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Abstract—The algorithm proposed in this paper jointly selects
the transmitted waveform and the control input so that a
radar sensor on a moving platform can prosecute a target by
minimising a predefined cost that accounts for the energy of
the transmitted radar signal, the energy of a platform control
input and the relative position error between the platform and
the target. The cost is a function of the waveform design and
control input. The algorithm extends the existing Joint Waveform
Guidance and Control Optimization (JWGCO) solution to non-
linear equations to account for the dependency of the radar
measurement accuracies on Signal to Noise Ratio (SNR) and,
as a consequence, on the target position. The performance of
the proposed solution based on statistical linearisation is assessed
with a set of simulations for a pulsed Doppler radar transmitting
linearly frequency modulated chirps.

Index Terms—Cognitive rendezvous, adaptive waveform
design, cognitive radar, Fisher Information Matrix (FIM),
Cramér-Rao Lower Bound (CRLB), Linear Quadratic Gaussian
control (LQG), Kalman Filter (KF), Joint Waveform and
Guidance Control Optimization (JWGCO).

I. INTRODUCTION

The improvement of technology and the pressing need for

sensors to become increasingly more flexible, adaptive, and

ultimately include some degree of cognition, is resulting in

radar systems that are becoming more and more capable to

adapt their parameters from scan to scan to optimise the sensor

performance.

Cognitive radar systems are radar that continuously learn

about the environment through active interactions with the

environment itself and, as a result, continually update the

receiver and the transmitting parameters, in an intelligent

manner, with relevant information (the perception action

cycle). The whole radar system is a dynamic closed feedback

loop between the transmitter, environment and receiver.

Cognition can be achieved with the use of prior knowledge

on the environment, which represents the long-term memory

of the receiver, and the short-term memory developed by the

receiver on the fly.

In recent years, there has been growing research interest

to develop solutions that can increase the level of cognition

of radar systems [1], [2]. The largest portion of research

published on cognitive radar presents solutions to adapt

the transmitter parameters in response to the surrounding

environment under the tracking framework (e.g. [3]–[10]).

Despite previous work on tracking by cognitive radar,

very little research has been focused on how radar cognition

can be applied to guidance control for target rendezvous.

There has been prior work on path planning, investigating

optimal trajectories of receivers in a multistatic network for

tracking, with no attempt to achieve guidance control and

apply constraints to each receiving platform trajectory to

satisfy a predefined cost function [11]. The key challenge

of studying cognition applied to rendezvous problems is the

requirement of optimal solutions that handle estimation theory

and platform guidance control jointly to ensure the trajectory

of a platform ends at the target.

Optimal Waveform Diversity (WD) and platform control

for target rendezvous are techniques which have been mostly

researched separately in the past. One of the first papers on

optimal guidance for rendezvous investigated the case of a

sensor on the ground that delivered optimal guidance to an

interceptor on the basis of the estimated trajectories of the

interceptor and the target to reach [12]. An algorithm to

automatically select the transmitted waveform design from

scan to scan to guide an airborne platform towards a target

was presented in [13]. In this paper, the fore-active control

technique proposed in [3] was used to select the transmitted

waveform, so to minimise the innovation matrix (or residual)

of the Kalman Filter (KF), and a standard Linear Quadratic

Gaussian control (LQG) technique was employed to guide the

platform towards the target. However, in this work, the fore-

active technique and LQG control were applied independently

with no attempt to demonstrate the existence and find the joint

optimal solution. An optimal solution, named the JWGCO,

was presented in [14] to achieve joint optimal Waveform

Diversity (WD) and guidance control for rendezvous. The

JWGCO algorithm minimises a cost function that depends on

both the parameters of the transmitted radar waveform and

the input guidance control so that the waveform and guidance

control input selection, for a linear system, can be jointly

and simultaneously optimised. It was demonstrated that for

a linear Gaussian system (in the dynamic and measurement

equations), when the measurement noise is independent of
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the state, the joint optimisation problem can be simplified

into two independent optimisations, one that depends only on

the waveform parameters and the other that depends solely

on the control input. The solution was provided in a closed-

form generalising the linear KF theory and the LQG control

approach.

In this paper, a solution based on Statistical Linearisation (SL)

is presented that extends the JWGCO solution to the non-linear

measurement case. The JWGCO/SL solution accounts for the

dependency of the radar measurement accuracies on the target

position and, as a direct consequence, on the Signal to Noise

Ratio.

