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Abstract—In this paper we consider the design of minimum
mean square error (MMSE) transceivers for non-regenerative
multiple input multiple output (MIMO) relay systems. Our
design utilises Tomlinson Harashima precoding (THP) at the
source along with linear processors in each stage of the network.
Assuming full channel state information (CSI) is available at each
node in the network the various processors are jointly optimised
to minimise the system arithmetic mean square error (MSE)
whilst abiding by average power constraints at both the source
and relay terminals in the network. Simulations show that the
proposed schemes outperform existing methods in terms of bit
error ratio (BER).

Index Terms—MIMO, non-regenerative relay, transceiver de-
sign, Tominson Harashima precoding, minimum mean square
error

I. INTRODUCTION

It is well known that relaying techniques can extend network
coverage [1], increase channel capacity [2], and improve link
reliability due to the spatial diversity offered by the relay
nodes. When the source, relay, and destination devices are
equipped with multiple antennas the communication system
is referred to as a MIMO relay network. Due to the various
advantages offered by MIMO relaying it is considered an
integral component in the design of future generation wireless
communication systems.

Relays can be classed as either decode and forward (DF)
or amplify and forward (AF) also commonly known as re-
generative and non-regenerative relaying respectively. In the
DF protocol the relay decodes the received signal streams and
then transmits the regenerated symbols to the next node in the
network. For the AF scheme, which is the simpler of the two
protocols, the relay simply amplifies the data received from
the source and then transmits to the destination device.

Most of the works in the area of transceiver design for
MIMO relay networks have focussed on the design of linear
processors to enhance system performance under the assump-
tion that each node in the network has the required CSI of
the source to relay and relay to destination channels. In [1]
the optimal relay precoder is designed to maximise the mutual
information (MI) between the source and destination where the
source precoder is designed to be a scaled identity matrix. The
authors in [3] also focus on maximising the MI but introduce
linear equalisation at the destination using the Wiener filter.

Different objective functions other than the maximisation
of MI have also been well investigated such as the MMSE
design criterion. In [4] the optimal relay precoder is derived
that minimises the MSE where similar to [1] and [3] the power
is allocated uniformly over the source antennas.

A unified framework for the design of two-hop MIMO relay
systems based on majorisation theory is presented in [5] where
the optimal source and relay precoders are derived for a broad
range of different design criteria. It is shown that for Schur
concave objective functions the optimal source and relay pre-
coders jointly diagonalise the overall communication system
and convert the MIMO relay channel into independent single
input single output (SISO) subchannels. For Schur convex
functions the commmunication process is only diagonalised
up to a very specific rotation of the data symbols. This work
was later extended to the case of multi-hop MIMO relaying
in [6] where it is shown that the source and relay precoders
have the same optimal structures as in [5].

In this work we focus on the joint design of linear processors
for a two-hop network with THP employed at the source. THP
transceiver designs have been well investigated for the case
of point to point MIMO networks in e.g. [7] and [8]. As in
many works e.g. [4], [5], and [6] we assume that the direct
link between the source and destination antennas is negligible
and that each node in the network has full CSI of the source
to relay and relay to destination channels.

The remainder of the paper is organised as follows: In
section II we introduce the signal model for the THP system
under consideration. Section III presents the optimal MMSE
THP transceiver design and a numerical example is provided
in section IV. Finally conclusions are drawn in V.

Notation: In our notation vectors and matrices are denoted
by lower and upper case bold font respectively. The sets of
real and complex numbers are R and C, which in the case
of vector and matrix quantities indicate dimensions by means
of a superscript. The operators ξ{·}, tr{·}, (·)H, (·)−1, and |·|
denote the expectation, trace, hermitian transpose, inverse, and
determinant respectively. Im is the m×m identity matrix. The
element in the ith row and jth column of matrix A is denoted
as aij and the ith element of vector a is denoted as ai. Matrix
rank is noted by rank(·) and diag {a11, a22, ..., aNN} denotes
a diagonal matrix with diagonal entries {a11, a22, ..., aNN}.
We define the operator [x]+ � max(x, 0).
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Fig. 1. MIMO relay system model with Tomlinson Harashima Precoding.

II. THP SYSTEM MODEL

In this section we introduce the signal model for a half-
duplex two-hop MIMO relay network with THP shown in
Fig. 1. We assume a system where the source, relay, and
destination nodes have Ns, Nr, and Nd antennas respectively
and there is no direct link between the source and destination.
To ensure Ns independent data streams can be transmitted
across the network we assume that Ns ≤ Nr and Ns ≤ Nd.
For convenience we also assume Nd ≤ Nr.

