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Abstract

In this doctoral thesis, we devise and evaluate a variety of lossy compression schemes for

Internet of Things (IoT) devices such as those utilized in environmental wireless sensor

networks (WSNs) and Body Sensor Networks (BSNs). We are especially concerned with

the efficient acquisition of the data sensed by these systems and to this end we advocate

the use of joint (lossy) compression and transmission techniques.

Environmental WSNs are considered first. For these, we present an original compressive

sensing (CS) approach for the spatio-temporal compression of data. In detail, we consider

temporal compression schemes based on linear approximations as well as Fourier transforms,

whereas spatial and/or temporal dynamics are exploited through compression algorithms

based on distributed source coding (DSC) and several algorithms based on compressive

sensing (CS). To the best of our knowledge, this is the first work presenting a system-

atic performance evaluation of these (different) lossy compression approaches. The selected

algorithms are framed within the same system model, and a comparative performance as-

sessment is carried out, evaluating their energy consumption vs the attainable compression

ratio. Hence, as a further main contribution of this thesis, we design and validate a novel

CS-based compression scheme, termed covariogram-based compressive sensing (CB-CS),

which combines a new sampling mechanism along with an original covariogram-based ap-

proach for the online estimation of the covariance structure of the signal.

As a second main research topic, we focus on modern wearable IoT devices which enable the

monitoring of vital parameters such as heart or respiratory rates (RESP), electrocardiogra-

phy (ECG), and photo-plethysmographic (PPG) signals within e-health applications. These

devices are battery operated and communicate the vital signs they gather through a wireless

communication interface. A common issue of this technology is that signal transmission is

often power-demanding and this poses serious limitations to the continuous monitoring of

biometric signals. To ameliorate this, we advocate the use of lossy signal compression at the

source: this considerably reduces the size of the data that has to be sent to the acquisition

point by, in turn, boosting the battery life of the wearables and allowing for fine-grained
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and long-term monitoring. Considering one dimensional biosignals such as ECG, RESP

and PPG, which are often available from commercial wearable devices, we first provide a

throughout review of existing compression algorithms. Hence, we present novel approaches

based on online dictionaries, elucidating their operating principles and providing a quanti-

tative assessment of compression, reconstruction and energy consumption performance of

all schemes. As part of this first investigation, dictionaries are built using a suboptimal but

lightweight, online and best effort algorithm. Surprisingly, the obtained compression scheme

is found to be very effective both in terms of compression efficiencies and reconstruction

accuracy at the receiver. This approach is however not yet amenable to its practical imple-

mentation as its memory usage is rather high. Also, our systematic performance assessment

reveals that the most efficient compression algorithms allow reductions in the signal size of

up to 100 times, which entail similar reductions in the energy demand, by still keeping the

reconstruction error within 4% of the peak-to-peak signal amplitude.

Based on what we have learned from this first comparison, we finally propose a new

subject-specific compression technique called SURF “Subject-adpative Unsupervised ecg

compressor for weaRable Fitness monitors”. In SURF, dictionaries are learned and main-

tained using suitable neural network structures. Specifically, learning is achieve through

the use of neural maps such as self organizing maps and growing neural gas networks, in

a totally unsupervised manner and adapting the dictionaries to the signal statistics of the

wearer. As our results show, SURF: i) reaches high compression efficiencies (reduction in

the signal size of up to 96 times), ii) allows for reconstruction errors well below 4% (peak-to-

peak RMSE, errors of 2% are generally achievable), iii) gracefully adapts to changing signal

statistics due to switching to a new subject or changing their activity, iv) has low memory

requirements (lower than 50kbytes) and v) allows for further reduction in the total energy

consumption (processing plus transmission). These facts makes SURF a very promising

algorithm, delivering the best performance among all the solutions proposed so far.
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Chapter 1

Introduction

1.1 A short introduction to IoT

In the last decade, a very large number of Internet of Things (IoT) technologies have

emerged. These, have enabled the gathering and processing of data acquired through a

variety of sensors, operating in many different fields (e.g., environmental, mobility-related,

medical, etc.). The sheer amount of data collected from IoT systems calls for the develop-

ment of applications that enable its organization, analysis and presentation, thus allowing

for substantial improvements in human activities through intelligent data-driven systems.

Since its conception, this concept has grown and many technical solutions are now available

for data gathering, data protection and analysis. IoT systems usually entail the use of a

very large number of sensor devices with sensing and communication capabilities, which

collect and transmit data to a so called sink node (i.e., an IoT gateway or a federation

thereof), which collects data for further elaboration and transmission to Web-based servers

and applications. According to the IoT paradigm, each everyday object can be possibly

enhanced with a communication interface and some minimal sensing capabilities, which

turn it into a “smart” object.

Nevertheless, IoT devices are often constrained in terms of computational power and energy.

In fact, they are often powered with small batteries and their size can be very small (e.g., as

1



2 Chapter 1 Introduction

small as 2× 2 mm2). So, the energy they drain to carry out sensing and transmission plays

an important role in their lifetime. Moreover, they have limited memory and processing

capabilities. Thus far, there a lot of research work has appeared on IoT and in particular

on data compression. However, previous performance assessments were mainly carried out

considering quality of compression and reconstruction, whilst the energy consumption aspect

was often neglected. This dissertation focuses on these subjects for several types of IoT

devices. We stress and show that energy should be sparingly used by the software running

on such devices, as they are often battery operated and, in turn, reduction in their energy

consumption is a key consideration.

In the first part of this thesis, Chapters 2 and 3, we consider environmental wireless sensor

networks and the temporal or spatio-temporal compression of the signal they acquire. In

the second part, Chapters 4–6, we focus on lossy compression techniques for body sensor

networks which gather one dimensional biosignals, such as electrocardiogram, respiration,

etc.

The structure of this doctoral thesis is briefly described in the next two sections.

1.2 Environmental Wireless Sensor Networks

Wireless Sensor Network (WSN) are a major part of IoT. Lossy compression is a key func-

tionality for them as it allows saving transmission power and prolonging the network lifetime.

Moreover, for many applications some loss in the data representation accuracy is tolerable.

On this matter, we underscore that a solid understanding of the suitability of different lossy

compression techniques, along with their comparative performance evaluation, are still open

research problems.

