9 research outputs found

    Multi-modal association learning using spike-timing dependent plasticity (STDP)

    Get PDF
    We propose an associative learning model that can integrate facial images with speech signals to target a subject in a reinforcement learning (RL) paradigm. Through this approach, the rules of learning will involve associating paired stimuli (stimulus–stimulus, i.e., face–speech), which is also known as predictor-choice pairs. Prior to a learning simulation, we extract the features of the biometrics used in the study. For facial features, we experiment by using two approaches: principal component analysis (PCA)-based Eigenfaces and singular value decomposition (SVD). For speech features, we use wavelet packet decomposition (WPD). The experiments show that the PCA-based Eigenfaces feature extraction approach produces better results than SVD. We implement the proposed learning model by using the Spike- Timing-Dependent Plasticity (STDP) algorithm, which depends on the time and rate of pre-post synaptic spikes. The key contribution of our study is the implementation of learning rules via STDP and firing rate in spatiotemporal neural networks based on the Izhikevich spiking model. In our learning, we implement learning for response group association by following the reward-modulated STDP in terms of RL, wherein the firing rate of the response groups determines the reward that will be given. We perform a number of experiments that use existing face samples from the Olivetti Research Laboratory (ORL) dataset, and speech samples from TIDigits. After several experiments and simulations are performed to recognize a subject, the results show that the proposed learning model can associate the predictor (face) with the choice (speech) at optimum performance rates of 77.26% and 82.66% for training and testing, respectively. We also perform learning by using real data, that is, an experiment is conducted on a sample of face–speech data, which have been collected in a manner similar to that of the initial data. The performance results are 79.11% and 77.33% for training and testing, respectively. Based on these results, the proposed learning model can produce high learning performance in terms of combining heterogeneous data (face–speech). This finding opens possibilities to expand RL in the field of biometric authenticatio

    Transform-domain sparse representation based classification for machinery vibration signals

    Get PDF
    The working state of machinery can be reflected by vibration signals. Accurate classification of these vibration signals is helpful for the machinery fault diagnosis. A novel classification method for vibration signals, named Transform Domain Sparse Representation-based Classification (TDSRC), is proposed. The method achieves high classification accuracy by three steps. Firstly, time-domain vibration signals, including training samples and test samples, are transformed to another domain, e.g. frequency-domain, wavelet-domain etc. Then, the transform coefficients of the training samples are combined as a dictionary and the transform coefficients of the test samples are sparsely coded on the dictionary. Finally, the class label of the test samples is identified by their minimal reconstruction errors. Although the proposed method is very similar to the Sparse Representation-based Classification (SRC), experimental results illustrates its performance is far superior to SRC in the classification of vibration signals. These experiments include: frequency-domain classification of bearing vibration data from the Case Western Reserve University (CWRU) Bearing Data Center and wavelet-domain classification of six fault-types gearbox vibration data from our rotating machinery experimental platform

    Transform-domain sparse representation based classification for machinery vibration signals

    Get PDF
    The working state of machinery can be reflected by vibration signals. Accurate classification of these vibration signals is helpful for the machinery fault diagnosis. A novel classification method for vibration signals, named Transform Domain Sparse Representation-based Classification (TDSRC), is proposed. The method achieves high classification accuracy by three steps. Firstly, time-domain vibration signals, including training samples and test samples, are transformed to another domain, e.g. frequency-domain, wavelet-domain etc. Then, the transform coefficients of the training samples are combined as a dictionary and the transform coefficients of the test samples are sparsely coded on the dictionary. Finally, the class label of the test samples is identified by their minimal reconstruction errors. Although the proposed method is very similar to the Sparse Representation-based Classification (SRC), experimental results illustrates its performance is far superior to SRC in the classification of vibration signals. These experiments include: frequency-domain classification of bearing vibration data from the Case Western Reserve University (CWRU) Bearing Data Center and wavelet-domain classification of six fault-types gearbox vibration data from our rotating machinery experimental platform

    Labeled projective dictionary pair learning: application to handwritten numbers recognition

    Get PDF
    Dictionary learning was introduced for sparse image representation. Today, it is a cornerstone of image classification. We propose a novel dictionary learning method to recognise images of handwritten numbers. Our focus is to maximise the sparse-representation and discrimination power of the class-specific dictionaries. We, for the first time, adopt a new feature space, i.e., histogram of oriented gradients (HOG), to generate dictionary columns (atoms). The HOG features robustly describe fine details of hand-writings. We design an objective function followed by a minimisation technique to simultaneously incorporate these features. The proposed cost function benefits from a novel class-label penalty term constraining the associated minimisation approach to obtain class-specific dictionaries. The results of applying the proposed method on various handwritten image databases in three different languages show enhanced classification performance (~98%) compared to other relevant methods. Moreover, we show that combination of HOG features with dictionary learning enhances the accuracy by 11% compared to when raw data are used. Finally, we demonstrate that our proposed approach achieves comparable results to that of existing deep learning models under the same experimental conditions but with a fraction of parameters
    corecore