of G and W. In the following section a suboptimal approach will be
used to tackle the constrained non-linear optimization problem. First, the problem will
be solved for the optimal linear receiver W for any given precoding matrix G which
satisfies the power constraint (2.8). Then, the optimal precoding matrix G will be

derived by solving a closely related constrained optimization problem.

2.3 Proposed MIMO Relay Precoder Design

For any given precoding matrix G which satisfies the power constraint (2.8), the optimal
linear receiver W that minimizes the MSE function J(G, W) is the same as the MMSE

(Wiener filter) receiver [59], which is given by
W = ¢2H (s2HH" + R,,)". (2.13)
After substituting (2.13) into (2.11), the MSE function is obtained as
J(G) = ogtr{INs — o?HH (c2HHY + Rn)*H}. (2.14)
Using the following matrix inversion lemma [60]
(A+BCD) '=A"!' - A 'B(DA'B+C!)"'DA !, (2.15)
the MSE function (2.14) can be written as

J(G) = agtr{ [INS n a;f,HHR;lH] _1}. (2.16)
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Substituting (2.3) and (2.12) into (2.16), the MSE function can be expressed as
J(G):agtr{ [INS + o2 GHHY
-1 -1
X <J%H2GGHH§ + a%IND> HgGHl] } (2.17)

Now the problem is reduced to find the optimal G that minimize J(G) subject
to the power constraint (2.8). The singular value decomposition (SVD) of H; can be
introduced as

H, = U;A/?VH (2.18)
where Ay = diag{A;;---A; n,} is a diagonal matrix with A;; > -+ > Ay n,. The
eigenvalue decomposition of 3 can be introduced as ¥ = VEAng where Ay, =

diag{Ax1 ---Asx Ny} with Axn1 > -+ > Ay n,. The columns of Vy are the right

eigenvectors of X for the corresponding eigenvalues. Then Hy can be rewritten as
H, = ZAY*VE (2.19)

where Z £ HngA;/z. Then Z has the same distribution as H,, because H2VZA£1/2 =

H, Vys. The optimal precoding matrix G which minimizes (2.17) can be expressed as
G = VyAPUl! (2.20)

where Ag = diag{Ag1---Agny}- Using the matrix inversion lemma (2.15), the MSE

function (2.17) can be written as
2 0% prH
J(G):aztr{ [INS + 2] [INR
1

J2

—(INR n —§GHH§H2G)71]H1]71}. (2.21)

72
Substituting (2.18)-(2.20) in (2.21), now the MSE function is given by
2 o3 1/2¢1H
J(Ag):aztr{ [INS + Zvia) ol
1
-1
x[Ine - Di|UIAYPVE] (2.22)

where

2 -1
D1 = (T, + %UlAé/QAlZﬂZHZAlZﬂAgQU{{) .
2
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Using the SVD and trace properties, the MSE function (2.22) can be simplified to

R (R I
1
= olofir{ |ofTns + o2 (A1 — A7"D2AY)| 71} (2.23)

where )
-1
Dy = (Tn, + %Ag/?A;/QzHZA;ﬂAgQ) .

2

It can be seen from (2.23) that J(Ag) depends on Z, which is random and unknown.
In the following, Ez[J(Ag)| is optimized, where Ez[.] indicates that the expectation is

taken with respect to the random matrix Z. Now Ez[J(Ag)] can be expressed as
Ez]J(Ag)|=0201F7 {tr{ [U%INS + o2
x (A1 - AV DoAY _lH (2.24)
where 2 B
D, = (T, + U—%Ag/?A;/ ZHZALAY)
Now the work is left to determine the diagonal elements Ag of precoder matrix G.
The optimal precoder allocates power according to the eigenmodes of HleI and X.
Direct minimization of (2.24) for the optimal power allocation is difficult. In the
following, the lower bound of the MSE is used together with the power constraint (2.8)
to derive the suboptimal power allocation for the precoder matrix G. Assume that
the MSE function is convex in ZZ and has the following lower bound using Jensen’s
inequality
Jr(Ag) = Jid%tr{ [O‘%INS +02A — J§A1/2D3A%/2] 71} (2.25)
where 2 B
Dy = (L, + J—éA}{QA;/zEZ[zHZ]A;/QAgQ) .
Now the MSE function 2.25 is simplified to
Jr(Ag) = 0'3230'%757“{ [J%INS + 02A,
— 02A (INR + Z—zAGAEND>1} 71} (2.26)
2

where Ez(ZZ) = Nply,,. Inserting (2.18) and (2.20) into (2.8), the power constraint

for the relay node can be expressed as
p(AG):tr{VzAlG/QU{f <J§U1A1U{f v U%INR>

xUlA}fvg} <P. (2.27)
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Using the SVD and trace properties, the power constraint (2.27) can be simplified to
p(Ag) = tr{(U;%Al + U%INR)AG} <P. (2.28)

From (2.26) and (2.28), the constrained optimization problem can be expressed as

Ns 2 2
NpAs iAg,i
min o2 5 % D2 2iAG;i + 03 5 (2.29)
{Aciy "4 (03A1i +07)NDpAs iAg,i + 03
Ng
s.t. Z(UgAl,i + J%)AG’Z‘ < P.. (230)
i=1

Using the Karush-Kuhn-Tucker(KKT) conditions [61], the optimal diagonal elements of

Ag,; are obtained as

+
AG o 1 J%J%NDAl,iAE,i o 0_2 (2 31)
" (02A1; + 0?)NpAs; pw(o2Ay; + 0?) 2

where (z)* = max(z,0), and p should be chosen to meet the power constraint (2.30).
Inserting (2.31) and (2.18)-(2.20) into (2.13) leads to obtain the optimal receiver matrix
W.

2.4 Numerical Examples

In this section, the performance of the proposed algorithm is presented by numerical ex-
amples. The channel matrices Hy and H,, are generated as complex Gaussian variables
with zero mean and unit variance. The symbols are generated from QPSK constellation.

The elements of covariance matrix 3 of Hy are generated by X, ; = Jo(An|i — j|)
[11], where Jy(.) is the zeroth order Bessel function of the first kind, A the angle of
fading spread. The SNRs for the source-relay and relay-destination links are defined as
SNRy = %, SNR; = 2.

The performance of the proposed joint MMSE covariance (JMMSE-COV) algo-
rithm is compared with that of the full CSI algorithm [23], the MMSE-COV algorithm
[33], pseudo match-and-forward (PMF) algorithm [22] and the traditional amplify-and-
forward (AF) algorithm. The full CSI algorithm, also known as JMMSE [23] provides

the lower-bound of the proposed algorithm. In the conventional AF algorithm, the relay

precoder is obtained by G = aly,, where a is determined to meet the power constraint
(2.30).
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Figure 2.2: BER versus SNRy while fixing SNR; = 20dB, A = 5°, Ng = Nz = Np=4.
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Figure 2.3: BER versus SNR; while fixing SNRy; = 20dB, A = 5°, Ng = Nz = Np=4.
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Figure 2.4: NMSE versus SNRy while fixing SNR; = 20dB, A = 5°, Ng = Ng = Np=4.
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Figure 2.5: NMSE versus SNR; while fixing SNRy = 20dB, A = 5°, Ng = Ng = Np=4.
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In the first example, the performance of the MSE algorithms is studied in terms
of BER versus SNRy while fixing SNR; = 20dB and the number of antennas at the
source, relay and destination nodes are fixed as Ng = Ng = Np=4. The angle spread is
considered as /A = 5°. The simulation result is averaged over 1000 independent channel
realization. It can be seen in Fig. 2.2 that the proposed JMMSE-COV algorithm shows
better BER performance over all range of SNRs than the MMSE-COV, PMF and AF
algorithms. For high SNRo, the BER performance of the proposed MSE algorithm is
closer to the JMMSE algorithm.

In the second example, the BER performance is compared for various SNR; while
fixing SNRo= 20dB and similar to [33], the MIMO relay system is simulated with
Ng = Nr = Np =4. In this example, the angle spread is fixed as A = 5°. Randomly
generated 1000 QPSK constellations are transmitted from the source node for each
channel realization. It can be noticed from the Fig. 2.3 that the proposed JMSE-COV
algorithm performance is similar to the MMSE-COV, PMF and AF algorithms in low
SNR; (e.g. SNR; < 5dB) because the received signal at the relay is impaired by the
noise. For high SNRy, the proposed algorithm shows better BER performance than the
MMSE-COV algorithm, PMF algorithm and the conventional AF algorithm. In other
words, the proposed algorithm outperforms the MMSE-COV, PMF and AF algorithms.

In the third example, the normalized MSE (NMSE) performance of the proposed
algorithm is compared for various SNRy while fixing SNR; = 20dB. In the example,
the angle spread is set as A = 5° and Ng = Nr = Np =4. In this example, 1000
QPSK samples are randomly generated at source node for each channel realization.
From Fig. 2.4, it can be concluded that AF and PMF algorithms produce much higher
MSE as compared to the proposed JMMSE-COV algorithm even at high SNRy. It is
clearly shown in Fig. 2.4 that the proposed JMMSE-COV algorithm offers improved
performance in terms of NMSE compared to the MMSE-COV algorithm.

In the final example, the NMSE performance of the proposed algorithm is compared
for varying SNR; while fixing SNRy = 20dB. In the example as shown in Fig. 2.5, the
angle of delay spread is set as A = 5° and source, relay and destination nodes antennas
are fixed as Ng = Ngp = Np =4. In this example, 1000 QPSK samples are randomly
generated at source node for each channel realization. From Fig. 2.5, it can be seen
that AF and PMF algorithms have much higher NMSE as compared to the proposed
JMMSE-COV algorithm at high SNR;. It can be noticed from the Fig. 2.5 that the
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proposed JMMSE-COV algorithm outperforms the MMSE-COV algorithm in terms of
NMSE.