In Chapter 2, we consider the temporal and spatial correlations that are inherent to environ-

mental WSN signals. WSNs are characterized by the dense deployment of sensor nodes that

continuously observe some physical phenomenon. In practical scenarios, sensor observations

are highly correlated in space. Furthermore, the nature of the physical phenomenon that
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is being measured also implies some non-negligible temporal correlation. These facts, along

with the collaborative nature of WSNs bring opportunities for the development of efficient

compression/communication protocols. In this thesis, several key elements are investigated

to capture and exploit the spatio-temporal correlation in WSNs for the design of efficient

data gathering protocols. We focus on the spatio-temporal compression of readings from the

sensor nodes. Our objective, for each data gathering round, is to collect the WSN readings

from a small percentage of nodes (sparse sampling), while being able to recover with very

good accuracy the entire dataset at the data collection point (the sink node). To do so,

the spatio-temporal features of environmental WSN signals are exploited within suitable

data compression tools including: Lightweight Temporal Compression (LTC), Distributed

Source Coding (DSC), Discrete Fourier Transform (DCT) and Compressive Sensing (CS).

The performance of these algorithms is compared considering realistic datasets and research

directions are identified.

In Chapter 3, we improve the CS-based compression scheme of Chapter 2. In detail, the

signal representation step of CS-based algorithms is ehnanced considering the concept of

spatial covariograms and using it to refine the (estimated) covariance matrix at the data

collector. Our covariogram-based estimation technique is executed online by estimating the

signal statistics in space and time. As a result, the reconstruction error is substantially re-

duced, leading to more accurate representations of the signal. As an additional contribution,

a novel spatial sampling strategy is presented to implement a more effective selection of the

(subset of) nodes that transmit (i.e., sample the input signal) at each data collection round.

The impact of covariogram estimation and sparse sampling is numerically assessed through

a simulation tool developed in Matlab considering synthetic as well as real environmental

signals.

1.3 Wearable Devices

Wearables technology has become more and more pervasive in the last few years. As noted

in [3], the IoT paradigm has recently shifted from a scenario where sensors are solely placed
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around humans (i.e., integrated within the surrounding environment) to one in which we, as

humans, carry ourselves the sensor devices and actively participate in the sensing process.

In Chapters 4 and 5, we consider temporal correlation of biosignals acquired by wearable

wireless monitors. These devices are becoming a natural and economic means to gather vital

signs from end users, such as electrocardiogram, blood-pressure, blood-saturation (SpO2),

body movement, respiration, etc., and own an immense potential for applications such

as continuous monitoring for personalized healthcare or fitness applications. Wearables

are however heavily constrained in terms of onboard memory, transmission capability and

energy reserve, and this calls for dedicated, lightweight but still effective algorithms for data

management. Lossy data compression techniques, whose aim is to minimize the amount of

information that is to be stored on the onboard memory and subsequently transmitted

over wireless interfaces, is the means that we investigate in this thesis to increase the data

management and transmission efficiency.

Specifically, in Chapter 4 we analyze selected compression techniques for biometric signals,

quantifying their complexity (energy consumption) and compression performance. Hence,

we propose a new class of online dictionary compression algorithms, designed to be energy

efficient, online and amenable to any type of signal exhibiting recurrent patterns (referred

to as quasi-periodic signal).

In Chapter 5, we continue our analysis of compression algorithms for quasi-periodic biosig-

nals by reviewing the most promising algorithms from the literature and carrying out a

systematic performance evaluation of their complexity (energy cost, including processing

and transmission), compression efficiency and reconstruction accuracy. One dimensional

biosignals such as ECG, RESP and PPG, are considered as they are often available in com-

mercial wearable IoT devices, using signals from public databases as well as signals that

we gathered from a wireless Zephyr Bioharness 3 heart rate monitor. As we quantify, the

most efficient schemes allow reductions in the signal size of up to 100 times, which entail

similar reductions in their energy demand (with subsequent increase in their lifetime), by

still keeping the reconstruction error within 4% of the peak-to-peak signal amplitude.
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Based on the lessons we learned from the material of Chapters 4 and 5, Online Dictionary,

due to its excessive memory demand, is not yet amenable to a practical implementation, it

reveals some important performance tradeoffs that are considered for our more advanced

compression algorithm of Chapter 6.

In Chapter 6 we propose an original subject-specific dictionary-based compression scheme

for wearable wireless monitors. Suitable dictionaries are built and maintained in an online

and unsupervised fashion to faithfully capture and represent input signal patterns. These

dictionaries are then exploited in the compression of such signal through the transmission

of indices in place of the entire codewords (each codeword represents a typical pattern

in the input signal). Neural networks such as the Time Adaptive Self Organizing Map

(TASOM) and the Growing Neural Gas (GNG) are utilized for the dictionary construction

and maintenance. Our final algorithm is called SURF “Unsupervised ecg compressor for

weaRable Fitness monitors” and uses GNG neural networks. The TASOM-based compressor

also provides good results, i.e., reconstruction errors (RMSE) with only 9 neurons remain

within 6% of the peak-to-peak signal amplitude while the signal size to be transmitted is

reduced between 60 to 70 times (compression ratio). This amount of reduction can also be

reached with small memory requirements. However, the TASOM has a static structure (i.e.,

the number of neurons is preset and fixed at all times), and this limits its performance in

terms of reconstruction fidelity for rare sequences and its capability to adapt and explore new

portions of the signal space as the device is worn by a new subject, new activities are carried

out or rare events occur (which may be the symptoms of a disease and therefore, although

rare, have to be properly tracked). Our final design (SURF) retains all the advantages of the

TASOM-based compressor and also successfully deals with these aspects. Its reconstruction

error is lowered to 4% and its compression is as high as 96-fold, outperforming all the

previous (adaptive) approaches from the literature.

Finally, in Chapter 7 we summarize our main findings.





Chapter 2

Environmental WSN – a taxonomy

and performance comparison of

existing compression techniques

2.1 Introduction

Lossy compression is a key functionality for a Wireless Sensor Network (WSN) as it allows

saving transmission power and prolonging the network lifetime. Moreover, for many ap-

plications some loss in the data representation accuracy is tolerable, think for example of

environmental slow-varying data fields [4].

On this matter, we underscore that a solid understanding of the suitability of different lossy

compression techniques, along with their comparative performance evaluation, are still open

research problems. The objective of this chapter is to fill this gap, by providing a thorough

quantitative analysis of lossy compression algorithms and, at the same time, proposing some

improvements that work well when data is correlated in the spatial and temporal dimensions.

Toward this end, we consider temporal compression schemes based on linear approximations

and Fourier transforms, whereas spatial and/or temporal dynamics are exploited through

7



Chapter 2. Environmental WSN: existing techniques

compression algorithms based on distributed source coding (DSC) [5] and several schemes

based on compressive sensing (CS) [6].

