668 research outputs found

    Joint Wall Mitigation and Compressive Sensing for Indoor Image Reconstruction

    Full text link

    A Rank-Deficient and Sparse Penalized Optimization Model for Compressive Indoor Radar Target Localization

    Get PDF
    This paper proposes a rank-deficient and sparse penalized optimization method for addressing the problem of through-wall radar imaging (TWRI) in the presence of structured wall clutter. Compressive TWRI enables fast data collection and accurate target localization, but faces with the challenges of incomplete data measurements and strong wall clutter. This paper handles these challenges by formulating the task of wall-clutter removal and target image reconstruction as a joint low-rank and sparse regularized minimization problem. In this problem,  the low-rank regularization is used to capture the low-dimensional structure of the wall signals and the sparse penalty is employed to represent the image of the indoor targets. We introduce an iterative algorithm based on the forward-backward proximal gradient technique to solve the large-scale optimization problem, which simultaneously removes unwanted wall clutter and reconstruct an image of indoor targets. Simulated and real radar data are used to validate the effectiveness of the proposed rank-deficient and sparse regularized optimization approach

    Compressed sensing for enhanced through-the-wall radar imaging

    Get PDF
    Through-the-wall radar imaging (TWRI) is an emerging technology that aims to capture scenes behind walls and other visually opaque materials. The abilities to sense through walls are highly desirable for both military and civil applications, such as search and rescue missions, surveillance, and reconnaissance. TWRI systems, however, face with several challenges including prolonged data acquisition, large objects, strong wall clutter, and shadowing effects, which limit the radar imaging performances and hinder target detection and localization

    Performance Evaluation of Aspect Dependent-Based Ghost Suppression Methods for Through-the-Wall Radar Imaging

    Get PDF
    There are many approaches which address multipath ghost challenges in Through-the-Wall Radar Imaging (TWRI) under Compressive Sensing (CS) framework. One of the approaches, which exploits ghosts’ locations in the images, termed as Aspect Dependent (AD), does not require prior knowledge of the reflecting geometry making it superior over multipath exploitation based approaches. However, which method is superior within the AD based category is still unknown. Therefore, their performance comparison becomes inevitable, and hence this paper presents their performance evaluation in view of target reconstruction. At first, the methods were grouped based on how the subarrays were applied: multiple subarray, hybrid subarray and sparse array. The methods were fairly evaluated on varying noise level, data volume and the number of targets in the scene. Simulation results show that, when applied in a noisy environment, the hybrid subarray-based approaches were robust than the multiple subarray and sparse array. At 15 dB signal-to-noise ratio, the hybrid subarray exhibited signal to clutter ratio of 3.9 dB and 4.5 dB above the multiple subarray and sparse array, respectively. When high data volumes or in the case of multiple targets, multiple subarrays with duo subarrays became the best candidates. Keywords: Aspect dependent; compressive sensing; point target; through-wall-radar imaging

    Joint Compressed Sensing and Manipulation of Wireless Emissions with Intelligent Surfaces

    Full text link
    Programmable, intelligent surfaces can manipulate electromagnetic waves impinging upon them, producing arbitrarily shaped reflection, refraction and diffraction, to the benefit of wireless users. Moreover, in their recent form of HyperSurfaces, they have acquired inter-networking capabilities, enabling the Internet of Material Properties with immense potential in wireless communications. However, as with any system with inputs and outputs, accurate sensing of the impinging wave attributes is imperative for programming HyperSurfaces to obtain a required response. Related solutions include field nano-sensors embedded within HyperSurfaces to perform minute measurements over the area of the HyperSurface, as well as external sensing systems. The present work proposes a sensing system that can operate without such additional hardware. The novel scheme programs the HyperSurface to perform compressed sensing of the impinging wave via simple one-antenna power measurements. The HyperSurface can jointly be programmed for both wave sensing and wave manipulation duties at the same time. Evaluation via simulations validates the concept and highlight its promising potential.Comment: Published at IEEE DCOSS 2019 / IoT4.0 workshop (https://www.dcoss.org/workshops.html). Funded by the European Union via the Horizon 2020: Future Emerging Topics - Research and Innovation Action call (FETOPEN-RIA), grant EU736876, project VISORSURF (http://www.visorsurf.eu

    Wall clutter mitigation and target detection using Discrete Prolate Spheroidal Sequences

    Full text link
    Abstract—We present a new method for mitigating wall return and a new greedy algorithm for detecting stationary targets after wall clutter has been cancelled. Given limited measurements of a stepped-frequency radar signal consisting of both wall and target return, our objective is to detect and localize the potential targets. Modulated Discrete Prolate Spheroidal Sequences (DPSS’s) form an efficient basis for sampled bandpass signals. We mitigate the wall clutter efficiently within the compressive measurements through the use of a bandpass modulated DPSS basis. Then, in each step of an iterative algorithm for detecting the target positions, we use a modulated DPSS basis to cancel nearly all of the target return corresponding to previously selected targets. With this basis, we improve upon the target detection sensitivity of a Fourier-based technique. Keywords—radar imaging, wall clutter mitigation, target detec-tion, Compressive Sensing, Discrete Prolate Spheroidal Sequences I
    corecore