The source symbols s[n] ∈ C
Ns are drawn from M -ary

quadrature amplitude modulated (QAM) constellations with
covariance Rss = ξ

{
s[n]s[n]H

}
= σ2

sINs
. The data symbols

in x[n] ∈ C
Ns are recursively computed according to

xk[n] = Q

[
sk[n] −

k−1∑
l=1

bklxl[n]

]
(1)

where Q[.] denotes the modulo operator and B ∈ C
Ns×Ns is

a strictly lower left triangular matrix. It is shown in e.g. [7]
and [8] that the operator in (1) is equivalent to the following
operation

x[n] = U−1z[n] (2)

where U � B + INs
is a lower left triangular matrix with

unit diagonal elements and z[n] = s[n] + d[n] contains
modified data symbols where d[n] is such that the real and
imaginary components of x[n] are constrained to be within
the region (−√

M,
√

M ]. This leads to the symbols in x[n]
having slightly higher energy than s[n]. However for mod-
erate to high M this energy increase can be neglected and
ξ
{
x[n]x[n]H

}
= σ2

sINs
can be assumed [7], [8].

The symbols x[n] are then processed by the precoding
matrix F ∈ C

Ns×Ns and transmitted across the source to relay
channel Hs ∈ C

Nr×Ns . The data vector r[n] ∈ C
Nr received

by the relay in the first time slot can thus be written as

r[n] = HsFx[n] + vs[n] (3)

where vs[n] ∈ C
Nr is an additive white Gaussian noise

(AWGN) vector with covariance Rvsvs
= ξ

{
vs[n]vs[n]H

}
=

σ2
vs

INr
. In the second time slot the relay precodes the received

data using G ∈ C
Nr×Nr and transmits over the second

stage channel Hr ∈ C
Nd×Nr resulting in the received signal

y[n + 1] ∈ C
Nd at the destination being

y[n + 1] = HrGr[n] + vr[n + 1] (4)

where vr[n + 1] ∈ C
Nd contains AWGN samples with

covariance Rvrvr
= ξ

{
vr[n + 1]vr[n + 1]H

}
= σ2

vr
INd

.
After processing by the equaliser matrix W ∈ C

Ns×Nd and
using (3) and (4) we have

z̃[n + 1] = WHFx[n] + Wv[n + 1] (5)

where for convenience we define H � HrGHs as the
compound MIMO channel between the source and destination
antennas and v[n + 1] � HrGvs[n] + vr[n + 1] as the
total noise term at the input to the equaliser with covariance
Rvv = ξ

{
v[n + 1]v[n + 1]H

}
= HrGRvsvs

GHHH
r +Rvrvr

.
The modulo operator is then performed on the elements of
z̃[n+1] to recover an estimate of the original transmit signals
s[n]. The error signal in terms of the modified symbols can
be calculated as e[n + 1] = z̃[n + 1] − z[n] which using (2)
and (5) results in

e[n + 1] = WHFx[n] − Ux[n] + Wv[n + 1] (6)

where it is assumed that the modulo operator eliminates
the effect of the periodic extension to the original symbol
constellation [7].

III. MMSE TRANSCEIVER DESIGN

In this section we derive the optimal THP processors that
minimise the system MSE whilst abiding by average power
constraints at both the source and relay nodes. We firstly for-
mulate the constrained optimisation problem before presenting
the optimal precoder structures for F, G, and U. Finally an
alternating algorithm is developed to allocate power at the
source and relay terminals.

A. Optimal MMSE Receiver

Using the error in (6) we can write our error covariance
matrix Ree = ξ

{
e[n + 1]e[n + 1]H

}
as

Ree = (WHF − U)Rss(WHF − U)H + WRvvWH. (7)

The receiver matrix which minimises the MSE is the well
known Wiener filter and is obtained by setting the derivative
of (7) to zero and solving for W giving the optimal equaliser
solution as

W = URssFHHH(HFRssFHHH + Rvv)−1. (8)

Substituting (8) in (7) we arrive at the concentrated MSE
matrix

Ree = U(R−1
ss + FHHHR−1

vv HF)−1UH (9)



where we have used the matrix inversion lemma [10]. We also
note that Ree is now no longer a function of W.