II. INTERCEPTOR-TARGET DYNAMICAL SYSTEM

The relative polar coordinates between the interceptor and

the target are represented by the state vector e =
[
r ṙ θ θ̇

]T
which consists of the relative range r, relative radial velocity ṙ,

relative angle θ and relative angle rate θ̇ between the platform

and the target. The state equations are [15], [16]:

ek = Fk−1ek−1 +Bk−1uk−1 +wk−1, (1)

where ek is the state vector, Fk−1 is the matrix dynamics

and wk−1 is Gaussian with zero-mean and covariance matrix

Qk−1. The term Bk−1uk−1 is the control action at each step:

the input vector control uk−1 is combined linearly with a

matrix Bk−1 before being applied to the dynamics equations.

We consider the case with

F =

⎛
⎜⎜⎝

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎞
⎟⎟⎠ , Q =

(
Qr 0
0 Qθ

)
, (2)

and

Qr = σ2
1

(
T 3/3 T 2/2
T 2/2 T

)
, Qθ = σ2

2

(
T 3/3 T 2/2
T 2/2 T

)
,

(3)

σ2
1 = 0.05, σ2

2 = 0.08 and T = 1s and B = I4×4. At each time

k the interceptor transmits a waveform, defined by a vector

of parameters γk (e.g., bandwidth, duration etc.), to obtain a

measurement yk of its relative state ek with respect to the

target. We consider the following measurement equation:

yk = Hek + vk(ek,γk) =

⎡
⎢⎣

rk

ṙk

θk

⎤
⎥⎦+ vk(ek,γk), (4)

where vk(ek, γk) is a Gaussian noise with zero-mean and

a covariance matrix Nk(ek,γk). Note that the covariance

matrix Nk(ek,γk) depends on the accuracy of the transmitted

waveform s(t,γk), whose design is fully described by the

vector of parameters γk (defining the waveform features, such

as duration, bandwidth and time-frequency curvature) and on

the accuracy of the measurement of angle. It also depends on

the state ek due to the SNR as detailed below. We write

Nk(ek,γk) =

(
N̂k(ek,γk) 02×1

01×2 σ2
t

)
(5)

where N̂k(ek,γk) corresponds to the Cramér-Rao Lower

Bound (CRLB), relative to the task of joint estimation of range

and radial velocity between a sensor and a target, when the

sensor transmits the signal s(t,γk). The CRLB is obtained as

the inverse of the Fisher Information Matrix (FIM).

For a train of Np Gaussian Linear Frequency Modulated

(LFM) chirps with duration T = 2λG and bandwidth

B = 2bGλG/π (γk = [λG. bG]), the FIM of time delay and

Doppler can be approximated as [17]

J = SNR(r, λG)

(
1

2λ2
G

+ 2λ2
Gb

2
G 2πλ2

GbG

2πλ2
GbG 2π2λ2

G + 1
3
π2PRI2(N2

p − 1)

)
(6)

and

N̂k(ek,γk) =

(
c2

4
cλ
4

cλ
4

λ2

4

)
◦ J−1 (7)

where c = 3 ·108 m/s is the speed of light, λ is the wavelength

at the carrier frequency f0 and ◦ denotes the component-wise

product. The Signal to Noise Ratio (SNR) is a function of the

state r and the waveform parameter λG and, neglecting losses,

can be expressed as

SNR(r, λG) = 2NP
Ppk

√
πλ2

GG
2σλ2

(4π)3r4kTe
, (8)

where Ppk is the transmitted peak power, G is the antenna

gain, σ is the target Radar Cross Section (RCS), k is

the Boltzmann’s constant and Te is the equivalent noise

temperature of the receiver1. Finally, it is observed that the

transmitted energy for the train of Np Gaussian chirps can be

expressed as

ψs = NPPpk

√
πλ2

G (9)

and is also a function of the waveform parameter λG.

III. WAVEFORM AND GUIDANCE CONTROL PROBLEM

The goal of the interceptor is to minimise a quadratic cost:

J(eo,u0:N−1,γ1:N ) = E
(

N∑
k=0

�(k, ek,uk,γk)

)
, (10)

with respect to u0:N−1 = {uo, . . . ,uN−1} and γ1:N =
{γ1, . . . ,γN}, over the temporal horizon N , with

�(k, ek,uk,γk) = eTkEkek + uT
kRkuk + αkψs(γk),

for k < N and

�(N, eN ,uN ,γN ) = eTNENeN+Tr(ENPN |N )+αNψs(γN ),

for k = N , where E(. . . ) denotes the expectation w.r.t. the

initial state and the sequence of measurement and process

noises. Note that Ek,Rk are Positive Semi-Definite (PSD)

matrices that define the weights of the cost function: the

matrices Rk weigh the control effort, while Ek weight the

1The equivalent noise temperature of the receiver can also be expressed as
Te = T0Fe, where T0 = 290 K◦ and Fe is the receiver noise figure.



control effectiveness; αk ≥ 0 are additional scalar weights of

the cost function that penalise a sensing cost term ψs(γk) ≥ 0;

and Tr(ENPN |N ) is an additional terminal cost and PN |N
is the covariance of the terminal state eN . The goal is

thus to keep ek close to 0, particularly, at the final time

N , using little control effort uk and little sensing cost ψs(γk).