2.5 Chapter Summary

In this chapter, the optimal structure of the non-regenerative MIMO relay matrix is
derived to minimize the MSE of the symbol estimation at the destination node with
the assumption that the covariance feedback of the relay-destination link is available
at the relay node. It is assumed that the relay knows the full CSI of the source-relay
link. Simulation results show that the derived optimal solution which minimize the
upper-bound of the MSE is achieved and the simulation results demonstrate that the
proposed scheme has better performance in terms of NMSE and BER as compared to

the conventional MSE schemes.
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Chapter 3

MIMO Relay Design with
Covariance Feedback and Direct

Link

In this chapter, transceiver design schemes are proposed for non-regenerative MIMO re-
lay system with direct link which minimizes the MSE of the signal waveform estimation
at the destination node. In the proposed design schemes, an optimal precoding matrix
is derived with the assumption that the full CSI of the source-relay link and partial CSI
such as CCI of the relay-destination link are available at the relay node. In practical
cases, if the destination node is closer to the source node, the source-destination link
cannot be ignored. Hence, in the proposed design, it is assumed that the relay knows
the partial CSI of the source-destination link. An overview of the existing techniques
is provided in Section 3.1. In Section 3.2, the system model of the proposed precod-
ing matrix design is introduced for a non-regenerative MIMO relay system with direct
link. In Section 3.3, two non-regenerative MIMO relay precoder design schemes, such
as iterative optimal covariance algorithm and suboptimal covariance algorithm are de-
veloped to achieve the minimum MSE of the signal estimation at the destination node.
The performance of the proposed MIMO relay design schemes is demonstrated through

numerical simulations in Section 3.4. Finally, the chapter is summarized in Section 3.5.
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3.1 Overview of Existing Techniques

Recently, cooperative wireless communications attract much research interest. By de-
ploying a wireless relay in cooperative wireless communications, wireless networks cov-
erage area can be extended and reliable and cost effective wireless network applications
can be provided. In cooperative wireless communications, a relay can be deployed inside
a building or tunnel to mitigate the effects of shadowing [50].

Two types of relaying schemes, regenerative and non-regenerative , have been pro-
posed in [17, 19, 50]. In regenerative strategy, the relay decodes the information re-
ceived from source and forwards the re-encoded signal to the destination. Whereas
in non-regenerative strategy, the relay amplifies the received signal from source and
retransmits the signal to the destination. When compared with the regenerative strat-
egy, the non-regenerative strategy has a lower computational complexity and is easy to
implement in the cooperative environment.

Relay precoding algorithms [21, 22, 51-54] for non-regenerative MIMO relay systems
have been developed to maximize the capacity of the source-destination link. In these
algorithms, a precoding matrix is multiplied with the received signal at the relay node
for further signal processing. A precoding matrix is proposed to minimize the receiver
estimation error which is known as MSE of the signal at the destination node [23-26, 55—
57, 62]. The optimal precoding matrix design is investigated well in [26-28, 62—64] for
non-regenerative MIMO relay system with the assumption that the relay knows the full
CSI of the source-relay, source-destination and relay-destination links.

In practice, the environment is mostly surrounded by scatters and shadowing effects.
Due to the scattered and shadowing environments, the received signal is uncorrelated
at the destination. Hence, the full CSI of the relay-destination link and the source-
destination link is difficult to obtain at the relay node. For this model, the channel
covariance matrix is more suitable than the instantaneous channel matrix.

Optimal precoder is designed for maximizing the ergodic capacity of the non-regenerative
MIMO relay system with the assumption that the CCI of the relay-destination link is
available at the relay node [29-31, 58]. MMSE based estimators are investigated in
[32, 33] with the assumption that the CCI of the relay-destination link is known at
the relay node. However, the optimal precoding matrix with the direct link is not
investigated in [32, 33]. In practice, the source-destination link provides valuable spa-
tial diversity to the non-regenerative MIMO relay system and can be advantageously

exploited.
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n, Destination

Figure 3.1: Block diagram of non-regenerative MIMO relay communication system with

direct link.

In this chapter, an iterative optimal covariance algorithm is proposed to minimize
the MSE of the signal estimation at the destination in a non-regenerative MIMO relay
system with direct link. Considering that the computational complexity of the developed
optimal covariance algorithm may be high for practical implementation of the relay
system, a suboptimal covariance algorithm is proposed. In the proposed two algorithms,
it is assumed that the relay knows the full CSI of the source-relay link, the CCI of
the relay-destination link and the direct source-destination link. Simulation results
verify the performance of the proposed optimal and suboptimal covariance based MSE

algorithms.

3.2 MIMO Relay System Model with Direct Link

A typical three node non-regenerative MIMO relay system is considered as shown in
Fig. 3.1. It is assumed that the source and destination nodes have Ng and Np antennas,
respectively, and relay node has N antennas. In the considered MIMO relay system
model, it is assumed that there is a direct link between the source and destination nodes.
The signal transmission between the source and destination node is completed in two
time slots. During the first time slot, the source transmits x. The received signal at the

destination and the relay during the first time slot is given by

yo=HoFx + ng
yi=H;Fx+n; (31)
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where F € CVs*Ns is a precoding matrix of the source node, Hy € CNo*Ns ig the
channel matrix of the direct source-destination link, x € CNs*! is the transmitted vector
with covariance matrix E{xx} = 02Iy,, ng € CN¥p*! is the circularly symmetric
complex Gaussian noise vector with zero mean and unit variance matrix, H; € CN&*Ns
is the channel matrix of the source-relay link, n; € CN&*! is the circularly symmetric
complex Gaussian noise vector with zero mean and covariance matrix E{nin{} =

0?1 Ng- The received signal at the destination in the second time slot is given by
yo = HoGHFx + HoGn; + ny (32)

where Hy € CV0*NR is the channel matrix of the relay-destination link, G € CNe*Nr g
a precoding matrix of the relay node, ny € CNo*1 ig the circularly symmetric complex
Gaussian noise vector with zero mean and covariance matrix E{ngn¥} = 02Iy,. In a
more compact way, the signal models (3.1) and (3.2) for the non-regenerative MIMO

relay system can be written as

Al Y2
Y [.‘/o}
_ [H2GH1} Fx + [HQGI” + HQ] . (3.3)
HO ng

It is assumed that the relay knows the full CSI of the source-relay link and CCI of
the relay-destination link and the direct source-destination link. However, the channel
information is unavailable at the source node. The combined channel and noise matrices

can be introduced as

» |H2GH;y
e 1) »
and
n— |:H2GII1 + n2:| (35)
g

where H € C2Np*Ns i the equivalent MIMO channel matrix, n € C2N0*1 represents
the equivalent noise vector and for simplicity, the source precoding matrix F is defined as
F = In,. Inserting (3.4) and (3.5) into (3.3), the signal model for the non-regenerative
MIMO relay system can be written as

y = Hx+n. (3.6)

Consider a scenario that the destination node is moving rapidly [30, 31], so the
channel is correlated at the transmitter and is uncorrelated at the receiver for the relay-

destination link and the direct source-destination link. This model is appropriate for
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an environment where the destinations is fully surrounded by local scatters [11]. With

this assumption, the channel matrices Hy and Hy can be modeled as [30-32]

H, =H,, 5>
H,=H,,x) (3.7)

where H,,, € CVp*Ns and H,,,, € CNP*NR are Gaussian matrices having i.i.d. circularly
symmetric complex entries, 3o an Ng X Ng covariance matrix of Hg and 39 an Ng X Ng
covariance matrix of Hy at the relay side. Here, it is assumed that the destination node
feedbacks the two covariances matrices, Xy and 3o, to the relay node.

A linear receiver precoder matrix W is applied at the destination to reduce imple-
mentation complexity. The estimated signal at the destination node can be written

as
% = Wy = WHx + Wn. (3.8)

Since the transmitted signal from the relay is Gy; = GH;x + Gn;, the power

constraint on the relay can be expressed as [21]
p(G) = tr{G(ag%HlH{f + U%INR)GH} <P (3.9)

where P, is the upper bounded average power used by the relay. Now, our goal is
to obtain G and W to minimize the MSE of the estimated signal at the destination
node. Using the precoder matrix G and the linear receiver W, the MSE function of the

estimated signal can be written as [59]
J(G, W) = tr{E [(i —x)(% — x)H} } (3.10)
Mathematically, the design problem can be formulated as

(G, W) =argmin J(G,W), s.t.p(G) < P,. (3.11)
(G,W)

After substituting (3.8) into (3.10), the MSE function (3.10) is simplified to
H
J(G, W) = tr{ag (WH - INS) (WH . INS) + WR, WH } (3.12)
where R,, is the equivalent noise covariance matrix, given by

R, =E [nnH ] (3.13)
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Substituting (3.5) into (3.13), the noise covariance matrix R,, is given by

R,=F

|:H2GII1 + 1’12:| |:H2G1’11 + Il2:| H]

o g

) [U%HQGGHHgf + 3Ly, ONDxND] . (3.14)

ONDXND IND

Note that the constrained optimization problem (3.11) is not easy to solve directly
due to the fact that the optimization function J(G, W) is a non-linear and non-convex
function of G and W and the power constraint is non-linear function of G. In the follow-
ing sections an iterative based optimal covariance algorithm and suboptimal covariance

algorithm are proposed to solve the constrained non-linear optimization problem.