B. Constrained Optimisation Problem

The transceivers in this paper aim to minimise the arith-
metic MSE. However as in [7] and [9] rather than directly
minimising tr{Ree} /Ns we shall minimise a lower bound on
the MSE and then select processors such that the arithmetic
MSE achieves the minimised lower bound. A lower bound
can be obtained from the arithmetic-geometric mean inequality
[10] which states that for a positive semi-definite matrix
A ∈ C

N×N we have |A|1/N ≤ tr{A} /N where equality
is achieved when A is a diagonal matrix with equal diagonal
elements. This provides us with the following bounds on Ree

|(R−1
ss + FHHHR−1

vv HF)|−1/Ns

≤ tr
{
U(R−1

ss + FHHHR−1
vv HF)−1UH

}
/Ns (10)

where we have used the facts that |AB| = |BA|, |UHU| = 1
since U is unit diagonal lower left triangular, and |A−1| =
|A|−1. The lower and upper bounds are the geometric MSE
and arithmetic MSE respectively. The arithmetic MSE can
only achieve the lower bound in (10) when Ree = βINs

for a scalar value β ≥ 0. Using the lower bound in (10) as
our obective function and taking the source and relay average
power constraints into consideration we arrive at the following
constrained optimisation problem

max
F,G

|(R−1
ss + FHHHR−1

vv HF)| (11)

subject to tr
{
FRssFH

}
= Ps, and (12)

tr
{
G(HsFRssFHHH

s + Rvsvs
)GH

}
= Pr (13)

where the source and relay average power constraints are
given by (12) and (13) respectively where Ps and Pr are the
available power budgets. The minimisation problem in (10) has
been converted to a maximisation problem since min|A|−1 is
equivalent to max|A|. It is worth noting that minimising the
geometric MSE is equivalent to maximising the MI [11]. Our
design thus not only simultaneously minimises the arithmetic
and geometric MSE but also maximises the MI.

C. Optimal Precoder Structures

Having formulated our constrained optimisation problem we
now focus on deriving the optimal structure for the precoders
F, G, and U. The matrix optimisation problem stated in (11),
(12), and (13) can be significantly simplified if we consider
channel matrices Hs and Hr in terms of their singular value
decompositions (SVD)

Hs = UsΛVH
s Hr = UrΔVH

r (14)

where matrices Us ∈ C
Nr×Nr , Vs ∈ C

Ns×Ns , Ur ∈
C

Nd×Nd , and Vr ∈ C
Nr×Nr are unitary matrices assosci-

ated with the singular values of Hs and Hr. The diagonal
matrices Λ ∈ C

Nr×Ns and Δ ∈ C
Nd×Nr contain the

singular values of channel matrices Hs and Hr. For later
convenience we shall define Ṽr, and Ũs to contain the
leftmost Ns columns of Vr, and Us respectively. We shall

also define matrices Λ̃ � diag {λ11, λ22, ..., λNsNs} and
Δ̃ � diag {δ11, δ22, ..., δNsNs} to contain the largest singular
values of Λ and Δ respectively. It is assumed here that
Ns ≤ rank(Hs) and Ns ≤ rank(Hr).

We shall also find it convenient to express the source
and relay precoders F and G in terms of the following
decompositions

F = ΘΓΨ G = ΞΦΥ (15)

where we have the unitary matrices Θ ∈ C
Ns×Ns , Ψ ∈

C
Ns×Ns , Ξ ∈ C

Nr×Nr , Υ ∈ C
Nr×Nr , and diagonal ma-

trices Γ ∈ C
Ns×Ns and Φ ∈ C

Nr×Nr . As previously
done for the channel decompositions we shall define Ξ̃ and
Υ̃ to contain the left Ns columns of Ξ and Υ as well
as diagonal matrices Φ̃ � diag {φ11, φ22, ..., φNsNs} and
Γ � diag {γ11, γ22, ..., γNsNs}.

The optimal structures for F and G can be derived from
the Hadamard determinant inequality which states that for
a positive semi-definite matrix A ∈ C

N×N we have the
inequality |A| ≤ ∏N

i=1 aii. Applying the inequality to our
objective function in (11) and using the channel and precoder
decompositions we can state that

|(R−1
ss + FHHHR−1

vv HF)| ≤
Ns∏
i=1

(
σ−2

s +
γ2

iiλ
2
iiφ

2
iiδ

2
ii

φ2
iiδ

2
iiσ

2
vs

+ σ2
vr

)
(16)

where equality holds when we have Θ = Vs, Ξ̃ = Ṽr, and
Υ̃ = ŨH

s . We have thus established the following sets of
optimal source and relay precoders

F = VsΓΨ G = ṼrΦ̃ŨH
s (17)

where Ψ is an arbitrary unitary matrix yet to be defined. We
note that the bound in (16) would also hold with equality with
source precoders of the form F = VsΓ. However the unitary
matrix Ψ provides us with a degree of freedom that shall be
exploited later on in the design. Interestingly the precoders in
(17) have the same structure as the optimal processors derived
in e.g. [5] and [6] for Schur convex objective functions.