Note that, the cost functions depends on γ1:N due to:

(i) the sensing cost term ψs(γk); (ii) the measurement noise

(vk(γk)) that contributes to the covariance matrix of the joint

multivariate Gaussian distribution w.r.t. which the expectation

in (10) is taken.

For fixed sensor parameters (fixed γ1:N ) and αk = 0,

the cost function in (10) coincides with that of the Linear

Quadratic Gaussian (LQG) regulator problem (see for instance

[18]). However, the solution of the above control problem

is not the same as in LQG because of the nonlinearity in

the measurement equation. The measurement yk depends

nonlinearly on the state ek due to the dependence of the

covariance of the measurement noise, Nk(ek,γk), on the

range via the SNR, see (6)–(7). In this case, no closed

form solution can be computed for the LQG control. In this

paper, we propose an approximation based on the statistical

linearisation approach.

IV. STATISTICAL LINEARISATION

Whenever the kinematic and measurement model are non-

linear/non-Gaussian, the posterior distribution of the state

cannot be computed analytically so approximations must be

used. In this paper, we approximate the nonlinear measurement

model using statistical linearisation [19]. In other words, we

approximate the measurement model

Hek + vk(ek,γk) ≈ Hek + ξk(γk), (11)

where ξk(γk) ∼ N (0,Φk) (that is, Gaussian distributed with

zero mean and variance Φk) does not depend on ek and

we determine the matrix Φk, which is a function of γk, by

minimizing the Kullback-Leibler (KL) divergence between the

true posterior and the approximating Gaussian model. Though

the above linearisation is different from that used in [19]; in

our case the covariance matrix Nk(ek,γk) depends on the

state ek while the measurement model is linear. This is the

reason why we rederive the approximation in Theorem 1 which

follows.

Let us focus on a fixed k step for a point ek. We have

that2 p(yk|ek) = N (yk;Hek,N(ek,γk)) and p(ek) =
N (ek; eo,Po), where eo = êk|k−1 and Po = Pk|k−1.

Observe that the joint distribution p(yk, ek) = p(yk|ek)p(ek)
is not Gaussian. We approximate the covariance of the noise

so that ξk is a zero-mean Gaussian with covariance Φk (that is

a “linearization noise” whose variance depends on k) so that

p(yk, ek) ≈ q(yk, ek) = N (y;Hek,Φk)p(ek).

2We use the notation N (x;m,Σ) to denote the Gaussian PDF of the
random variable x with mean m and covariance Σ.

Theorem 1. The optimal parameter Φk that minimizes the

KL distance between the joint p(yk, ek) and q(yk, ek):

min
Φk

∫
p(yk, ek) ln

p(yk, ek)

q(yk, ek)
dek dyk

is given by

Φ̃k = E(N(ek,γk)), (12)

where E(·) = ∫ (·)N (ek; eo,Po)dek.

Proof. In what follows we drop the dependency on k and on

γk to simplify the notation.∫∫
p(e,y) ln

p(e,y)

q(e,y)
dedy

=

∫∫
N (y;He,N(e))p(e) ln

N (y;He,N(e))

N (y;He,Φ)
dedy

=

∫∫
N (y;He,N(e))p(e) lnN (y;He,N(e))dedy

−
∫∫

N (y;He,N(e))p(e) lnN (y;He,Φ)dedy

The first term does not depend on Φ. We can then compute

the derivative of the second term w.r.t. Φ which is

∂

∂Φ

(
−
∫∫

N (y;He,N(e))p(e) lnN (y;He,Φ)dedy

)

=
1

2

∫∫
N (y;He,N(e))p(e)

∂

∂Φ
ln (det(2πΦ)) dedy

+
1

2

∫∫
N (y;He,N(e))p(e)

∂

∂Φ
Tr
(
Φ−1ωωT

)
dedy

(13)

with ω = y − He. The first integral is equal to 1
2Tr(Φ

−1).
The second integral:∫∫

N (y;He,N(e))p(e)
∂

∂Φ
Tr
(
Φ−1ωωT

)
dedy

= −
∫∫

N (y;He,N(e))p(e)Tr
(
Φ−2ωωT

)
dedy

We replace ω = y −He and so the integral becomes

−
∫∫

N (y;He,N(e))p(e)Tr
(
Φ−2ωωT

)
dedy

= −
∫

p(e)Tr
(
Φ−2N(e)

)
de

= −Tr
(
Φ−2

∫
p(e)N(e)de

)
.