3.3 Proposed MIMO Relay Precoder Design

For any given precoding matrix G which satisfies the power constraint (3.9), the optimal
linear receiver W' that minimizes the MSE function J(G, W) is the MMSE (Wiener

filter) receiver [59], which is given by
W =o?H” (¢-2HH” + R, (3.15)
After substituting (3.15) into (3.12), the MSE function is obtained as
J(G) = agtr{INS _ o2HH (s2HHY ¢ Rn)_lH}. (3.16)
Using the matrix inversion lemma (2.15), the MSE function (3.16) can be written as
J(G) = agtr{ [INS + a;f,HHR;lH] 71}. (3.17)
Substituting (3.4) and (3.14) into (3.17), the MSE function can be expressed as

J(G) = agtr{ [Ty, + 02HIH, + o2HY GTHY

x (0?HyGGHHY +021y,) " H,GH,] ‘1}. (3.18)

Using the matrix inversion lemma (2.15), the MSE function (3.18) can be written as

2
J(G) = o%tr{ |Lve + o2HIHy + ZH] Ly,
1
0F HygH -1 -1
—(INR+?G H! H2G> }Hl} } (3.19)
2
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Now the problem is reduced to find the optimal G that minimize J(G) subject to the
power constraint (3.9). The eigenvalue decomposition (EVD) of 3 can be introduced

as
3o = Vs,As,VE (3.20)

where Ay, = diag{Ax,1-- Ay, ng} With Asy1 > -+ > Ay ng. The columns of Vi,
are the eigenvectors of 3 for the corresponding eigenvalues. Substituting (3.20) into

(3.7), the channel matrix Hy can be written as
H, 2 H, A"V (3.21)

where ﬁwo £ H,,, Vs, has the same distribution as H,,, because the unitary matrix Vs,
does not change the statistical distribution of H,,,. The SVD of H; can be expressed
as

H, = UA{/?VH (3.22)

where Ay = diag{A;;---Ay g, } is a diagonal matrix with A;; > -+ > A1 g, R =
min(Ng, Ng), and the dimensions of U; and V; are N x Ry, Ng x Ry, respectively.
Now, the EVD of 35 is introduced as

¥y = Vi,As, VY, (3.23)

where Ay, = diag{Ax, 1+ Asx, Ny} With Ay, 1 > -+ > Ay, ny,. The columns of Vy,
are the eigenvectors of 3o for the corresponding eigenvalues. Substituting (3.23) into

(3.7), the channel matrix Hy can be rewritten as
H, 2 H,, A VE (3.24)

where Ith2 £ H,, Vs, has the same distribution as H,,,. The optimal precoding matrix

G which minimizes (3.19) can be expressed as
G = Vy,GU. (3.25)
Substituting (3.21)-(3.25) into (3.19), now the MSE function is given by
J(G) = agm«{ [INS + 02V, Ay HY H AP VE
+Z—§V1A}/QU{1’ [INR - Dl] UlA}/QV{f] _1} (3.26)

where

2 ~ o~ ~ -1
D = (T, + %UlGHAIZ/foQHWAIZ/fGU{{) .
2
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Since UM U; = Ip,, the MSE function (3.26) can be simplified to

J(é) = O'gtT‘{ [INS + J:%VZOA;/Ozﬁg()ﬁwoAlz/ngo
2 -1
+ 2 (Vim Vi - viaY DoaAvin) | (3.27)
1

where

O EH AR AL2G)
D, = (IRI + G A HI H A G) .
2

It can be seen from (3.27) that J(G) depends on H,,, and H,,, which are random
and unknown. In the following, En,, ,[J (G)] is optimized, where En,, ,[] indicates
that the expectation is taken with respect to the random matrices ﬁwo and ﬁm. Now

En,, [/ (G)] can be expressed as
Eu, . [J(G)]=0202FE trd |01 252V, AYPHE H, AY*VE
H"JO,Q - 0-1‘0-1 H"JO,Q r Ul Ng + 0—330—1 Yo Yo wo wo -+ >o
—1
+o2ViAVE agle}/QDQA}”V{I] }] (3.28)

Now the work is left to determine G of precoder matrix . The optimal precoder
allocates power according to the eigenmodes of HiH{, ¥y and X».

Direct minimization of (3.28) for the optimal power allocation is difficult. In the
following, the lower bound of the MSE is used together with the power constraint (3.9)
to derive the optimal power allocation for the precoder matrix G. Since .J (é’) is convex
in ﬁg()ﬁwo and ﬁiﬁm, which is proved in Appendix 3.A, Jensen’s inequality [65] is
used to derive the following lower bound

JL(G) = agafm«{ [aglNS L2V A 2By (R )
—1
XALVE +2ViA VI - 2ViA DAV L
where )
_ 01 X H A1/2 oo 125\ !
Dy = (In, + G A B, AL LAY, G)
Now the MSE function is simplified to
J(G) = aga%tr{ [J%INS +0202NpVy, As, VE
-1
+o2ViA VE — o2V AV 2D APV } } (3.29)

where )
0iNp ~ ~\ 1
D = (g, + 252G A5, G)
2
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Here, it is assumed that EHW0 [ﬁfoﬁwo] = EHW2 [ﬁiﬁm] = Nply,. Substituting
(3.22) and (3.25) into (3.9), the power constraint for the relay node can be expressed as

p(G) = tr{VEQéU{{ <U§U1A1U{f + J%INR)UléHV§2} <P.  (3.30)

Using the SVD and trace properties, the power constraint (3.30) can be simplified to

p(G) = tr{é(aﬁAl - a%IRl)C‘.H} < P,. (3.31)

The remaining task is to optimize G. From (3.29) and (3.31), the constrained optimiza-

tion problem can be written as
min J(G) = aga%tr{ [a%INS +0202Np Vs, As, VE
—1
YoV AV J§V1A1/2D4A}/2V{f} } (3.32)

s.t. p(G) = tr{é(aiAl + U%IRl)éH} <P. (3.33)

3.3.1 Optimal Covariance Algorithm

The constrained optimization problem (3.32)-(3.33) does not have a closed-form solution
due to the presence of the direct link channel Hy. The problem (3.32)-(3.33) can be
solved by resorting to numerical methods, such as the projected gradient algorithm
[61]. The relay precoding matrix G is optimized by solving the following constrained

optimization problem
min Jg(G) = O'gO'%t’l“{ [B - CD4CH] 71} (3.34)
st. p(G) = tr C-‘rM(~}H} <P, (3.35)
where

B =o{In, + 020iNpVs,As, Vi +02ViA V]
C=0,ViA}?
M=02A; + 0llR,

The gradient of (3.34) is given by
—QJ%ND
o3
where the derivatives of 9tr(@X1)/0X = —(X"!@X )T and 0tr(©X)/0X = ©T
are used to obtain (3.36). The problem (3.34)-(3.35) can be solved by the projected

~ _ ~ H
VIL(G) = [D4CH(B — CD,C") °CD,G Ay, (3.36)

gradient algorithm to optimize the matrix elements of G.
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3.3.2 Suboptimal Covariance Algorithm

Now a relay matrix design algorithm is proposed which is suboptimal, but has a sig-
nificant computational complexity reduction compared with the gradient projection-
based optimal design. Similar to [23-33], it can be assumed that the matrix G =
]T

[Alg/z’ORlx(NRle) , where Ag = diag{Ag,1---Ag R, }. Hence, the equation (3.25)

can be rewritten as

G = Vg, AU (3.37)

where \722 is a matrix taking the first R; columns of Vy,. Then, the constrained

optimization problem is reduced to
min Jr(Ag) = 0'3230'%757“{ |:O'%INS + UiJ%NDVZOAEOVgo

2N _ o\l -1
+U§V1A1[IRl—(Igl+Jla—2DAgA22> ]Vﬂ } (3.38)
2

st. p(Ag) = tr{(agAl + afIRl)AG} <P, (3.39)
where Ay, = diag{As, 1 As, g, }- To proceed further, the matrix inversion lemma
(2.15) is used to rewrite the MSE function (3.38) as

o2Np

2
03

Ji(Ac) = agtr{ [INS +02Np Vs, As, VE + ViA,

_ 02Np - -1 -1
¥ AcAs, (IRI + %AEQAg) V{f] } (3.40)
2

An upper-bound of (3.40) is considered as follows. By introducing E; = 7:Np A1Aq

o3
_ _ -1
As, (IR1 + %Agﬂ&g) , the MSE function (3.40) can be written as
2 H 2 gt
Ji(Ag) = thr{ [INS +VE V4 amNDVZOAZOVEO] } (3.41)

Here V; = [V, Vll] is introduced such that V7 is an N, x N, unitary matrix. Obviously,
if Ry = N5, V1 = V1. Then (3.41) can be equivalently rewritten as

2 2 T H o ]t
JL(Ac) = Jztr{ [A + o2 NpV! VEOAZOVEOV1] } (3.42)
where
T
A =1Ins+ [Ir,, 0, x(No—ry)) E1[IR), 0, x(N.—R1))-

Applying the matrix inversion lemma (2.15), the MSE function (3.42) can be rewritten

as

1

JL(Ag) = o [tr(A’l) —tr(ATY(C+A )™ A*l)] (3.43)
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where C = JgND(V{{VEOAZOVgovl)*l. By using the following inequality from [28]

tr(A"(C+ A1) 'AY)

> tr(A~! (diag(C) + A1) 1A, (3.44)
an upper-bound of Jr(Ag) is given by
Jr(Ag) = o2 [tr(A’l) —tr(A7! (diag(C)—kA’l)_lA’l)] . (3.45)

From (3.45), the diagonal elements of Ag can be obtained by solving the following

optimization problem with scalar variables

R
! (J%NDAEg,iAG,i + U%)Jg)\c’z‘

min 3.46

{Aea} = DsAgi + 03 + 03 (3.46)
Ry

s.t. Z(O—Q%Al,i + J%)AG,i <P, (347)

i=1
where

D5 = (U%)\c,z‘ + UgAl,i)‘c,i + U%)NDAE2:i7
Aei = o2 Npdiag (VI Vs, As, VE V1) 7).

Using the KKT conditions [61], the optimal diagonal elements of A ; are obtained

+
1 0402 NpAy iAs, i\2.
AG,i _ <\/ 2091iVD A% 0 ci U%)\c,i o O'% (3.48)

as

Ds (oA + o)

where (z)* = max(x,0) and u should be chosen to meet the power constraint (3.47).

3.4 Numerical Examples

In this section, the performance of the proposed schemes is illustrated by numerical
examples. The entries of channel matrices H,,,, H; and H,, are generated as complex
Gaussian variables with zero mean and unit variances. The symbols are generated from
QPSK constellation.