Temporal lossy compression schemes for WSNs have been evaluated in [7], where the au-

thors studied the energy-vs-compression tradeoffs when the sensor nodes independently

compress their readings, by only exploiting the temporal correlation (TC) in the sampled

signal. The best algorithms that have been identified in [7] are Discrete Cosine Transform

(DCT) and Lightweight Temporal Compression (LTC) [8], with the former providing the

best compression performance and the latter being the most energy efficient in terms of

local computations at the sensors. The spatial correlation (SC) in the measured data is

exploited by Distributed Source Coding (DSC). Practical DSC methods were first proposed

in [9]. Briefly, compression is achieved by splitting the input data values according to so

called bins and, for each reading, the bin identifier (binID) is sent in place of the actual data

point. The rationale is that the binID needs fewer bits than the original data. Moreover,

if the bins are properly designed, i.e., they have certain distance properties, reconstruction

at the receiver is possible through the acquisition of some side information, i.e., an uncom-

pressed (and spatially correlated) data sequence that is sent from another sensor. Data

compression schemes belonging to this class will be considered and evaluated here. Recent

advancements in the signal processing field have led to the development of the theory of

Compressive Sensing (CS) [6, 10, 11]. Consider a network of sensors, where we are interested

in collecting a vector of measurements (one reading per node) at a given time. CS-based

compression relies on the idea that sampling from a small number of sensor nodes, which

send their uncompressed readings, is sufficient to recover the whole vector of readings with

good accuracy. CS is based on the premise that the data has a sparse representation in some

domain, which means that in that domain it can be equivalently described by a small num-

ber of non-zero coefficients. More details on CS is provided in Section 2.5. This concept

can be used to concoct lossy compression schemes that minimize the number of samples

acquired from the sensor nodes, see [12].

Contribution: in this chapter we consider lossy compression schemes that rely on different
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techniques, such as the exploitation of the temporal (DCT, LTC) and spatial (DSC) dynam-

ics of the signal as well as recent CS schemes, that utilize the signal correlation in space and

time. Notably, despite the large amount of research available on theoretical aspects, only

recently (DISCUS has been the first practical approach to DSC) have researchers started

to look at practical distributed compression techniques. Most importantly, approaches be-

longing to different fields such as signal processing (CS, DCT) or information theory (DSC)

and networking (LTC) are seldom evaluated against one another. The aim of this chapter

is to shed some light on the comparative performance of these algorithms.

To this end, the aforementioned schemes are adapted and integrated with practical aggrega-

tion and data gathering strategies under realistic WSN settings. Thus, they are compared in

terms of their compression and energy consumption performance by varying relevant signal

statistics and network parameters. The lessons that we have learned from this study are

multifold. First, the best performing scheme depends on the signal statistics. CS-based

compression is preferable across the entire range of temporal correlations when the spatial

correlation is moderate. As the spatial correlation becomes high, DSC schemes perform

best and when the temporal correlation is high, TC-based algorithms (DCT, LTC) perform

almost as well as CS, providing a reasonable alternative to the latter. Notably, CS-based

schemes show a non-negligible gap between their theoretical performance (a lower bound

computed assuming perfect statistical knowledge of the signal at the sink) and the actual

one. We believe this gap can be reduced and we identify how that can be done as part of a

future research work.

Organization of this chapter: in Section 2.2, we start by describing the system model;

this includes details on the network topology, the data gathering (routing) structure, the

clustering procedure that we use for DSC, the energy consumption and the signal models

(for synthetic and real data traces). In Section 2.3 we briefly review two temporal compres-

sion algorithms taken from the literature. In Section 2.4 and Section 2.5 we respectively

describe compression schemes based on distributed source coding and the baseline compres-

sive sensing algorithms. Our node selection strategies are presented in Section 2.6. We

summarize our main findings and highlight future research directions.
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2.2 System Model

2.2.1 Signal model

In this subsection, we first outline the adopted synthetic signal model. After that, we

describe the environmental signals that are used at the end of the performance evaluation

section.

Synthetic signals: we consider the method of [13], that has been validated against real

signals and allows the generation of time-varying spatial fields with tunable correlation

characteristics. This is especially useful to control the degree of correlation in space and

time and numerically assess its impact on the performance of the selected compression

schemes. Here, we target applications that sample the sensor field at regular intervals.

Thus, time t = 0, 1, 2, . . . is slotted and the slot duration is fixed and equal to ∆t. We

denote the spatial and temporal domains by D = [−xD, xD] × [−yD, yD] and by T = i∆t,

i = 0, 1, 2, . . . , respectively. A point in space is indicated with p = (x, y) ∈ D. With

x(p, t) : D×T → R we indicate the generated signal, which is stationary in space and time,

with mean µx = 0, variance σ2
x = 1 and tunable correlation structure.1

As commonly assumed in the modeling of environmental spatio-temporal signals [13, 14],

the correlation function is assumed to be separable in the space and time components:

ρ(p1, t1,p2, t2) = ρS(p1,p2)ρT (t1, t2) , (2.1)

where p1 and p2 are two points in D, t1 and t2 ≥ t1 are two time instants, ρS(·) and

ρT (·) respectively denote the spatial and temporal correlation functions. From the signal

stationarity, (2.1) can be equivalently rewritten as a function of d = ‖p1 − p2‖2 and ∆t =

t2 − t1.

1Note that we can obtain any other values for the mean and variance by shifting and scaling the random
field without affecting the correlation characteristics.
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Figure 2.1: Signal example for γ = 0.1 (left, low spatial correlation) and γ = 1 (right,
high spatial correlation).

Any suitable correlation function [15] can be used in the signal generation procedure. In

our researches, for ρS(d) we use a Gaussian function:

ρS(d) = exp

{
− d2

γα2

}
, (2.2)

where α is a scaling factor that depends on the field size and γ is a free parameter used to

control the spatial correlation. In Fig. 2.1 we show a single time instant for two synthetic

signals generated with this model, obtained with γ ∈ {0.1, 1}. For the temporal correlation,

we use ρT (∆t) = ρ ∈ [0, 1], referred to as the temporal correlation coefficient (this amounts

to assuming an exponential correlation function).

Real signals: we consider the database from [2], which contains Global Historical Climatol-

ogy Network and Legates and Willmott’s meteorological station records of air temperature

and precipitation. For our results, we used data from the first 100 measurement stations in

the provided dataset for a time period ranging between 1950 and 1996.

2.2.2 Topology and Data Gathering

We consider a set N of sensor nodes with |N | = N , deployed uniformly at random in the

area D, with xD = yD = 50 m. For the transmission range R of the nodes we adopt a unit

disk model so that sensors can only communicate with those nodes placed at a distance

shorter than or equal to R. We use R = 2xD
√
5/
√
N to guarantee that the structure is

connected with high probability under any deployment. The sink is placed in the center of

the WSN area. For the routing, each sensor considers as its next hop the node within its
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Figure 2.2: Network deployment and clustering example.

range that provides the largest advancement toward the sink (geographical forwarding), in

Fig. 2.2 we show an example topology for N = 50 nodes.