Having established the optimal source and relay precoder
structures we now focus on calculating the unitary matrix Ψ
and the feedback matrix U. Substituting (17) into the lower
bound in (10) we can calculate the lower MSE bound that the
transceiver may achieve to be

σ̄2 =
Ns∏
i=1

(
σ−2

s +
γ2

iiλ
2
iiφ

2
iiδ

2
ii

φ2
iiδ

2
iiσ

2
vs

+ σ2
vr

)−1/Ns

. (18)

As noted previously, due to the arithmetic-geometric mean
inequality, the MMSE transceiver can only achieve this lower
bound if the error covariance matrix in (9) is a diagonal matrix
with equal diagonal elements given by σ̄2. We can thus state
that the following condition must be met

U(R−1
ss + FHHHR−1

vv HF)−1UH = σ̄2INs
. (19)

Substituting the optimal precoders (17) in (19) and using the
channel decompositions we can re-write (19) as

UΨHΣ−1/2Σ−1/2ΨUH = σ̄2QHQ (20)



where Σ � (σ−2
s INs

+ Γ2Λ̃2Φ̃2Δ̃2(Φ̃2Δ̃2σ2
v1

+ σ2
v2

INs
)−1

and Q ∈ C
Ns×Ns is an arbitrary unitary matrix. Clearly

both sides of (20) are hermitian and we can state that
Σ−1/2ΨUH = σ̄Q which upon re-arranging leads us to the
following matrix decomposition

Σ−1/2 = QŨΨH (21)

where we define Ũ � σ̄U−H. The decomposition in (21)
is referred to as the geometric mean decomposition [12]
otherwise known as the equal diagonal QR decomposition
[13]. Since Ũ is an upper right triangular matrix with equal
diagonal elements given by σ̄ we can calculate the required
unit diagonal lower left triangular matrix as U = σ̄Ũ−H

from which we get the strictly lower left triangular matrix
B = U − INs

.

D. Source and Relay Power Allocation

Having derived the optimal precoder structures for F, G,
and U as well as the equaliser matrix W we now focus on
calculating the source and relay power allocation matrices Γ
and Φ̃. Substituting (17) and (14) into (11), (12), and (13) we
arrive at the following scalar optimisation problem

max
φii,γii

Ns∏
i=1

(
σ−2

s +
γ2

iiλ
2
iiφ

2
iiδ

2
ii

φ2
iiδ

2
iiσ

2
vs

+ σ2
vr

)
(22)

subject to
Ns∑
i=1

γ2
iiσ

2
s = Ps, γ2

ii ≥ 0, (23)

and
Ns∑
i=1

φ2
ii(γ

2
iiλ

2
iiσ

2
s + σ2

vs
) = Pr, φ2

ii ≥ 0. (24)

A closed form solution to this optimisation problem is in-
tractable since the problem is highly non convex. However
for a set γii the problem is convex with respect to φii and
similarly for a set φii the problem is convex with respect to
γii. With these observations we propose to update γii and φii

in an alternating fashion as in [5]. Let us first define

ϕii � γ2
iiσ

2
s (25)

and ρii � φ2
ii(γ

2
iiλ

2
iiσ

2
s + σ2

vs
). (26)

Substituting (25) and (26) into (22), (23), and (24) we can
re-formulate the original optimisation problem as

max
ϕii,ρii

Ns∑
i=1

log
ρiiδ

2
iiϕiiλ

2
ii + ρiiδ

2
iiσ

2
vs

+ ϕiiλ
2
iiσ

2
vr

+ σ2
vs

σ2
vr

ρiiδ2
iiσ

2
vs

+ ϕiiλ2
iiσ

2
vr

+ σ2
vs

σ2
vr

(27)

subject to
Ns∑
i=1

ϕii = Ps, ϕii ≥ 0, (28)

and
Ns∑
i=1

ρii = Pr, ρii ≥ 0. (29)