The elements of covariance matrices 3y of Hy and X, of Hy are generated by X; ;
= Jo(Aml|i —j|) [11], where Jy(.) is the zeroth order Bessel function of the first kind, A
the angle of fading spread. The SNRs for the direct source-destination, the source-relay

and relay-destination links are defined as SNRy = U—”z”, SNR; = 0—922” and SNR, = NP Lo,
a4 o7 ROS
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Figure 3.2: BER versus SNR; while fixing Ng = N = Np = 4, Ay = 1°, Ay =
30°, SNRp = 20dB, SNRy = SNR; — 10dB.
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Figure 3.3: BER versus SNRy while fixing Ng = N = Np = 4, Ay = 1°, Ay =
30°, SNR; = 20dB, SNRy = SNR; — 10dB.
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Figure 3.4: NMSE versus SNR; while fixing Ng = Ng = Np = 4, Ay = 1°, Ay =
30°, SNRp = 20dB, SNRy = SNR; — 10dB.
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Figure 3.5: NMSE versus SNRy while fixing Ng = Ngr = Np = 4, Ay = 1°, Ay =
30°, SNR; = 20dB, SNRy = SNR; — 10dB.
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The performance of the proposed optimal covariance (OPT-COV) algorithm and
the suboptimal covariance (SUB-COV) algorithm is compared with the naive amplify-
and-forward (NAF) algorithm [22], the PMF algorithm [22], ROS algorithm [26], the
JMMSE-COV algorithm [32], OPT algorithm [26]. The full CSI scheme, also known
as OPT algorithm [26] provides the lower-bound of the proposed schemes. For the
proposed OPT-COV algorithm, the projected gradient method is applied to optimize
G in (3.34)-(3.35).

In the first example, the BER performance of the proposed algorithms is compared
with the existing MSE algorithms. The Fig. 3.2 shows the performance of the MSE
algorithms in terms of BER versus SNR;. The non-regenerative MIMO relay system is
simulated with Ng = Ng = Np = 4. A scenario is considered as assumed in section 3.2
that the source node is moving rapidly. Hence, to implement the assumption in simula-
tion, the distance between the relay to destination link is fixed, where the source to relay
and source to destination distances are varied. For establishing the scenario, the SNR, of
the relay-destination link is set as SNRy = 20dB and the SNR of the source-destination
link is fixed as SNRg = SNR; — 10dB. The angle spread is set as Ag = 1° for the direct
source-destination link and Ay = 30° for the relay-destination link. In this example,
1000 samples are randomly generated at source node for each channel realization. It
can be seen from the Fig. 3.2 that the PMF algorithm has worst performance than all
other MSE algorithms. The proposed SUB-COV algorithm performance is similar to
the JMMSE-COV and ROS algorithms. At high SNR;, the proposed OPT-COV algo-
rithm shows better BER performance than the NAF, PMF, ROS, JMMSE-COV and
SUB-COV algorithms.

In the second example, the BER performance of the proposed algorithms is com-
pared with the existing MSE algorithms. The Fig. 3.3 shows the performance of MSE
algorithms in terms of BER versus SNRs. In the example, the source, relay and desti-
nation nodes antennas of the non-regenerative MIMO relay system are set as Ng = N
= Np = 4. A scenario is considered as assumed in section 3.2 that the destination node
is moving rapidly. Hence, to implement the assumption in simulation, it is set that
the distance between the source to relay link is fixed, where the relay to destination
and source to destination distances are varied. For establishing the scenario, the SNR
values are set as SNR; = 20dB, SNRg = SNR; — 10dB. The angle spread is fixed as
ANy = 1° for the direct source-destination link and As = 30° for the relay-destination

link. In this example, 1000 samples are randomly generated at source node for each
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channel realization. It can be noticed from the Fig. 3.3 that the proposed SUB-COV
algorithm outperforms the NAF and PMF algorithms and it performance is similar to
the JMMSE-COV algorithm. The performance of the SUB-COV algorithm is closer
to the ROS algorithm. At high SNRy (SNRy >10dB), the proposed OPT-COV algo-
rithm shows better BER performance than the NAF, PMF, ROS, JMMSE-COV and
SUB-COV algorithms.

In the third example, the NMSE performance of the proposed algorithm is studied
for various SNR; while fixing SNRs = 20dB, SNR; = 20dB, and SNRy = SNR; — 10dB
for satisfying the assumption in the section 3.2. In the example, the angle spreads and
number of antennas are set as g = 1°, Ay = 30°, Ng = Ng = Np=4. In this example,
1000 samples are randomly generated at source node for each channel realization. It
can be noticed from the Fig. 3.4 that NAF and PMF algorithms produce much higher
NMSE as compared to the proposed SUB-COV algorithm at high SNR;. It can be
depicted from the Fig. 3.4 that the performance of the proposed SUB-COV algorithm
is similar to the ROS and JMMSE-COV algorithms. It is clearly shown in Fig. 3.4 that
the proposed OPT-COV algorithm outperforms in terms of NMSE as compared to the
NAF, PMF, JMMSE-COV, SUB-COV and ROS algorithms.

In the final example, a non-regenerative MIMO relay system is simulated with Ng =
Ngr = Np =4. The QPSK constellations are used to modulate the symbols at the source
node. Fig. 2.5 shows the NMSE performance of the proposed algorithms for varying
SNRjy while fixing SNR; =20dB and SNRg = SNR; — 10dB. Angle of the delay spread
for the source-destination link is set as Ay = 1° and the relay-destination link is set
as Ay = 30°. The simulation result is averaged over 1000 QPSK samples which are
randomly generated at source node for each channel realization. From the Fig. 3.5,
it can be noticed that the proposed SUB-COV algorithm excels the NAF and PMF
algorithms in terms of NMSE at high SNRy (SNRg > 5dB). The proposed OPT-COV
algorithm has a better NMSE performance as compared to the NAF, PMF, JMMSE-
COV, SUB-COV and ROS algorithms.

3.5 Chapter Summary

In this chapter, the general structure of the optimal relay precoding matrix for linear
non-regenerative MIMO relay communication systems is derived. The proposed relay

matrix minimizes the MSE of the signal waveform estimation at the destination node in

37



Chapter 3. MIMO Relay Design with Covariance Feedback and Direct Link

the presence of the direct source-destination link. It is assumed that the relay knows the
full CSI of the source-relay link and the partial CSI (covariance feedback) of the direct
source-destination link and the relay-destination link. Simulation results demonstrate
that the proposed iterative based optimal covariance algorithm has improved NMSE
and BER performances compared with the conventional covariance feedback based MSE

algorithms.

3.A Appendix

Regarding the convexity of (3.28) for ﬁgoﬁwo and ﬁiﬁw, it can be noted that by

using the matrix inversion lemma (2.15), the MSE function (3.28) can be rewritten as

En,, ,[J(G)|=0203En,, , |tr]|oi1 203V, A [HE H, | AP VE
Hw072|: ( )]_0—330—1 H"JO,Q r 0-1 NS' + 0-1‘0-1 EO 20 [ wo w0:| 20 EO
~ ~ 2 -1

+02V A PGHAY? (A;Q PGGIAY + % [H2H,,] 71)

1
- -1
xALGAAVET]

From [66], f(X) = X! is a matrix-convex function of X. Hence, the MSE function

(3.28) is a convex function for ﬁfo H,,, and ﬁfQ H,,.
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Chapter 4

MIMO Relay Design with Mean

and Covariance Feedback

In this chapter, the problem of transceiver design in a non-regenerative MIMO relay
system is addressed, where linear signal processing is applied at the source, relay and
destination nodes to minimize the MSE of the signal waveform estimation at the desti-
nation node. In the proposed design scheme, optimal structures of the source and relay
precoding matrices are derived with the assumption that the mean and CCI of the relay-
destination link and the full CSI of the source-relay link are known at the relay node.
Overview of the existing work is described in Section 4.1. In Section 4.2, a system model
of the proposed precoding matrix design is introduced for a non-regenerative MIMO re-
lay system with mean and covariance feedback. In Section 4.3, two non-regenerative
MIMO relay precoder design schemes, such as an iterative joint source and relay pre-
coder design scheme and suboptimal relay only precoder design scheme are proposed
to achieve the minimum MSE of the signal estimation at the destination node. The
performance of the proposed MIMO relay design schemes is verified through numerical
simulations which is presented in Section 4.4. Finally, the chapter is summarized in

Section 4.5.

4.1 Overview of Existing Techniques

Recently cooperative communication has attracted considerable attention, due to its

potential to provide reliable, cost effective and wide-area coverage of wireless networks.
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In cooperative communication systems, relay node can be deployed in between the source
and destination to reduce the transmission power from the source to neighbouring nodes
and mitigate the shadowing effects.

In general there are two kinds of relay strategies, including regenerative scheme and
non-regenerative scheme [17, 19, 50]. In terms of implementation complexity, the non-
regenerative scheme has a lower computational complexity, since for this scheme, the
relay node amplifies the received signal from the source node and retransmits the signal
to the destination node.

On the other hand, multiple antennas can provide spacial diversity and multiplexing
gains to wireless communication systems. This benefits can be incorporated in the
cooperative communication systems by deploying multiple antennas at the transceiver.
Due to this fact, non-regenerative MIMO relay systems have received much research
interest [21-25, 28-34, 37, 51-55, 67].

Recently, relay precoding scheme [21, 22, 51-54] for non-regenerative MIMO relaying
has been investigated to maximize the capacity between the source and destination with
further signal processing. In this scheme, the relay multiplies the received signal by a
precoding matrix and retransmits the precoded signal to the destination node. The
precoding matrix is designed to minimize the MSE of the signal waveform estimation at
the destination node [23, 25, 56, 57]. The optimal precoding matrix design is investigated
well in [23, 25, 56, 57, 67] for non-regenerative MIMO relay system with the assumption
that the relay knows the full CSI of the source-relay and relay-destination links.