For the data gathering, we assume that the monitoring application is delay-tolerant. Time

t = 0, 1, 2, . . . is slotted. We say that a sensor “samples” at a certain time slot if it takes a

reading from the onboard sensing device. Note that sensors do not necessarily sample in all

time slots but suitable scheduling procedures, discussed in Section 2.6, are utilized to keep

the number of sampling nodes per time slot low. Every T time slots (data collection round)

the sink collects compressed data from the sensors. This is implemented to allow for the

aggregation of the readings taken within a time window of T time slots into the payload of

a single or multiple packets. As will be shown in Section 2.7, this effectively mitigates the

overhead arising from the transmission of packet headers.

2.2.3 Clustering

For the DSC technique we have used the weighted clustering algorithm (WCA) of [16]. This

makes it possible to group the sensors into a predetermined number Nc of clusters obtained

so as to evenly divide the WSN area. Within each cluster, a clusterhead (CH) is elected, so

that the CH will minimize the average distance with respect to the non-CH nodes within

its cluster.
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2.2.4 Energy Model

For every compression technique, we have counted the number of additions, multiplications,

divisions and comparisons executed at the nodes. Thus, according to the considered sensor

hardware, we have translated these figures into the related number of clock cycles and we

have subsequently turned the latter into the corresponding energy expenditure. In addition,

we have considered the energy consumption associated with the transmission and reception

of each packet. In this thesis, for these figures we have considered a MSP 430 micro-processor

and a CC2420 radio [7] from Texas Instruments.

2.3 Temporal Compression Techniques

For this class of algorithms we consider LTC and DCT, as these are the best performing

algorithms from [7]. With them, each sensor node independently compresses a time series,

exploiting the temporal correlation of the signal. Both algorithms work on time series of T

subsequent (scalar) readings {x1, x2, . . . , xT }.

LTC: LTC is a low complexity algorithm that uses a linear model to approximate a time

series, according to a preset error tolerance ε ≥ 0. The algorithm works by approximating

multiple readings through a single segment, so that the segment will be within the given

error tolerance for all points, see [7]. This algorithm has a linear complexity in the number of

readings in the time series. Also, a segment is described by four coefficients, so compression

is achieved when the number of readings that are covered through it (that depends on ε)

is larger than 4. It follows that LTC is effective when the signal exhibits a high temporal

correlation, whereas in the case of uncorrelated readings its performance is worse than

sending the time series uncompressed (as confirmed by the results of Section 2.7).

DCT: as observed in [7], DCT has a good energy compaction property, which means that the

energy of the signal tends to be distributed within the first few DCT coefficients. Based on

this, we implemented DCT by taking the time series {x1, x2, . . . , xT }, computing its DCT

and retaining the first T ′ coefficients, where T ′ ≤ T determines the level of compression
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Figure 2.3: Graphical representation of the binning procedure using the Ungerboeck tree-
based scheme [1]. In this example, the alphabet F contains 8 symbols {f0, . . . , f7}, which
are classified into bins according to (b1, b0) (bi ∈ {0, 1}). For instance, b1 = 0, b0 = 0
identifies the bin in the bottom right of the figure (containing symbols f1 and f5). This
mapping assures that the distance of the symbols contained in the same bin is maximized.

and, at the same time, the representation accuracy. In our implementation, also for DCT

we considered a maximum error tolerance ε (see also [7]). This implies that the compressor

has to evaluate the representation accuracy of the compressed sequence, adding additional

coefficients until the tolerance ε is met.

Compression strategy: the compression is orchestrated according to cycles of T time

slots. Each sensor independently collects a time series {x1, x2, . . . } and, when T readings

are available, these are transformed according to the compression strategy in use (either

DCT or LTC). The resulting coefficients are stored in the payload of a single(multiple)

packet(s) that is(are) sent to the sink and the process is repeated.2

2.4 Spatial Compression Algorithms

The distributed source coding (DSC) algorithms that we implement in this research only

exploit the spatial correlation of the signal. As suggested in [9] we use the Ungerboeck

tree-based binning scheme [1], see Fig. 2.3 for an example. We consider the transmission

of an analog reading, which is first quantized (uniform quantization is assumed in Fig. 2.3,

with quantization step ∆) into a certain number of levels N` (N` = 8 in the figure). We

refer to n as the number of bits required to represent the quantized symbol. After this,

2Multiple packets may be needed to carry the compressed signal, depending on T , the compression process
and the payload size.



Chapter 2. Environmental WSN: existing techniques

bins are obtained by grouping the quantized symbol as shown in Fig. 2.3. In this figure, we

use four bins (B0, . . . , B3), which means that k = 2 bits (b1, b0) are sufficient to represent

the binID. Note that following this approach the symbols within each bin have maximum

distance, whilst assuring an even distribution of the symbols in the bins. Also, the distance

property is maintained for all bins. This procedure can be applied for any n and k.

Compression strategy: given the above splitting procedure, the DSC scheme works as

follows. As said above, the WSN is divided into a number Nc of clusters. At each time

slot t, each non-CH node in the cluster compresses its reading xt ∈ R by first quantizing

it into xqt according to ∆ and N`.
3 Subsequently, the quantized symbol xqt is mapped into

the corresponding bin according to the Ungerboeck procedure, using k < n bits. At time

t, the resulting binID, indicated by st (k bits), is stored at the sensor node in place of

the quantized symbol xqt . The CH simply quantizes its current reading yt and stores in its

internal memory its quantized representation yqt (n bits). Every T time slots the memory of

both non-CH and CH nodes is flushed and the data therein is sent to the sink. In detail, CH

nodes store the last T quantized readings in a single packet (payload of nT bits), which is

sent to the sink via multi-hop routing. Non-CH nodes store the last T compressed readings

(the payload is now kT bits) into a single packet and send it to the sink via multi-hop

routing.

For the procedure to be executed at the sink, let us consider a generic cluster. The de-

compressor first looks at the packet received from the corresponding CH, which contains T

uncompressed readings yqt (side information). Consider now a non-CH node i in this cluster.

For each binID st contained in the packet from this node, with t ∈ {1, . . . , T}, we refer to

Bst as the corresponding bin and the estimated (quantized) symbol for node i is obtained

as:

x̂qt = argminxq∈Bst
|xq − yqt | , (2.3)

where we look for the element in the bin Bst that has minimum Euclidean distance with

respect to the side information yt that is received from the CH.

3Quantization is performed according to a minimum distance criterion, as in [9].
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From the bin construction procedure, it descends that x̂qt will be equal to the original reading

xqt if the difference between xqt and the side information yqt is strictly smaller than 2k−2∆.