By imposing ∂
∂Φ = 0:

Φ̃ = E(N(e)) (14)

that ends the proof.

To compute the optimal parameter we need to solve the

integral in (12). We can use any sigma-points method. In this

paper we employ the Unscented Transform (UT) [20] with

7 sigma points and parameters β = 2, α = 0.001, κ = 1.3

3These are standard parameters for UT.



Therefore, we generate 7 sigma points χ1, . . . ,χ7 and weights

ω1, . . . , ω7 such that they match the moments eo and Po, and

employ them to compute the approximation:

Φ̃k = E(N(ek)) ≈
7∑

i=1

ωiN(χi).

We use the approximating covariance matrix Φ̃k, which is

a function of the waveform parameters γk, to compute the

optimal waveform parameters as described in Section IV-A.

The interceptor employs the optimal waveform parameters γ∗k
to design and transmit a waveform to obtain the measurement

yk. Then the state estimate update êk|k is computed as in the

KF, from the approximating likelihood N (yk; ek, Φ̃k) and the

predictive posterior N (ek; ek|k−1,Pk|k−1).
4

At each time step, the approximated posterior is Gaussian

and, therefore, we can solve the control problem using the

LQG solution (that is, by applying the KF on the linearised

model). The optimal guidance u∗k can then be computed

analytically as described in Section IV-A.

A. Approximated optimal waveform and guidance

An approximation of the solution of the waveform and

guidance control problem (10) can be computed applying the

optimal solutions [14, Th.1] on the statistical linearised model.

Proposition 1. Under the assumption that the noises ξk(γk),
wk and the initial state e0 are jointly independent for k =
0, 1, 2, . . . , the optimal solution of the problem (10) assuming

the dynamics (1) and the linearised measurement equation (11)

is u∗i = −Liêi and γ∗i = argminγi
Tr(MiPi|i)+αiΨs(γi)

with

Mi =

{
SN , for i = N
(Ei + FT

i Si+1Fi − Si), for i = 1, . . . , N − 1
(15)

and

êi+1 = Fiêi +Biui +Ki+1 (yi+1 −Hi+1(Fiêi +Biui))
(16)

with ê0 = E [e0]. The Kalman gain equals

Ki = Pi|i−1H
T
i (HiPi|i−1H

T
i +Φi)

−1 (17)

where Pi|i is determined by the following Riccati matrix

difference equation that runs forward in time:

Pi|i = Pi|i−1 −KiHiPi|i−1 (18)

where

Pi|i−1 = Fi−1Pi−1|i−1F
T
i−1 +Qi−1 (19)

4To increase the accuracy of the posterior approximation, we can perform
iterated statistical linearisation [19], where we set the prior moments eo =
ek|k,Po = Pk|k to recompute the approximating covariance Φk . This
approach is called iterated posterior linearisation in [19]. In Section V we
show that the standard statistical linearisation already provides a very good
approximation for our problem and so we do not perform iterated posterior
linearisation.

and P0|0 = E
(
(e0 − ê0) (e0 − ê0)

T
)

. The feedback gain

matrix equals

Li = (BT
i Si+1Bi +Ri)

−1BT
i Si+1Fi (20)

where Si is determined by the following Riccati matrix

difference equation that runs backward in time:

Si = FT
i

(
Si+1 − Si+1Bi

(
BT

i Si+1Bi +Ri

)−1

BT
i Si+1

)
Fi+Ei

(21)

with SN = EN . Finally the optimal cost is

min
u0:N−1,γ1:N

J(e0,u0:N−1,γ1:N ) = E(eT0 S0e0) + Tr(MNP∗N |N )

+ αNΨs(γ
∗
N ) +

N−1∑
i=0

Tr(Si+1Qi) + Tr(MiP
∗
i|i) + αiΨs(γ

∗
i )

where P∗i|i is the value of the covariance matrix Pi|i when

computed with the optimal measurement noise covariance Φ∗i ,

that is computed using the optimal waveform parameters (γ∗i ).