In a practical system with a limited feedback rate, the assumption that the relay
knows the full CSI for the relay-destination link is not feasible, especially in the situ-
ation when the destination node is moving rapidly. The channel mean and covariance
matrices are more stable than the instantaneous channel matrix because the scattering
environment changes more slowly compared to the destination node location.

Optimal precoder is designed for maximizing the ergodic capacity of the non-regenerative
MIMO relay systems with the assumption that the CCI of the relay-destination link
is available at the relay node [29-31, 58]. Recently, MMSE based estimators are in-
vestigated in [32-34] with the assumption that the covariance channel information of
the relay-destination link is known at the relay node. An optimal transmit strategy
is proposed for maximizing the cut-set bound on the ergodic capacity of the two-hop
decode-and-forward (DF) MIMO relay systems with the mean and covariance feedback

[68]. However, the optimal precoding matrix design with the mean feedback of the
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Source Destination

Figure 4.1: Non-regenerative MIMO relay system

relay-destination link is not investigated for non-regenerative MIMO relay systems in
[32—-34, 68].

In this chapter, an iterative joint source and relay precoder design is proposed to
minimize the MSE of the symbol estimation in a non-regenerative MIMO relay system,
when the mean and covariance information for the relay-destination link are available
at the relay node. It is considered that the computational complexity of the developed
iterative scheme may be high for practical implementation of the relay system. Hence,
a suboptimal relay-only precoder design scheme is proposed. In the proposed two al-
gorithms, it is assumed that the relay knows the full CSI of the source-relay link and
mean and CCI of the relay-destination link. Simulation results verify the performance

of the proposed optimal and suboptimal mean and covariance based algorithms.

4.2 System Model and Problem Formulation

Consider a non-regenerative MIMO relay system as shown in Fig. 4.1, where the source,
relay and destination nodes have Ng, Ng and Np antennas, respectively. It is assumed
that there is no direct link between the source and destination nodes due to long distance
between these two points. The data transmission takes place over two hops. The

received signal at the relay during the first hop is given by
y1=HiFx+mnm (4.1)

where H; € CNVr*Ns ig the channel matrix of the source-relay link, F € CNs*Ns ig the
source precoding matrix, x € CVs*! is the transmitted signal vector with covariance

matrix E{xx"} = 021y, n; € CV#*! is the circularly symmetric complex Gaussian
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noise vector with zero mean and covariance matrix E{nin{’} = ¢?Iy,. The received

signal at the destination in the second hop is given by
yo = HoGH Fx + HoGn; + ny (42)

where Hy € CV0*NR is the channel matrix of the relay-destination link, G € CNe*Nr g
the relay precoding matrix, ny € CNP*1! is the circularly symmetric complex Gaussian
noise vector with zero mean and covariance matrix E{nonl’} = ¢2I,. The combined

channel and noise matrices can be written
H-=HGH,F (4.3)
and
n=H>sGn; + ny (44)

where H € CNp*Ns ig the equivalent MIMO channel matrix, and n € CN¥P*! represents

the equivalent noise vector. Now (4.2) can be written as
y2 = Hx + n. (4.5)

Consider a scenario that the channel of the relay-destination link is correlated at the
transmit antennas and is uncorrelated at the receive antennas. This model is suitable
for an environment where the relay is not surrounded by local scatterers [11] and the
destination node is hindered by local scatterers [30, 31]. With this assumption, the

channel matrix Hy can be modeled as
H, = H, + H,XZ!/? (4.6)

where ITIM € CNp*Nr i the mean of Hy, Hy, is an Np x Nr Gaussian matrix having
i.i.d. circularly symmetric complex entries with zero mean and unit variance, and X is
an Ngr X Ng covariance matrix of Hs at the relay side.

At destination node, linear receiver W is applied to reduce implementation com-

plexity. Hence, the estimated signal at the destination node can be expressed as
x = WHx + Wn. (4.7

It is assumed that the average power at the source and relay are upper bounded by
P, and P,. Since the transmitted signal from the relay is Gy; = GH1Fx + Gn, the

power constraint on the source and relay can be expressed as
p(F):agtr{FH F} <P,

»(F, G):tr{G(agﬂlFFH HY + 02Ty, )GH } <P, (4.8)
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Our goal is to design F, G and W so as to obtain the estimated signal which minimizes

the following MSE function subject to the power constraints (4.8).
J(F,G, W) = tr{E{(i—x)(i—x)H}} (4.9)
Mathematically, this problem can be formulated as

(F,G,W)=argmin J(F,G, W),
(F,G,W)

s.t. p(F)<P,,
p(F,G)<P,. (4.10)

After substituting (4.7) into (4.9), the MSE function (4.9) is simplified to

J(F, G, W):tr{ag (WH . INS) (WH . INS)H
+WR, W } (4.11)
where R,, is the equivalent noise covariance matrix, given by
Rn:E{nnH }

:E{ (Hanl + n2) (Hanl + IIQ)H}
=0iH,GGTHE + 021y, (4.12)

Note that directly solving the constrained MSE function (4.10) is difficult due to
the fact that both the objective function J(F, G, W) and the power constraint p(F, G)
are non-linear and non-convex function of F, G and W.

In the following section a suboptimal approach will be used to tackle the constrained
non-linear optimization problem. First, the problem will be solved for the optimal
linear receiver W for any given precoding matrices F and G which satisfies the power
constraints (4.8). Then, an iterative source and relay precoder design is proposed for
obtaining the source and relay precoding matrices F and G by solving a closely related
constrained optimization problem. In order to reduce computational complexity of the

proposed iterative scheme, a suboptimal relay-only precoder design is proposed.

4.3 Proposed Optimal Transceiver Design Algorithms

For any given precoding matrices F and G which satisfy the power constraint at the

source and relay nodes (4.8), the optimal linear receiver W that minimizes the MSE
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function J(F, G, W) is the same as the MMSE (Wiener filter) receiver [59], which is
given by
W = 2H (s2HH" + R,,)L. (4.13)

After substituting (4.13) into (4.11), the MSE function is obtained as
J(F,G) = agtr{INs ~ o?HH (o2HHH + Rn)—lﬂ}. (4.14)
Using the following matrix inversion lemma [60]
(A+BCD) '=A"! ~ A 'B(DA'B+C!)"'DA (4.15)
the MSE function (4.14) can be written as
J(F,G) = a;f,tr{ [INS + aﬁHHR#H} _1}. (4.16)
Substituting (4.3) and (4.12) into (4.16), the MSE function can be expressed as
J(F, G):agtr{ [INS +o2FHEAGHHY
X <J%H2GGHH§ n a%IND) 71H2GH1F] 71}. (4.17)

Using the matrix inversion lemma (4.15), the MSE function (4.17) can be written

as

2
J(F,G)=c2tr{ [Ty, + S HI Ly,
o1

0.2

—(INR + U—%GHH§H2G>_1}H1F]_1}. (4.18)

Now the problem is reduced to find the optimal precoder matrices F and G that
minimize J(F,G) subject to the power constraints (4.8). Observing the MSE function
(4.18) and power constraints (4.8), it is readily noticed that the optimization problem
is not easy to solve with the current form. Hence, the optimization problem should be
converted into scalar-valued optimization problem. The SVD and EVD properties of
the matrix is used to simplify the optimization problem into scalar form. Hence, SVD

of Hy can be written as

H, = U;A2VH (4.19)

where Ay = diag{A; 1 --A; n,} is a diagonal matrix with Ayq > -+ > Ay Ny, Uy and
V are the singular matrices of H;. To diagonalize (4.18), F can be selected as [28]

F =V AUy (4.20)
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where Ap = diag{Ar,1--- Ap Ny} is a diagonal matrix with Ap; > -+ > Ap N, and Up

is a unitary matrix. The EVD of 3 can be expressed as
S = VeAgVY (4.21)

where Ay, = diag{Ax 1 -+ Ay ng} with As 1 > -+ > As ng. The columns of Vy are the
eigenvectors of X for the corresponding eigenvalues. Substituting (4.21) into (4.6), the

channel matrix Hy can be written as
N pe 1/2x,H
H; =H, + H, Ay " Vg (4.22)

where i—VIw £ H,Vs. Here, ﬁw has the same distribution as H,,, because the unitary
matrix Vy does not change the statistical distribution of H,. Due to the similar
statistical distribution, the H,, is an Np x Ni Gaussian matrix having i.i.d. circularly
symmetric complex entries. Let’s assume that the optimal precoding matrix G which

minimizes (4.18) can be expressed as
G = VyAZPUl (4.23)

where Ag = diag{Ag,1---Ag ng}. Substituting (4.19) - (4.23) in (4.18), now the MSE

function is given by
_ 2 0% < 1/2 A 1/2¢-H
J(AF,AG)_%tr{ Lvs + 23U A AU
1
1/2 5 1/2 -1
x[INR—Dl]UlAl AY UF} } (4.24)
where
D= (Ly. + LU, AY2VE [, + B AY2vE] "
1—<NR+U_% 1\ 2|: p+ Hy Ay 2}
_ ~ —1
x[H, + BoAPVE | vead?ull)
Using the SVD and trace properties, the MSE function (4.24) can be simplified to
2 -1
J(Ap, AG):agtr{ [INS + %A}PA}/Z [INR - DQ}A}”A}/Q} } (4.25)
1
where
of 12 H[EHE L GHE ALY2UH
Do (L, + AL VE (BB, + A H A VY
2

~ ~ o~ —1
+VsAYPRIA, + VoA RIAAYVE | Vaal?)
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It can be seen from (4.25) that J(Ap, Ag) depends on H,,, which is random and un-
known. In the following, Eg {J(Ar,Aq)} is optimized, where Eg {.} indicates that
the expectation is taken with respect to the random matrix H,,. Now Eg {J(AF,Ag)}

can be expressed as
Eg {J(Ar,Ag)}=0203Eg_ [tr{ [afINS +o2AY2AL?
-1
x [INR - DQ}A}/ 2A}/2} H (4.26)

Now the work is left to determine the diagonal elements Ar and Ag of precoder
matrices F and G. Direct minimization of (4.26) for the optimal power allocation is
difficult. In the following, the lower bound of the MSE is used together with the power
constraint (4.8) to derive the suboptimal power allocation for the precoder matrices F
and G. Since J(Ap, Ag) is convex in ﬁf H.,,, which is proved in Appendix 4.A and has

the following lower bound using Jensen’s inequality [65]
Eg {JL(Ar, AG)}:aga%tr{ [a%INS +o2AY2AL?
x [INR - Dg] AV QA}J?] _1} (4.27)
where
D= (Tny + Z—gAgQVQ (FUH, + By (AU }AYVE
+Ve A Eq {HIA,) + VoA By {ﬁff{w}Alz/ZV§>VgAé/2>_l.