We note that the optimisation problem is symmetric in ϕii and
ρii and moreover the source and relay power constraints are
now independent of each other. For a given ϕii that satisfies

the power constraint in (28) we can calculate the optimal ρii

by solving

max
ρii

Ns∑
i=1

log
ρiiδ

2
iiϕiiλ

2
ii + ρiiδ

2
iiσ

2
vs

+ ϕiiλ
2
iiσ

2
vr

+ σ2
vs

σ2
vr

ρiiδ2
iiσ

2
vs

+ ϕiiλ2
iiσ

2
vr

+ σ2
vs

σ2
vr

(30)

subject to
Ns∑
i=1

ρii = Pr, ρii ≥ 0. (31)

Since the objective function and inequality constraint are both
convex and the equality constraint is affine with respect to our
design parameter ρii we can solve this problem very efficiently
by the Karush Kuhn Tucker (KKT) conditions of optimality
[14]. The solution can be obtained to be

ρii =
σ2

vr

2δ2
ii

[√
λ4

iiϕ
2
ii

σ4
vs

+
4λ2

iiϕiiδ
2
iiμr

σ2
vs

σ2
vr

− λ2
iiϕii

σ2
vs

− 2

]+

(32)

where the variable μr must be calculated to ensure that the
power constraint in (31) is met with equality. In a similar
fashion for a set ρii the optimal ϕii can be calculated by
solving (27) and (28). The solution to ϕii can be calculated
to be

ϕii =
σ2

vs

2λ2
ii

[√
δ4
iiρ

2
ii

σ4
vr

+
4λ2

iiρiiδ
2
iiμs

σ2
vs

σ2
vr

− δ2
iiρii

σ2
vr

− 2

]+

(33)

where μs must be calculated to ensure that (28) holds with
equality. The alternating algorithm is conducted in the follow-
ing manner. After selecting an appropriate initial choice for
ϕii that satisfies (28) the algorithm updates ρii according to
(32) and ϕii according to (33) in an alternating fashion. Since
the updates of ϕii and ρii can never decrease the objective
function [5] the algorithm is guaranteed to converge. Once
the algorithm has converged we can finally calculate the power
allocation parameters γii and φii at the source and relay using

γii =
√

ϕii/σ2
s and φii =

√
ρii/(γ2

iiλ
2
iiσ

2
s + σ2

vs
)

IV. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
THP design compared to the linear maximum MI (MMI)
and MMSE designs in [3] and [4] as well as the linear
naive AF (NAF) scheme. In the NAF design the Wiener
filter is utilised at the destination with the source and re-
lay precoders being selected as F =

√
Ps/Nsσ2

sINs
and

G =
√

Pr/tr
{
HsFFHHH

s σ2
s + σ2

vs
INr

}
INr

. We also com-
pare the proposed method to a suboptimal THP transceiver
where power is allocated uniformly across the source and
relay antennas. The suboptimal design is the same as the
proposed solution but with the source and relay power al-
location matrices selected as Γ =

√
Ps/Nsσ2

sINs
and Φ =√

Pr/tr
{
Γ2Λ2

sσ
2
s + σ2

vs
INs

}
INs

.
We simulate a two-hop MIMO relay system with Ns =

Nr = Nd = 4 antennas in each stage of the network with
MIMO channels Hs and Hr having complex Gaussian entries
with zero mean and unit variance. The symbols from the



0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Linear NAF
Linear MMI
Linear MMSE
THP suboptimal PA
THP alternating PA

Fig. 2. BER versus SNR. Ns = Nr = Nd = 4

source antennas are selected from 16 QAM constellations and
the SNR for the source to relay and relay to destination stages
are defined as SNRs = Ps/Nsσ

2
vs

and SNRr = Pr/Nrσ
2
vr

respectively. Fig. 2 shows the uncoded BER for the proposed
and benchmark schemes against varying SNR where we set
SNR = SNRs = SNRr. Fig. 3 shows simulation results
for varying SNRs with SNRr = 15 dB. All results were
averaged over 500 independent channel realisations. Clearly
both THP designs offer improved performance in terms of
BER compared to the linear systems particularly at mid to
high SNR values. The THP design that utilises the alternating
power allocation algorithm provides the best performance over
all SNR values.

V. CONCLUSIONS

In this paper we derived the optimal MMSE THP transceiver
for MIMO relay networks in the absence of a direct link
between the source and destination antennas. Under the as-
sumption of full CSI the processors were jointly optimised
to minimise the arithmetic MSE whilst abiding by average
power constraints at the source and relay terminals. Simulation
results show that the proposed schemes outperform existing
transceiver designs in terms of BER.
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