Note that this depends on the (spatial) correlation properties of the signal. Also, we consider

the quantization error as negligible; note that this is a good assumption in the considered

scenario.4 Also, it is possible to improve the performance of the above procedure through

the use of coding for the generation of binID sequences (LDPC being a popular example).

In this dissertation, we consider the memoryless procedure outlined above, noting that it is

often preferred for WSNs due to its lightweight character, see, e.g., [17]. Extension to more

complex (and burdensome) coding approaches, along with the evaluation of their additional

complexity, are left as a future work.

2.5 Spatio Temporal Compression Algorithms

Within this class, we consider the compressive sensing algorithm. There, the covariance

structure of the data is estimated on the fly and is exploited to reconstruct the entire

sensor field, although sampling is performed from a subset of the nodes. Specifically, let

x = [x1, x2, . . . , xN ]† ∈ R
N be the signal at the N sensors at the generic time t.5 Our aim

is to have M � N sensors sampling the signal and subsequently sending their readings to

the sink. Suitable strategies for the selection of the M sensors are presented in Section 2.6.

Note that for compressive sensing we decouple the node selection procedure (dictating which

nodes sample at each time slot) from the signal reconstruction algorithm that we use at the

sink. Also, we note that transmitting at each time step is inefficient as the overhead due

to packet headers dominates over the payload size. To overcome this, in Section 2.6 we

present strategies that allow data aggregation from multiple time slots and the transmission

of aggregated packets at a slower rate.

In this section we detail the data compression and reconstruction procedures involved in

compressive sensing.

4We consider n = 16 bits per reading, with a signal range of ≈ 2 units. This leads to ∆ = 3 · 10−5, which
is negligible compared to the reconstruction error, see Section 2.7.

5The notation x
† indicates the transpose of vector x.
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2.5.1 CS-based Compression

As stated in the introduction, CS is a mathematical framework that makes it possible

to retrieve the original signal x from a subset of the sensors’ readings. In our problem,

x = [x1, x2, . . . , xN ]† ∈ R
N , where the i-th element xi represents the reading generated by

sensor node i. Including the temporal dimension, we indicate the complete WSN signal at

time t by x(t) (with the term “complete,” we mean containing the readings from all the

sensor nodes).

At any time t, CS can be used to approximate x(t) by using a subset of the readings, i.e.,

collecting a smaller vector y(t) of size M � N [12]. Here, we assume that the signal x(t) is

sparse in some domain and zero mean,6 which means that there exists an invertible N ×N

transformation matrix Φ(t) such that:

x(t) = Φ(t)u(t) , (2.4)

where u(t) ∈ R
N is M -sparse.7 Assuming that Φ(t) is known, x(t) can be retrieved from

its sparse representation using (2.4).

Compression strategy: for illustration purposes, assume that at each time slot t the sink

collects the readings from M � N sensors, storing them into vector y(t).8 Note that this is

inefficient in terms of data collection overhead. To ameliorate this, practical sensor selection

procedures, that promote data aggregation, are presented in Section 2.6.

We can write y(t) = R(t)x(t) + n, where R(t) is a sampling matrix of size M × N and

n ∈ R
N is the measurement noise (if any). R(t) is an all zero matrix, except for a single one

in each row and at most a single one in each column, which means that y(t) is a sampled

6This assumption is not restrictive as the approach explained here can be applied to the signal after
subtracting its (estimated) mean x(t) [12].

7A vector is defined M -sparse when it has only M significant elements, whereas the amplitude of the
remaining N −M elements is negligible.

8Note that M can be varied across subsequent time slots.
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version of x(t).9 Using the previous definitions, we have:

y(t) = R(t)x(t) + n = R(t)Φ(t)u(t) + n
def
= Ψ(t)u(t) + n , (2.5)

which can be solved for u(t), once the sparsification matrix Φ(t) (see Section 2.5.2) and the

sampling matrix R(t) are known. Specifically, when the signal is sparse enough, it can be

accurately recovered from its compressive measurement y by solving the quadratic program:

û = argmin ‖u‖1 s.t. ‖y −Ψu‖2 ≤ ε , (2.6)

where ε is an upper bound on the `2 norm of the noise and ‖ · ‖1 is the `1 norm. In the

literature, many efficient solvers for this type of systems have been proposed, see, e.g., `1-

MAGIC [18], Subspace Pursuit [19] and NESTA [20]. Once û is computed, (2.4) is used to

retrieve the real signal x(t). Note that the signal that we obtain through this procedure,

referred to as x̂(t), is an interpolated version of x(t).

2.5.2 Sparsification Basis

As demonstrated in [21], although standard transforms such as the Fast Fourier Trans-

form (FFT), Wavelet or the DCT perform satisfactorily as sparsification bases for video

sequences, they are rather ineffective for typical WSN signals. A solution to this entails the

use of Principal Component Analysis (PCA) [22]. PCA is a statistical processing technique

that uses the sample covariance matrix Σ to convert a correlated signal into a number of

principal components that is usually smaller than the number of variables in the original

signal x. That is, PCA finds a smaller space where x can be projected by minimizing the

loss of information that occurs from the original (size N) to the projected (size M) space.

The projection basis is obtained by the M eigenvectors of the sample covariance matrix

that better represent the signal (i.e., that capture most of its energy). Note that the pro-

jection basis corresponds to the sparsification basis Φ(t) that we are looking for. A simple

9In the literature, this sampling is referred to as transform coding.
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procedure to estimate matrix Φ(t) is [12]:

Algorithm 1:

1. Use y(t) and the current Ψ(t) matrix to obtain y(t)→ x̂(t) (through (2.5), solved via

`1-minimization).

2. Store x̂(t) into a buffer, containing the T most recent (estimated) vectors X =

{x̂(t), x̂(t− 1), . . . , x̂(t− T + 1)}.

3. Estimate Σ(t) (and x(t)) from the vectors in X .

4. Compute the new Φ(t+ 1) from Σ(t) using PCA.

5. Obtain Ψ(t+ 1) = R(t+ 1)Φ(t+ 1).

In the next chapter, we present an original method to obtain an improved robust estimates

of Φ(t), that also works well when signals are non-stationary.

2.6 Sampling Strategies

In this section, we present random and deterministic sampling strategies to obtain matrix

R(t), whose aim is to equally share the workload among the nodes, while sampling from

the sensors that provide the highest benefit in terms of signal reconstruction performance

at the sink. The sampling schemes are numerically evaluated at the end of the section.

2.6.1 Random node selection (RNS)

This technique has been proposed in [12]. At each time slot t = 0, 1, 2, . . . , on average, a

number M of nodes transmit their readings to the sink. A simple and distributed technique

to achieve this is to define a transmission probability ptx so that M = Nptx. Hence, at time
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t, each node independently decides whether it will be sampling and transmitting to the sink

according to ptx; in that case, its current reading is stored in the payload of a single packet,

which is sent to the sink through multi-hop routing. If user i ∈ {1, . . . , N} transmits at

time t, R(t) will have a (single) one in the i-th column.