Using the properties of Gaussian random matrices with i.i.d circularly symmetric
complex entries, Egz {ﬁfﬁw} = Nplnr, Eg {ﬁfﬁw} = Eg {I?IEI:IH} = 0 and
taking the expectation on (4.27) with respect to Eg , the MSE function can be written

as
Jr(AF, AG):a;f,a%tr{ [J%INS + o2AY2AL?
%I, — D] A2 AL 71} (4.28)
where

o2 _ -1
D=(Tn, + U_éAg/?vg [BITA, + NpVsAsVE|Vaad?)
After using the SVD properties, the MSE function (4.28) can be simplified to
JL(AF’ Ag):Jia%tT{ [J%INS + J§A¥2A1/2

%L, — Ds| A2 71} (4.29)
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where
2 o -1
D = (T, + DAL (VER]TR, Vs + NpAs)AL) .
2

To proceed further, using the matrix inversion lemma (4.15), the MSE function

(4.29) can be written as
Jr (AR, A(;):Uga%tr{ [0211\/5 + 0’2A1/2A1/2A1/2
19-1 -1
[AG + 22 (VHHHH Vs + NpAs) ] ALPAY QA;”} }(.4.30)

Applying the matrix inversion lemma (4.15), the MSE function (4.30) can be written

as
1 1 -1
(A, Ag)=a2tr{ [Ing = — AP AV AL (S5 AP AL ArAL AL + )
g1 97
K A2AY 2A;/2] } (4.31)
where

HyrH 1 -1
C=_— {AGJr (V A'A VZ+NDAE> ]
O-:E 1

An upper-bound of (4.31) is considered. Hence, the MSE function (4.31) can be

rewritten as

J(AF, Ag)=0> [tr (A*l) —tr (A*lEH (EA*EH + c) _IEAfl)} (4.32)

where
A=Iy,,
L 172 0172 4172
E=—A/"A7"AL".
oG A AR

By using the following inequality from [28]
tr(AT'E" (EAT'E" + C)ilEA_l)
> tr(ATE" (EAET + diag(C))ilEA_l), (4.33)
an upper-bound of J(Ap, Ag) is given by
Ju(AF, AG):agtr{ [INS - (AFAlAG + a%Ac)_lAFAlAG} } (4.34)
where

_ -1
Ao= dlag[A(;—i- §<V H{jHMVE+NDAE) ] (4.35)
01

&zw|"
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Inserting (4.20) into (4.8), the power constraint for the source node can be expressed
as
p(Ap) = Ugtr{AF} < P. (4.36)

Substituting (4.19) and (4.23) into (4.8), the power constraint for the relay node can

be expressed as
p(Ar, AG):tr{VgAgQU{{ (agUlA}/ 2ApAYPUH 4 a%INR>
<UL A2V } <P, (4.37)
Using the SVD and trace properties, the power constraint (4.37) can be simplified to

p(Ap, Ag) = tr{(agAlAF + U%INR)AG} <P, (4.38)

4.3.1 Joint Source and Relay Precoder Design

In this section, a joint source and relay procder design is proposed to obtain the diagonal
elements of Ar, Ag. From (4.34), (4.36) and (4.38), the diagonal elements of Ap, Ag

can be obtained by solving the following constrained optimization problem with scalar

variables
Ns 2 2
. O30T AC,i
min Jy (Ar, Ag)= S 4.39
( ) 221 A1iApiAG,i + o3y (4.39)
Ng
s.t. p(AF):O'g Z AFJ‘ S PS, (440)
i=1
Ns
p(AF, AG):Z (UgAl,iAF,i + J%)AGJ' < PF,. (441)
i=1

Using the KKT conditions [61], the optimal diagonal elements of Ap; and Ag; are

obtained as

+
1 2ol A
Ap; = L ST 4.42
o A1iAG (\/Ms +uhiAg; @i (4.42)
1 JQJ%ACiAl ZAFZ 2 -
Agi = L 1 — g1 Ay 4.43
N2 ALZ'AFJ‘ ,U,/r (O‘%ALZAF,Z + O‘%) 1 N2 ( )

where (z)* = max(x,0), us and g, should be chosen to meet the power constraints
(4.40) and (4.41).
It can be seen from (4.42) and (4.43) that the diagonal elements of A ;, Ag; matrices

are function of each other, so directly solving the diagonal elements of the matrices are
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too difficult. To avoid this difficulty, an iterative algorithm is proposed to compute the
diagonal elements of Ar; and Ag ;.

In this algorithm, initialize Ap = In, and Ag = Iy,. Then calculate A\¢ with (4.35),
and calculate the water filling variables u, and us to satisfy the power constraints (4.8)
at the source and destination nodes. Update Ap and Ag according to (4.42) and
(4.43) respectively. Ar and Aq are iteratively updated until ||A% — Ap|| < 0.0001 and
[|Ar; — Ag|| < 0.0001. Here A, and A, are the two recent calculated values of Ap and
Ag.

4.3.2 Relay-only Precoder Design

In this section, a suboptimal algorithm is proposed to obtain the diagonal elements
of Ag while fixing Ap. It is assumed that Ap = Iy, the constrained optimization

problem (4.39) to (4.41) can be rewritten in scalar form as

s o203 e
min Jy(Ag)= L . 4.44
(Ac) ZZI AiiAGi + oAy (4.44)
Ng
s.t. p(AG):Z (JiAl,i + U%)AG,i < P,. (445)
i=1

Using the KKT conditions [61], the optimal diagonal elements of A ; are obtained

+
1 0202 il
Ao, = — i M L —0'2)\0' 4.46
T A <\/,ur(0'32;A1,i +op) (440

where p, should be chosen to meet the power constraint (4.45).

as

4.4 Numerical Examples

In this section, the performance of the proposed algorithms is verified by numerical
examples. The unitary matrix, Up, of the source precoder matrix (4.20) is generated
by the Ng-point discrete Fourier-transform matrix. The channel matrices H; and H,,
are generated as complex Gaussian variables with zero mean and unit variance. The

mean, I:IH, of Hy is randomly generated as

0.33 +0.47¢, 1.03 —0.96¢, 0.88 —0.17¢, —0.94 4 0.82¢

H — 0.58 4+ 0.01¢, 0.93 — 0.087, —0.56 — 0.12¢, 1.02 — 0.32%
#710.73 — 0.05¢, 0.49 — 0.56i, —0.36 — 0.67¢, —0.39 + 0.72¢
—0.62 —1.72z, 0.51 + 0.95¢,1.00 — 0.887, —0.09 — 0.05¢
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Figure 4.2: BER versus SNR; while fixing SNRy; = 20dB.

The elements of covariance matrix X of Hy is generated by %; ; = Jo(An|i—j|) [11],
where Jy(.) is the zeroth order Bessel function of the first kind, A the angle of fading
spread. The SNRs for the source-relay and relay-destination links are defined as follows
SNRy = Z, SNR; = 2.

The performance of the proposed schemes is compared with the PMF [22], JMMSE
[23], IMMSE-COV [32] algorithms, and the iterative joint source, relay and destination
algorithm (JSRD-ITE) [67]. The JSRD-ITE algorithm provides the lower-bound of the

proposed schemes.

In the first example, a non-regenerative MIMO relay system is simulated with
Ng = Nr = Np = 4. The angle spread is set as A = 30°. The symbols are gen-
erated from 1000 QPSK constellation at the source node. The Fig. 4.2 shows the
performance of the MSE algorithms in terms of BER versus SN R; while fixing SNRo
= 20dB. The proposed suboptimal relay-only (SUB-RO) algorithm shows better BER
performance over all range of SNR; than the PMF and JMMSE-COV algorithms. For
SNR; < 15dB, the BER performance of the SUB-RO algorithm is closer to that of the
JMMSE algorithm. For SNR; > 15dB, the proposed SUB-RO algorithm outperforms
the JMMSE algorithm. The proposed iterative joint source and relay (JSR-ITE) algo-
rithm outperforms the JMMSE-COV, SUB-RO and JMMSE algorithms over the tested
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Figure 4.3: BER versus SNRy while fixing SNR; = 20dB.
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Figure 4.4: NMSE versus SNR; while fixing SNRy = 20dB.
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Figure 4.5: NMSE versus SNR, while fixing SNR; = 20dB.

range of SNR;.

In the second example, the BER performance of the MSE algorithms is compared for
various SNRy while fixing SNR;= 20dB and the MIMO relay system is simulated with
Ng = Nr = Np=4. The angle of the delay spread is fixed as /A = 30°. 1000 randomly
generated QPSK constellations are transmitted from source node for each channel re-
alization. It can be noticed from the Fig. 4.3 that the proposed SUB-RO algorithm
has better performance than the PMF, JMMSE-COV and JMMSE algorithms. It can
be noticed from the Fig. 4.3 that the performance of the proposed JSR-ITE algorithm
outshines the JMMSE-COV, SUB-RO and JMMSE algorithms over the tested range of
SNRj.

