231 research outputs found

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Sensing and Compression Techniques for Environmental and Human Sensing Applications

    Get PDF
    In this doctoral thesis, we devise and evaluate a variety of lossy compression schemes for Internet of Things (IoT) devices such as those utilized in environmental wireless sensor networks (WSNs) and Body Sensor Networks (BSNs). We are especially concerned with the efficient acquisition of the data sensed by these systems and to this end we advocate the use of joint (lossy) compression and transmission techniques. Environmental WSNs are considered first. For these, we present an original compressive sensing (CS) approach for the spatio-temporal compression of data. In detail, we consider temporal compression schemes based on linear approximations as well as Fourier transforms, whereas spatial and/or temporal dynamics are exploited through compression algorithms based on distributed source coding (DSC) and several algorithms based on compressive sensing (CS). To the best of our knowledge, this is the first work presenting a systematic performance evaluation of these (different) lossy compression approaches. The selected algorithms are framed within the same system model, and a comparative performance assessment is carried out, evaluating their energy consumption vs the attainable compression ratio. Hence, as a further main contribution of this thesis, we design and validate a novel CS-based compression scheme, termed covariogram-based compressive sensing (CB-CS), which combines a new sampling mechanism along with an original covariogram-based approach for the online estimation of the covariance structure of the signal. As a second main research topic, we focus on modern wearable IoT devices which enable the monitoring of vital parameters such as heart or respiratory rates (RESP), electrocardiography (ECG), and photo-plethysmographic (PPG) signals within e-health applications. These devices are battery operated and communicate the vital signs they gather through a wireless communication interface. A common issue of this technology is that signal transmission is often power-demanding and this poses serious limitations to the continuous monitoring of biometric signals. To ameliorate this, we advocate the use of lossy signal compression at the source: this considerably reduces the size of the data that has to be sent to the acquisition point by, in turn, boosting the battery life of the wearables and allowing for fine-grained and long-term monitoring. Considering one dimensional biosignals such as ECG, RESP and PPG, which are often available from commercial wearable devices, we first provide a throughout review of existing compression algorithms. Hence, we present novel approaches based on online dictionaries, elucidating their operating principles and providing a quantitative assessment of compression, reconstruction and energy consumption performance of all schemes. As part of this first investigation, dictionaries are built using a suboptimal but lightweight, online and best effort algorithm. Surprisingly, the obtained compression scheme is found to be very effective both in terms of compression efficiencies and reconstruction accuracy at the receiver. This approach is however not yet amenable to its practical implementation as its memory usage is rather high. Also, our systematic performance assessment reveals that the most efficient compression algorithms allow reductions in the signal size of up to 100 times, which entail similar reductions in the energy demand, by still keeping the reconstruction error within 4 % of the peak-to-peak signal amplitude. Based on what we have learned from this first comparison, we finally propose a new subject-specific compression technique called SURF Subject-adpative Unsupervised ecg compressor for weaRable Fitness monitors. In SURF, dictionaries are learned and maintained using suitable neural network structures. Specifically, learning is achieve through the use of neural maps such as self organizing maps and growing neural gas networks, in a totally unsupervised manner and adapting the dictionaries to the signal statistics of the wearer. As our results show, SURF: i) reaches high compression efficiencies (reduction in the signal size of up to 96 times), ii) allows for reconstruction errors well below 4 % (peak-to-peak RMSE, errors of 2 % are generally achievable), iii) gracefully adapts to changing signal statistics due to switching to a new subject or changing their activity, iv) has low memory requirements (lower than 50 kbytes) and v) allows for further reduction in the total energy consumption (processing plus transmission). These facts makes SURF a very promising algorithm, delivering the best performance among all the solutions proposed so far

    Probabilistic models for structured sparsity

    Get PDF
    • 

    corecore