2.6.2 Deterministic node selection (DNS)

Below, we present two node selection strategies to sample the incomplete data y at each col-

lection round. Both approaches work in data collection rounds of T time slots. A predeter-

mined and deterministic sampling strategy is computed by the sink and disseminated to all

WSN nodes. In detail, exactly M nodes sample the signal at each time slot t ∈ {1, 2, . . . , T}

and these nodes are selected according to one of the two selection strategies that we present

below. The selected nodes over the T time slots define a so called monitoring schedule.

Thus, at time t ∈ {1, . . . , T}, R(t) has a one in column i ∈ {1, . . . , N} if the monitoring

schedule includes node i for transmission in this time slot. To improve the efficiency in

the transmission of the sampled readings, for DNS we use the following data aggregation

approach. During each collection round (time slots from 1 to T ), each sensor will be sampling

the signal in the time slots dictated by the monitoring schedule. In the last time slot T ,

the sensor will aggregate its readings storing them in the payload of a single (or multiple)

packet(s), which is(are) sent to the sink for processing. The sink collects the incoming

packets and, given its knowledge of the sampling matrix R(t), associates back the readings

from the nodes to the corresponding time slots. This permits to obtain y(t) at the sink for

all time slots {1, 2, . . . , T}. This process is repeated for each collection round.

Next, we discuss two heuristic procedures for the computation of the monitoring schedule.

These algorithms are based on the spatial correlation among sensors. The idea is to pick

one node at a time and assign it to the monitoring schedule. In doing this, we seek for the

node that brings the largest improvement in terms of reconstruction quality at the sink.

To come up with fast and still tractable models, we assume that the underlying signal is

Gaussian distributed. The algorithms will be then applied, in Section 2.7, to a general setup
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and shown to be effective in the presence of non-Gaussian statistics as well.

Correlation based deterministic node selection (CB-DNS): to simplify our expla-

nation, we assume that T = N/M and consider the first collection round, i.e., time slots

{1, 2, . . . , T}.

To start with, let X and Y be two jointly Gaussian random variables, where X ∈ N(µX , σX)

and Y ∈ N(µY , σY ) (with µ and σ we respectively indicate mean and standard deviation).

In this case, as shown, e.g., in Chapter 11 of [23], the conditional variance of Y , given that we

have sampled X is constant and equal to V ar[Y |X = x] = σ2
Y (1−ρ2XY ) = σ2

Y − (σXY /σX)2,

∀x, where ρXY = σXY /(σXσY ) is the correlation between X and Y and σXY = E[(X −

µX)(Y −µY )]. Generalizing this concept to all nodes in N , for each j ∈ N we can compute

its overall conditional variance mj with respect to all the other sensors, that is:

mj =
∑

i∈N

σ2
i (1− ρ2ij) =

∑

i∈N

σ2
i −

∑

i∈N

σ2
ij

σ2
j

. (2.7)

Note that the node j? with the smallest mj is found as:

j? = argminj∈N

(
∑

i∈N

σ2
i −

∑

i∈N

σ2
ij

σ2
j

)

= argmaxj∈N

(
∑

i∈N

σ2
ij

σ2
j

)
, (2.8)

where the second equality follows as the first sum in the first line does not depend on the

index j. Given this, we can equivalently use the following metric m′
j :

m′
j =

(
∑

i∈N

σ2
ij

σ2
j

)
. (2.9)

Note that m′
j is related to the amount of correlation between the value sampled at sensor j

and the readings from all the other sensors. In a sense, m′
j tells us how suitable sensor j is

to represent the other nodes in set N .
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The problem under consideration amounts to the selection of T disjoint sets containing M

nodes each. Each set will be then associated with a single time slot in the collection round

and the nodes therein will be sampling in that time slot. For CB-DNS we sort all the sensors

in N in descending order of m′
j . Thus, we pick the T sensors with the highest metric in the

ordered set and assign them to time slots {1, . . . , T} so that the best node will be assigned

to time slot 1, the second best to time slot 2 and so on. Hence, we pick the second best T

nodes and assign them to time slots {1, . . . , T} following the same approach. The process is

iterated until all nodes are assigned. Each node will then sample in the assigned time slot.

The procedure can be easily generalized to the case where T = κN/M with κ and N/M

integers. In that case, the monitoring schedule obtained from the previous assignment

scheme is repeated κ times within the data collection round. When N/M is not an integer,

some nodes will have to sample twice within dN/Me time slots to ensure that there are M

sampling nodes. The nodes that resample can be rotated to ensure fairness in their energy

consumption.

Enhanced correlation based deterministic node selection (ECB-DNS): before de-

tailing the full algorithm, we consider the simpler problem of selecting M sensors from N

when T = 1, i.e., there is a single time slot per data collection round. In this case, we start

initializing the set of nodes to be processed S1 = N and an empty set S2. Our objective is

to select M nodes from S1 so that these will lead to the smallest reconstruction error for

the sensors that are not selected. The algorithm is presented next.

Algorithm 2:

1. Consider the n-th step, with n ∈ {1, . . . ,M}, and let S1(n) and S2(n) respectively be

the sets containing the nodes that are still to be processed and those selected in the

previous n− 1 steps.

2. The objective is to select an additional node j? from S1(n) so that this node has the

highest correlation with respect to all the other sensors in S1(n). In this way, we
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maximize the informative value of j? with respect to the sensors that are not selected.

Note that this amounts to selecting j? in such a way that the conditional variance

with respect to the other sensors in S1(n) is minimized. That is:

j? = argmaxj∈S1(n)



∑

i∈S1(n)

σ2
ij

σ2
j


 . (2.10)

After node j? is identified, we set S1(n+1)← S1(n)\{j?} and S2(n+1)← S2(n)∪{j?}.

3. If n = M the algorithm stops, otherwise we set n← n+1 and go back to step 2 above.

Note that the complexity of this algorithm is O(MN), whereas the optimal schedule is

obtained through an exhaustive search, which entails checking
(
N
M

)
monitoring schedules.

Note also that the algorithm considers the same metric as CB-DNS with the difference that,

in this case, every time a sensor is selected we recompute the relevant metrics conditioning

on its removal from the main set. As it will be numerically shown below, this leads to a

major performance improvement.

For a generic number of time slots per collection round, T > 1, Algorithm 2 can be gen-

eralized as follows. To simplify the exposition, we assume that N/M is integer and that

T = N/M . In a single round, we have T time slots and we need to select exactly M nodes

for each of them. The new algorithm starts with set S1 = N and outputs T sets St2, with

|St2| = M , ∀ t ∈ {1, . . . , T}. The new algorithm is described next.

