14 research outputs found

    Joint Word Representation Learning Using a Corpus and a Semantic Lexicon.

    Get PDF
    Methods for learning word representations using large text corpora have received much attention lately due to their impressive performancein numerous natural language processing (NLP) tasks such as, semantic similarity measurement, and word analogy detection.Despite their success, these data-driven word representation learning methods do not considerthe rich semantic relational structure between words in a co-occurring context. On the other hand, already much manual effort has gone into the construction of semantic lexicons such as the WordNetthat represent the meanings of words by defining the various relationships that exist among the words in a language.We consider the question, can we improve the word representations learnt using a corpora by integrating theknowledge from semantic lexicons?. For this purpose, we propose a joint word representation learning method that simultaneously predictsthe co-occurrences of two words in a sentence subject to the relational constrains given by the semantic lexicon.We use relations that exist between words in the lexicon to regularize the word representations learnt from the corpus.Our proposed method statistically significantly outperforms previously proposed methods for incorporating semantic lexicons into wordrepresentations on several benchmark datasets for semantic similarity and word analogy

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc
    corecore