In the third example, the NMSE performance of the MSE algorithms is investigated
for various SNR; while fixing SNRo = 20dB. In the simulation, the delay spread angle is
set to A = 30° and the number of antennas at the source, relay and destination nodes are
set as Ng = Nrp = Np=4. In the example, 1000 QPSK samples are randomly generated
at source node for each channel realization. From Fig. 4.4, it can be concluded that
PMF, JMMSE-COV, JMMSE algorithms produce much higher NMSE as compared to
the proposed SUB-RO algorithm at high SNR (SNR; >10dB). It is clearly shown in
Fig. 4.4 that the proposed JSR-ITE algorithm offers improved performance in terms of
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NMSE compared to the PMF, JMMSE-COV, SUB-RO and JMMSE algorithms over
the entire range of SNR;.

In the final example, the performance of the MSE algorithms is studied for varying
SNR, while fixing SNR; = 20dB. In this example, the number of antennas in the
source, relay and destination nodes are fixed as Ng = Ngr = Np =4 and the angle
of delay spread is set as A = 30°. 1000 QPSK symbols are randomly generated at
the source node for each channel realization. It can be observed from the Fig. 4.5
that the proposed SUB-RO algorithm has a better NMSE performance than the PMF,
JMMSE-COV, JMMSE algorithms. It can be notice from the Fig. 4.5 that the proposed
JSR-ITE algorithm always outperforms the PMF, JMMSE-COV, SUB-RO and JMMSE

algorithms over the entire range of SNRe.

4.5 Chapter Summary

In this chapter, the optimal structure of the source and relay precoder matrices of the
non-regenerative MIMO relay system is derived to minimize the MSE of the symbol
estimation at the destination node with the assumption that the mean and covariance
feedback of the relay-destination link are available at the relay node. It is assumed
that the relay knows the full CSI of the source-relay link. Simulation results show that
the proposed schemes, which minimize the upper-bound of the MSE is achieved and
its demonstrate that the proposed scheme has better performance in terms of NMSE
and BER as compared to the conventional full CSI and covariance feedback based MSE

schemes.

4.A Appendix

In this section, the convexity of the MSE function (4.26) for HZH,, is proved. A set
of Np x Npg positive definite Hermitian matrix is Z. Using the inversion lemma (4.15),

the MSE function (4.26) can be rewritten as
e o e,
2 —1y -1 1
A(veacvi+ Alzrg] ) Y
1

where

E - 1/2
Z= (A + HAVE).
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From [65], f(Z) = Z! is a matrix-convex function of Z. Hence, the MSE function

(4.47) is a convex function for Z*Z.
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Chapter 5

Non-linear MIMO Relay Design

with Covariance Feedback

In this chapter, the performance of the TH precoder based non-linear transceiver design
is investigated for a non-regenerative MIMO relay system assuming that the full CSI of
the source-relay link is known, while only the CCI of the relay-destination link is avail-
able at the relay node. Overview of the existing work is described in Section 5.1. The
system model and problem formulation are presented in Section 5.2. In Section 5.3, the
optimal structure of the TH precoding, the source precoding and the relay precoding
matrices are derived to minimize the MSE of the signal waveform estimation at the des-
tination node. Numerical examples are shown in Section 5.4 to verify the performance

of the proposed algorithms, and chapter summary is drawn in Section 5.5.

5.1 Overview of Existing Techniques

In cooperative communication systems, relay nodes can be deployed between the source
and destination nodes to mitigate the channel shadowing effect and provide system
spatial diversity. Therefore, cooperative communication has great potential in extending
the network coverage and increasing the system throughput with reduced infrastructure
cost, and thus, has attracted much research interest recently [19, 50].

Wireless relays can be regenerative or non-regenerative [17, 19, 50, 69]. In the regen-
erative relay strategy, the relay decodes the received signals from the source node and

retransmits the re-encoded information to the destination node. In the non-regenerative
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relay strategy [17], the relay node simply amplifies (including a possible linear transfor-
mation) the received signals from the source node and retransmits the amplified signals
to the destination node. Therefore, the complexity and the processing delay of the
non-regenerative strategy are generally much smaller than the regenerative strategies.

On the other hand, MIMO systems can provide spatial diversity and multiplexing
gains to wireless communication systems [20]. When nodes in a relay network have
multiple transmit/receive dimensions, such a system is called as MIMO relay system.
In [21, 22, 51-54], relay precoder designs for a two-hop non-regenerative MIMO relay
system have been proposed to maximize the mutual information between the source and
destination nodes. In [23-28, 55-57], relay precoding algorithms have been developed
to minimize the MSE of the signal waveform estimation at the destination node. The
precoder designs in [21-28, 51-53, 55-57] assume that the full CSI of the source-relay
and relay-destination links is available at the relay node.

However, in practical relay communication systems, the exact CSI is unknown and
therefore, has to be estimated. There is always mismatch between the true and the
estimated CSI due to channel noise, quantization errors and outdated channel estimates.
A more practical assumption is that only partial information of the relay-destination
channel is available at the relay node. In [29-31, 58], relay precoding matrix design has
been investigated for maximizing the ergodic capacity of the relay system with the CCI
of the relay-destination channel. Robust broadcasting schemes have been developed
in [70] to minimize the transmission power necessary to guarantee that the quality-
of-service (QoS) requirements are satisfied for all channels within bounded uncertainty
regions around the transmitters estimate of each users channel. MMSE based transceiver
designs have been addressed in [32-35] with the assumption that the relay knows the
CCIT of the relay-destination link and the full CSI of the source-relay link.

In the work of [29-35], linear transceiver design has been considered for MIMO relay
systems, i.e., linear source/relay precoders and linear MMSE receiver. Compared with
linear transceivers, non-linear transceivers have a better BER performance. Recently,
non-linear transceiver based non-regenerative MIMO relay system design has been pro-
posed [36, 37]. Non-linear transceiver can be implemented at the receiver as a DFE
and/or at the transmitter in the form of a TH precoder. In general, the TH precoding
scheme has a better BER performance than the DFE-based transceiver design, as the

latter one suffers from error propagation.
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The performance of the TH precoding scheme has been well studied for one-hop
MIMO systems [38, 39, 71, 72]. In [73], a TH-based pre-filtering algorithm has been
designed for multi-antenna multi-user systems where the base station allocates the trans-
mit power according to the QoS requirement of each active user. A unified approach has
been developed in [74] for transceiver optimization in MIMO systems with TH precoding
at the transmitter and linear equalization at the receiver. In [75], a multiuser MIMO TH
precoding algorithm has been proposed based on quantized CSI at the transmitter side.
Recently, the TH precoding scheme has been introduced to non-regenerative MIMO
relay systems [40] with the assumption that the full CSI of the entire channel is known
at the relay node. In [41-43], imperfect CSI has been considered for designing the TH
precoding based non-regenerative MIMO relay systems. Due to the nonlinearity nature
of the precoding scheme, the TH precoding is highly sensitive to the time-varying nature
of the wireless channel [44]. Hence, covariance information based non-linear transceiver
design is more appropriate in such scenario.

In this chapter, a TH precoder-based transceiver design is proposed for two-hop
non-regenerative MIMO relay systems where the full CSI of the source-relay link is
known, while only the CCI of the relay-destination link is available at the relay node.
In particular, it is assumed that the channel of the relay-destination link is correlated at
the transmit antennas and uncorrelated at the receive antennas. This model is suitable
for an environment where the relay is not surrounded by local scatterers [11] and the
destination node is located amongst rich scatterers [30, 31]. Similar to [23, 25, 32, 33],
it is assumed that there is no direct link between the source and destination nodes.
Moreover, a TH precoder is considered at the source node. The relay precoder is assumed
as a linear precoder and the destination node is considered as a linear MMSE receiver.

A transceiver design is proposed that minimizes the MSE of the signal waveform
estimation at the destination node. First, the structure of the optimal TH precoder
is derived and the source precoder is as a function of the relay precoder. Then, an
iterative algorithm is proposed to optimize the relay precoding matrix by exploiting the
link between the mutual information and the weighted MMSE functions [76, 77]. To
reduce the computational complexity of the proposed iterative algorithm, a simplified
precoding matrices design algorithm is proposed. Numerical simulations are carried out
to compare the performance of the proposed precoding matrices design algorithms with
existing schemes. Simulation results show that both proposed algorithms outperform

existing TH precoder based MIMO transceiver optimization algorithms in terms of
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BER. Moreover, the system BER yielded by the proposed algorithms is very close to
that of the system with the perfect CSI. Furthermore, the BER performance of the
simplified precoding matrices design algorithm is very close to that of the iterative
algorithm. Therefore, the simplified algorithm is very attractive for practical MIMO

relay communication systems.

5.2 System Model and Problem Formulation

A two-hop non-regenerative MIMO relay system is considered as shown in Fig. 5.1,
where the source, relay, and destination nodes have Ng, Nr, and Np antennas, respec-
tively. It is assumed that there is no direct link between the source and destination due
to the long distance between these two nodes. It is also assumed that Ng < Ng, Np,

so that Ng independent data streams can be transmitted.

<«
MOD,,

Decision
lm

Destination

TH Precoder

Figure 5.1: Block diagram of a non-regenerative MIMO relay system with TH precoder.

As shown in Fig. 5.1, the non-regenerative MIMO relay system has two precoders,
i.e, a TH-based source precoder and a relay precoder. At the receiver, a linear MMSE
receiver filter is considered. At the transmitter side, the source signal vector a € CNs*1
is first fed into the TH precoder. The TH precoder performs a successive cancelation op-
eration which can be implemented through a feedback matrix B and a modulo operation

MOD,, (+) expressed as

MOD, () = & — wﬂMJ (5.1)

2y/m
Here m is the number of constellation points in the modulation scheme and |-| denotes

the floor operation. The signal vector after the modulo operation can be denoted as x,
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whose nth element can be written as

n—1

Tn :an—Z[B]k,l$l+€n, n=1,---, Ng. (5.2)
=1

where [B]y; is the (k,[)-th element of B, e, = 2y/mgy, and ¢, is a complex-valued
quantity with integer real and imaginary components that reduces x,, within the region
of R = {xg + jxr|rRr, 21 € (—v/m,/m)}. By introducing e = [e1,- -+ ,eng], (5.2) can

be expressed in matrix-vector form as
x=Clv (5.3)

where C = B + I is a lower triangular matrix with unit diagonal elements, v = a + e,
and I,, denotes the n x n identity matrix, and x has the covariance matrix of E{xx} =
021n,. The data transmission from source to destination is completed in two time slots.

