437 research outputs found

    Joint waveform and guidance control optimization by statistical linearisation for target rendezvous

    Get PDF
    The algorithm proposed in this paper jointly selects the transmitted waveform and the control input so that a radar sensor on a moving platform can prosecute a target by minimising a predefined cost that accounts for the energy of the transmitted radar signal, the energy of a platform control input and the relative position error between the platform and the target. The cost is a function of the waveform design and control input. The algorithm extends the existing Joint Waveform Guidance and Control Optimization (JWGCO) solution to nonlinear equations to account for the dependency of the radar measurement accuracies on Signal to Noise Ratio (SNR) and, as a consequence, on the target position. The performance of the proposed solution based on statistical linearisation is assessed with a set of simulations for a pulsed Doppler radar transmitting linearly frequency modulated chirps

    Joint waveform and guidance control optimisation for target rendezvous

    Get PDF
    The algorithm developed in this paper jointly selects the optimal transmitted waveform and the control input so that a radar sensor on a moving platform with linear dynamics can reach a target by minimising a predefined cost. The cost proposed in this paper accounts for the energy of the transmitted radar signal, the energy of the platform control input and the relative position error between the platform and the target, which is a function of the waveform design and control input. Similarly to the Linear Quadratic Gaussian (LQG) control problem, we demonstrate that the optimal solution satisfies the separation principle between filtering and optimisation and, therefore, the optimum can be found analytically. The performance of the proposed solution is assessed with a set of simulations for a pulsed Doppler radar transmitting linearly frequency modulated chirps. Results show the effectiveness of the proposed approach for optimal waveform design and optimal guidance control

    Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station

    Get PDF
    The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Air Force Institute of Technology Research Report 2003

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Study to investigate and evaluate means of optimizing the radar function

    Get PDF
    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation

    Systems-Level Feasibility Analysis of a Microsatellite Rendezvous with Non-Cooperative Targets

    Get PDF
    The feasibility of using a microsatellite to accomplish an orbital rendezvous with a noncooperative target was evaluated. This study focused on identifying and further exploring the technical challenges involved in achieving a noncooperative rendezvous. A system engineering analysis and review of past research quickly led to a concentration on the guidance, navigation, and control elements of the microsatellite operation. The integration of control and orbit determination algorithms was investigated. A simple yet robust solution could not be found to meet reasonable rendezvous criteria, using essentially off-the-shelf technology and algorithms. System feasibility has been assessed to have a low probability in the very near term

    Bootstrapping Cognitive Radio Networks

    Get PDF
    Cognitive radio networks promise more efficient spectrum utilization by leveraging degrees of freedom and distributing data collection. The actual realization of these promises is challenged by distributed control, and incomplete, uncertain and possibly conflicting knowledge bases. We consider two problems in bootstrapping, evolving, and managing cognitive radio networks. The first is Link Rendezvous, or how separate radio nodes initially find each other in a spectrum band with many degrees of freedom, and little shared knowledge. The second is how radio nodes can negotiate for spectrum access with incomplete information. To address the first problem, we present our Frequency Parallel Blind Link Rendezvous algorithm. This approach, designed for recent generations of digital front-ends, implicitly shares vague information about spectrum occupancy early in the process, speeding the progress towards a solution. Furthermore, it operates in the frequency domain, facilitating a parallel channel rendezvous. Finally, it operates without a control channel and can rendezvous anywhere in the operating band. We present simulations and analysis on the false alarm rate for both a feature detector and a cross-correlation detector. We compare our results to the conventional frequency hopping sequence rendezvous techniques. To address the second problem, we model the network as a multi-agent system and negotiate by exchanging proposals, augmented with arguments. These arguments include information about priority status and the existence of other nodes. We show in a variety of network topologies that this process leads to solutions not otherwise apparent to individual nodes, and achieves superior network throughput, request satisfaction, and total number of connections, compared to our baselines. The agents independently formulate proposals based upon communication desires, evaluate these proposals based upon capacity constraints, create ariii guments in response to proposal rejections, and re-evaluate proposals based upon received arguments. We present our negotiation rules, messages, and protocol and demonstrate how they interoperate in a simulation environment
    • …
    corecore