Due to statistical linearisation, the solution is only an

approximation of the optimal strategy. Nonetheless, we will

show in the next section that, in practice, it is very close to

the optimal one.

V. SIMULATION RESULTS

We consider a moving airborne platform that carries a

pulsed Doppler radar system operating at f0 = 10 GHz

with the task of reaching a target within 50 radar scans. The

dynamical and measurement equations are reported in Section

II.

At each scan the radar transmits NP = 2 pulses with a

PRI of 0.1 ms (PRF=10 kHz). The transmitting and receiving

antenna gain is G = 10 dB and the target RCS is 1 m2.

The SNR is calculated at each k-th scan, using the real target

relative position r(k) and the selected waveform parameter

λG(k) in the radar SNR equation in (8), assuming a receiver

equivalent noise temperature Te = 1000 K◦ and a peak power

Ppk = 100 W. As a result, whilst the term ψs(k) is a function

of the waveform parameters alone, the covariance of the

measurement noise becomes a function of the state. We also

assume the transmitter and receiver employ separate antennas

that point at the target with σ2
θ = 0.1 rad2 so that the radar can

transmit and receive at all times with no blind range. The initial

state e0 is 5 km, −1 m/s, 0 rad and 0 rad/s. The covariance

matrix for the KF is set to P0|0 = diag(100, 10, 1, 1) and the

initial state estimate is sampled from a multivariate Gaussian

distribution with mean e0 and covariance P0|0. Finally, the

weight αk = 2 × 103, the weight matrices are E = I4×4,

SN = 8× 103I4×4 and R = 8× 103I4×4.

Results of the proposed approach, JWGCO/SL, are

compared with three other strategies:

MinN: minγk
Tr(Φk)

MinP: minγki
Tr(EPi|i)

JWGCO oracle



In the first strategy, the waveform parameters are selected

so to minimize the trace of the expected measurement noise

covariance matrix E(N(ek,γ)), while, in the second strategy,

we minimise at each scan the trace of Pi|i weighted by the

matrix E. The third strategy is JWGCO computed using the

true unknown covariance matrix N(ek,γ) (that is we used the

true range to compute the covariance matrix N(ek,γk) We

call this last strategy “JWGCO-oracle” and it is unattainable

in practice.5

The bandwidth and pulsewidth of the chirp pulse at each

scan are automatically selected by the algorithm in the range

between 10 MHz to 50 MHz and 1 μs to 10 μs, respectively.

The estimated relative velocity versus the relative range to the

target for the four waveform selection strategies is showed

in Figure 1. Results have been averaged over 500 Monte

Carlo simulations. The interceptor reaches the target within

Fig. 1. Estimated relative velocity versus range to target for the four waveform
selection strategies.

the predefined number of scans for all cases. Figure 2 shows

the optimal pulsewidth selected by the four strategies at each

scan. Results show that the JWGCO/SL algorithm selects the

short pulsewidth after scan #21. Note that there is practically

no difference between JWGCO/SL and JWGCO-oracle, which

shows that the statistical linearisation approach proposed in

this paper (to deal with the dependence on the state of the

measurement noise) allows the interceptor to select the optimal

pulsewidth at each scan. The bandwidth is fixed at all scans

indicating no variation in range resolution (we did not report

the figure). As a result of the selected waveform parameters,

the ambiguity function rotates during the trajectory as shown

in Fig. 1.

Figure 3 shows the averaged cumulative cost, i.e. the

incremental value of (10) as k → N = 50 for the last 20

scans. As expected, the strategies JWGCO achieves the lowest

final minimum cumulative cost with respect to MinR and MinP

strategies. The contribution to the total cost of the transmitted

energy, estimation errors and control input terms are shown

5It is the best unattainable statistical linearisation.

μ

Fig. 2. Pulsewidth of the resulting linear chirp for the three waveform
selection strategies at each scan.

in Figure 4. The left plot shows that the JWGCO results in a

series of waveforms with the lowest transmitted energy.

Figures 5 show the Root Mean Square Error (RMSE) of the

estimate of relative range, relative radial velocity and relative

angle, respectively.

Fig. 3. Average cumulative cost for the three strategies.

VI. CONCLUSIONS

A solution based on Statistical Linearisation (SL) has been

presented that extends the JWGCO algorithm to the non-linear

case. The proposed algorithm accounts for the dependency

of the radar measurement accuracies on the target position

and, as a direct consequence, on the Signal to Noise Ratio

(SNR). Performance is assessed with a set of simulations

for a pulsed Doppler radar transmitting linearly frequency

modulated chirps.
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