Algorithm 3:

1. Let n ∈ {1, . . . ,M} be the n-th step and let S1(n) and St2(n), t ∈ {1, . . . , T} be the

T + 1 sets at this iteration. Use Algorithm 2, taking as input set S1(n) and requiring

the selection of T nodes from it.

2. Assign each of the nodes returned by Algorithm 2 to a different set St2(n) for t ∈

{1, . . . , T}. After this, these nodes are removed from S1(n).

3. If n = M stop, otherwise go to step 1.
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In Algorithm 3, we use the same rationale as in Algorithm 2 by picking the best T sensors at

each iteration and assigning them to the T disjoint sets St2. The idea is to evenly distribute

the best nodes among the T selections and stop when all nodes are assigned, at which point

all the selections contain exactly M nodes. The metric that we use is still based on (2.9)

but each time a node is selected, it is removed from S1, which amounts to conditioning the

statistics for the remaining nodes. For a generic T , the algorithm can be extended as we

did for CB-DNS, requiring some of the nodes to resample in some slots and rotating them

to balance their energy consumption.

2.6.3 Comparison of Sampling Strategies

In Fig. 2.4 we show the performance of the sampling strategies of Section 2.6 considering

the synthetic signals of Section 2.2.1 for µx = 0, σ2
x = 1. These graphs were obtained

generating random fields x(t) for a sufficiently large number of time slots. For each spatial

signal, N sensor nodes are distributed at random within the simulation area and sampling

is performed from M < N of them using one of the monitoring schedules from Section 2.6.

As a benchmark, an idealized version of the CS algorithm is used to reconstruct the signal

at the N −M sensors that do not sample. In detail, we inverted (2.5) solving the quadratic

program (2.6) by assuming a perfect knowledge of the signal’s covariance matrix Σ and,

in turn, using the most effective transformation matrix Ψ (obtained from Σ via the PCA

technique).

In the plot, we show the Mean Square Error (MSE) between the actual and the estimated

variance for the N −M sensors that do not sample as a function of the number of sampling

nodes M . Note that a small MSE entails a better estimation of the second order statistics

of the signal at the non-sampling nodes and, in turn, a more accurate estimation of the

covariance matrix Σ. This, as will be shown in Section 2.7, leads to better reconstruction

performance for all CS-based algorithms.

With the term “exhaustive” we indicate the optimal sampling procedure, obtained consid-

ering all possible
(
N
M

)
selections and picking the one providing the best MSE performance.
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Figure 2.4: Comparison of sensor selection algorithms for (left, N = 15 and γ = 10) and
γ = 1 (right, N = 50 and γ = 1).

Note that the optimal scheduling is shown for N = 15 (Fig. 2.4-left) but we could not obtain

it for N = 50 (Fig. 2.4-right), due to the excessive computational burden in this case.

As shown in Fig. 2.4 (left, spatial correlation parameter γ = 10), CB-DNS performs un-

satisfactorily and much worse than random selection (RNS). However, ECB-DNS performs

much better and quite close to the optimal selection. This emphasizes the importance of

conditioning and recomputing the involved statistics each time a new node is added to the

monitoring schedule. The same fact is confirmed by the results of Fig. 2.4(right), which are

obtained using a smaller spatial correlation parameter (γ = 1). Although not shown here in

the interest of space, similar results were obtained across a wide range of correlation values

γ ∈ [0.1, 10] and for a higher number of nodes, N = 50 (although in this case the optimal

selection could not be obtained to the excessive computational burden). This demonstrates

the effectiveness of our conditioning approach (see Algorithms 2 and 3) and make ECB-DNS

a good candidate for our CS-based algorithms of in this and next chapters.

2.7 Results

In this section, we compare temporal compression algorithms (LTC, DCT) against DSC

and the discussed CS-based techniques. For the network setup, we consider N = 50 nodes

with the signal model of Section 2.2 with varying spatial (γ) and temporal (ρ) correlation

parameters and a data collection cycle length of T = 50 time slots. We compute the average

reconstruction error at the sink ξ , Et [‖x(t)− x̂(t)‖1], where x(t) and x̂(t) respectively
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represent the original signal from the N sensors and the one reconstructed at the sink

at time t, and the total average energy consumption per time slot, E, expressed in Joule

(including the transmission and processing tasks performed by the WSN nodes). For the

computation of the energy consumption figure, we considered the number of operations

executed by the micro-controller to compress the signal and the number of bits sent to

transmit it, as detailed in Section 2.2.4. Each sensor reading takes n = 16 bits of memory

and for DSC we have used k = 4 bits to represent the bin identifiers.

In the graphs that follow, with CS-RNS we mean the technique of [12], which employs

random sampling (see Section 2.6.1) together with the recovery scheme of Section 2.5.2,

where the sample covariance matrix is exploited to obtain the PCA sparsification basis.

CS-DNS uses the same CS-based approach, but considers the deterministic node selection

technique of Section 2.6.2.

Next, we show tradeoff curves comparing ξ (y-axis) against E (x-axis), where the perfor-

mance of DSC and CS schemes is obtained by varying an independent parameter as follows:

DSC: the number of clusters Nc is varied between 5 and N − 5 in steps of 5; CS-RNS:

ptx goes from 0.1 to 1 in steps of 0.1; CS-DNS: M goes from 5 to N in steps of 5. A free

parameter is not needed for DCT and LTC as our implementation of these two schemes

is self-tuning, i.e., it takes the error ξ as the input parameter. As a benchmark, we also

obtained a lower bound on the error recovery performance of CB-DNS by calculating the

sample covariance matrix from the complete signal x(t), assuming that all the past samples

(excluding the current one at time t) are available at the sink with no errors and at no

additional cost with respect to the acquisition of the incomplete signal set. This idealized

algorithm is referred to in the following plots as “Lower Bound” and has the same energy

consumption as CB-DNS.

In Fig. 2.5 we look at the impact of the node selection strategy (DNS vs RNS) for ρ = 0.5

and γ = 5. CS-DNS substantially outperforms CS-RNS and the reason for this resides in

1) the aggregation strategy entailed by DNS and 2) the type of sampling (i.e., deterministic

versus probabilistic). To understand the impact of each of these factors, we considered an
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Figure 2.5: Reconstruction error ξ vs energy consumption E for ρ = 0.5 and γ = 5.

additional curve, obtained by left-shifting CS-RNS so that the energy consumption per-

formance of the shifted curve is equal to that of CS-DNS. A direct comparison between

this shifted curve and CS-DNS reveals the improvement, in terms of reconstruction error

ξ, that is brought about by DNS (in fact, for this shifted curve the aggregation process

does not affect ξ). As expected, this improvement is especially high when ptx is small, i.e.,

when the signal is randomly sampled by a small number of sensors (top left of the plot).