At the first time slot, the source node linearly precodes x as
s =Fx (5.4)

and transmits s to the relay node, where F € CVs*/Ns is the source precoding matrix.

The received signal vector at the relay is given by
y1=HiFx+mn; (5.5)

where H; € CNrXNs is the channel matrix of the source-relay link, n; € CNrX1 is
the circularly symmetric complex Gaussian noise vector with zero mean and covariance

matrix E{nin{’} = 6?Iy,. At the second time slot, the relay linearly precodes y; as
xo = Gy; = GH{Fx + Gn; (56)

and forwards x to the destination, where G € CV&*NE ig the relay precoding matrix.

The received signal vector at the destination is given by
yo = Hoxo + ny = HoGH 1 Fx + HoGn; + no (57)

where Hy € CNP*N& ig the channel matrix of the relay-destination link, ny € CNp*1 ig
the circularly symmetric complex Gaussian noise vector with zero mean and covariance

matrix E{ngni’} = 031y,. The combined H and n matrices can be written as

H=H-GHF, n=H>Gn; +ny (58)
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where H € CNo*Ns is the equivalent MIMO channel matrix between the source and
destination nodes, and n € CNp*! represents the equivalent noise vector. Now (5.7)

can be rewritten as

y2 = Hx + n. (5.9)

It is assumed that the relay node knows the instantaneous CSI of Hy, which can be
obtained at the relay node through training sequence from the source node. To obtain
the instantaneous CSI of Hy at the relay node, the channel Hy must be fed back to
the relay node from the destination node. When the relay-destination channel varies
rapidly, a large signalling overhead for feedback of Hs is required and this may not be
feasible since the rate of feedback link is often limited in practical wireless communi-
cation systems. Hence, in the proposed design, it is assumed that only the covariance
information of Hy, which is much more stable than the instantaneous information of Hs,
is known at the relay node. In particular, a scenario is considered where the channel of
the relay-destination link is correlated at the transmit antennas and uncorrelated at the
receive antennas. For example, this scenario can occur in a relay communication system
where the relay node is located at the top of a radio mast and a mobile destination node
is in an urban area [31]. With this assumption, the channel matrix Hy can be modelled
as

H, — H, X3 (5.10)

where H,, is an Np x N Gaussian matrix having i.i.d. circularly symmetric complex
entries with zero mean and unit variance, and X is an Ng X Ng covariance matrix of
H> at the relay side. Note that the covariance matrix ¥ is assumed to be known to the
relay node and H,, is unown to the relay node.

At the destination node, a linear receiver with weight matrix W is applied due to its
implementation simplicity. Hence, the estimated signal vector at the destination node
can be expressed as

v =Wys; = WHx + Wn. (5.11)

It is assumed that the average transmission power at the source and relay is upper
bounded by ps and p,., respectively. Based on (5.4) and (5.6), the power constraints at
the source and relay nodes can be expressed as

P(F)=c2tr {FF"} < p, (5.12)
Q:1(F,G)=tr{G(o2H;FF"HI + 071y,)G"} < p, (5.13)
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Our goal is to design C, F, G, and W to obtain the estimated signal v which minimizes

the following MSE cost function subjecting to the power constraints (5.12) and (5.13)
J1(C,F,G, W) :tr{E{(v—v)(v—v)H}}. (5.14)

Note that once Vv is obtained, a can be recovered from (5.1). After substituting (5.11)

into (5.14), the MSE cost function (5.14) can be written as

Ji1(C,F,G,W)=tr{s2(WH — C)(WH - C)”
+WR, W} (5.15)

where R,, = E{nn’’} is the equivalent noise covariance matrix given by
R, = 0iH,GGTHY + o21y,. (5.16)

Based on (5.12), (5.13), and (5.15), the optimal precoding matrices design problem
can be formulated as

min _ J1(C,F,G,W)
CF.GW

s.t. P(F) < ps
Q1 (F,G) <p,. (5.17)

Directly solving the problem (5.17) is difficult due to the fact that J;(C,F,G, W) is a
non-linear and nonconvex function of C, F, G, and W. In the following section, optimal
and suboptimal approaches are proposed to solve the problem (5.17). Firstly, the opti-
mal structure of C and F are derived as a function of G. Then an iterative algorithm
is proposed to optimize the relay precoding matrix G. Finally, a simplified precoding

matrices design is developed to reduce the complexity of the iterative algorithm.

5.3 Proposed Transceiver Design Algorithms

Since concurrently finding the optimum C, F, and G in (5.17) is not possible, hence the
optimization problem in (5.17) is reformulated into three subproblems. In the proposed
first subproblem, the lower triangular matrix C is derived as a function of F, and G,
and then, second subproblem optimizes the source precoder matrix F. In the third
subproblem, an iterative approach is proposed to obtain the relay precoder matrix G.
Due to the computational complexity of the prposed iterative approach, a simplified

precoding matrices design is proposed in the subsequent subsection.
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5.3.1 Tomlinson-Harashima Precoder Design

For any given precoding matrices C, F, and G which satisfy the power constraints at
the source and relay nodes (5.12) and (5.13), the weight matrix W of the optimal linear
receiver that minimizes the MSE function J;(C,F, G, W) is the well known MMSE

receiver (Wiener filter) which is given by [59]
W = ¢2CH” (¢2HH” + R,,)"". (5.18)
After substituting (5.18) back into (5.15), the MSE function can be written as
Jo(C, F, G):agtr{c (INS _ o2HH
x(e?HH" + R,)"'H)C"}. (5.19)
By using the following matrix inversion lemma [60]

(A+BCD) '=A"'-A"'B
x(DAT'B+C H 'DAT!, (5.20)

the MSE function (5.19) can be written as
-1
Jo(C, F, G):tr{c(a;21Ns n HHR,;lH) CH}
N |
:tr{C (U;QINSJr FHNH MF) ct } (5.21)

where

_1
2

M = (U%HQGGHHQ’ + a%IND) H,GH,. (5.22)

To proceed further, the MSE function (5.21) is minimized with respect to the lower
triangular and unit diagonal matrix C. The optimum C is given in [38] and can be

written as

Copt = DL (5.23)

where
~ ~ —1
LLY = <a;21 s + FAMH MF) (5.24)

is the Cholesky factorization. Here L is a lower triangular matrix and D is a diagonal

matrix which scales the diagonal elements of C to unit, and given by

D = diag{[L]1,1," -, [L]ng,ns }- (5.25)
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Substituting (5.23)-(5.25) back into (5.21), the MSE function can be written as
Ng Ng 2/NS
B(F,G)=S L, > N (H[L]i,z) . (5.26)
i=1 i=1

Using the arithmetic-geometric inequality (AGI), the inequality in (5.26) can be
obtained and the equality can be achieved when [L];; = [L]; ;, i # j.

5.3.2 Source Precoding Matrix Design

It can be seen from (5.24) that [L]; ; depends on the source precoding matrix F. Hence,
in this subsection, F is derived which minimizes the objective function (5.26). This

problem is solved in [39, 71] and [78]. The EVD of M” M can be defined as
rH N H
MM = VA, VE (5.27)

where V7 is the eigenvector matrix of M and Ay = diag{Ay; 1, Ay v )t is the

diagonal eigenvalue matrix with A; ;> --- > Ay Ne-

Lemma 5.1 [/0, 79]. The optimal source precoding matrixz as the solution to the prob-
lem (5.17) can be expressed as

Fopt = pV;PF (5.28)
where ®p is a unitary matriz and p is chosen to satisfy the power constraint (5.12).

Substituting (5.27) and (5.28) back into (5.24), the Cholesky factorization (5.24)

can be written as
LLY=@l5:3: 8, (5.29)
where
1
2

S 2 B
5= (0% vg + P Ay)

Applying the geometric mean decomposition (GMD) [80-82] to 32, $7 can be written

as

2 = QRPY (5.30)
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where Q and P are semi-unitary matrices and R is an upper triangular matrix with

identical diagonal entries given by

Ng 1/NS
[R]ii: (H(U;2+P2AM,I<;) > , i=1,---,Ng.
k=1

NI

Substituting (5.30) back into (5.29), LLY can be written as
LL” = ®7PRYRP & . (5.31)

®r is assumed as r = P to achieve the lower bound in (5.26), then (5.31) can be
simplified as
LL” = RFR. (5.32)
From (5.32), it can be concluded that L = R¥. By substituting (5.32) back into
(5.26), the MSE function can be depicted as

Ng

Ji(G)=>_[R]},

=1
Ng
=Ns [ (02 + p* Ay ,) ™. (5.33)
k=1

After substituting (5.28) back into (5.13), the relay power constraint (5.13) can be
written as

Q2(G) = tr{G(o2p*HiHY + 011N, )G} < p,. (5.34)

Now the relay precoding matrix optimization problem can be formulated as

mén Ji(G) s.t. Q2(G) < py. (5.35)

5.3.3 Relay Precoding Matrix Design

In this subsection, the optimum G is derived. It is worth to note that the eigenvalues of
(5.22) are a non-linear function of G and the optimization problem (5.35) is not convex.

To solve the problem (5.35), the equivalent MSE function can be considered as

Ngs

H (O‘;Q + pQAMJg) =

k=1

oy Ing + p*MAM]. (5.36)

Here | - | denotes the matrix determinant. Substituting