The reason behind this is that our DNS strategy allows for an improved estimation of the

statistical properties of the signal at the sink (i.e., of its covariance matrix). Further, with

DNS substantial energy savings are possible through data aggregation, as this alleviates the

negative impact due to the transmission of large packet headers (assumed to be 13 bytes

for the results in this thesis). DNS consistently outperforms RNS for all values of ρ and ξ

when applied to all CS algorithms. For this reason, CS-RNS will no longer be considered

in the rest of the chapter.

Next, we focus on the comparative analysis of CS, DSC, DCT and LTC, which is shown

in Figs. 2.6– 2.9. From these figures, a few key observations can be made. a) When the

signal is uncorrelated in space and time (Fig. 2.6), CS-DNS is the scheme of choice and

performs close to its theoretical bound. Temporal correlation schemes should be avoided,

as their energy consumption in this case is higher than that incurred in sending all the data

uncompressed (given by the abscissa value where CS and DSC reach ξ = 0). Especially, LTC

is rather inefficient as two coefficients (i.e., one segment) are sent for each data point for

small values of ρ.b) As the signal correlation increases (see Fig. 2.7, with ρ = 0.5 and γ = 5),
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Figure 2.6: Reconstruction error ξ vs energy consumption E for ρ = 0 and γ = 0.001
(signal uncorrelated in time and space).
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Figure 2.7: Reconstruction error ξ vs energy consumption E for ρ = 0.5 and γ = 5 (signal
average correlated in time, but highly correlated in space).

DSC better uses the increased spatial correlation, outperforming CS as can be observed for

ξ ≥ 1. The performance of DCT and LTC is only marginally improved. c) For a temporal

correlation as high as ρ = 0.8 (see Fig. 2.8), the performance of DCT and LTC reaches

that of CS. d) For signals that are highly correlated in time but spatially uncorrelated, the

situation is reversed, see Fig. 2.9. In this case, DCT and LTC both outperform CS, whereas

DSC performs worst and its use is not recommended.

As a general remark, the gap between CS-DNS and its lower bound increases for increasing

signal correlation. This means that the quality of the sample covariance matrix is highly

impacted in this case. This, in turn, affects the accuracy of the related PCA transform,

providing less accurate approximations of the signal. These results indicate that there is

still some room for improvement for CS, whose performance can be ameliorated so as to
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Figure 2.8: Reconstruction error ξ vs energy consumption E for ρ = 0.8 and γ = 0.001
(signal highly correlated in time, but uncorrelated in space).
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Figure 2.9: Reconstruction error ξ vs energy consumption E for ρ = 0.98 and γ = 5
(signal highly correlated in time, but uncorrelated in space).

approach that of DSC and temporal-compression schemes. To achieve this goal, we need

to concoct improved covariance estimators for incomplete signal sequences. To this end,

a sensible approach could be the use of spatial correlation estimators to filter the noise

affecting the sample covariance. Future work has to be carried out in this direction.

All in all, however, if the correlation statistics are unknown, CS is deemed a valid com-

pression approach as it often outperforms competing algorithms and, in the worst cases, it

performs in between temporal and spatial correlation-based compression.
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2.8 Chapter Conclusion

In this Chapter, we have performed a comparative performance evaluation of selected lossy

compression schemes for WSN. This analysis can be seen as a preliminary study for a

more in-depth research work, as it serves to pinpoint the pitfalls of the considered schemes.

In fact, we found that no single algorithm performs best in all settings, and compressive

sensing in general provides good performance that, in the worst case, lies in between that

of temporal and spatial compression schemes. Most importantly, our analysis reveals that

there are interesting avenues for more research. One of these consists in the improvement

of CS schemes, and specifically in the design of improved estimators for the sparsification

basis (obtained through PCA), which is strictly related to the covariance structure of the

signal. Also, CS schemes can be implemented as well by exploiting a clustered WSN, i.e.,

by restricting the scope of the matrix inversion within each of the clusters.



Chapter 3

Environmental WSN – a new

proposal, Covariogram-Based

Compressive Sensing

3.1 Itroduction

In this chapter, we have improved the CS-based compression scheme of chapter 2. In chap-

ter 2 we found that no single algorithm performs best in all settings, and compressive sensing

in general provides good performance that, in the worst case, lies in between that of tempo-

ral and spatial compression schemes. In this chapter, the reconstruction step of CS-based

algorithms has been improved considering the concept of variogram estimation and using it

to refine the (estimated) covariance matrix at the data collector. As a result, the reconstruc-

tion error is substantially reduced, leading to more accurate representations of the signal. As

an additional contribution, the sparse sampling strategy is improved to implement a more

effective selection of the subset of nodes that are sampled at each data collection round.

The impact of variogram estimation and sparse sampling is numerically assessed through a

simulation tool developed in Matlab. The standard kriging reconstruction algorithm (from

geo-statistics) is also considered and compared against CS-based reconstruction.

31
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Our contribution: we consider lossy compression scheme that rely on our proposal which

is an improved compressive sensing. So the first objective of this chapter is to shed some

light on the comparative performance of existing algorithms, testing them for synthetic and

real environmental signals. As a second major contribution, we introduce new sampling

and covariance estimation strategies for CS. Our covariance estimation algorithm integrates

the concept of covariogram estimation, which is a widely used tool in geostatistics [14].

The resulting CS technique, termed covariogram-based compressive sensing, outperforms all

previous lossy compression schemes, showing an excellent capability to adapt to changes in

the underlying correlation structure, while also providing compression-vs-energy tradeoffs

that approach those of optimal CS algorithms (where the signal correlation structure is

perfectly known at the receiver). For its design, we adopt the Kronecker compressive sensing

framework of [24] which allows to jointly sparsify the input signal along the temporal and

spatial dimensions. As a distinctive feature of our work, we compute the sparsification

bases for CS on the fly and based on the statistical properties of the signal. We underscore

that previous work [24][25] used signal independent Wavelet transforms, which work well for

video signals but are often inadequate for non-stationary data from WSN fields [21]. The

result is a CS spatio-temporal compression scheme that learns the best projections according

to the signal features and provides excellent results in terms of adaptation capability in the

presence of highly non-stationary signals, as will be shown in Section 3.3.

Organization of this chapter: our new covariogram-based compressive sensing scheme is

presented in Section 3.2. In Section 3.3, we numerically evaluate the considered compression

algorithms and, in Section 3.4, we summarize our main findings.

3.2 Covariogram-based Compressive Sensing (CB-CS)

In this section, we present an improved CS-based algorithm that embeds covariogram es-

timation techniques into the construction of the transformation bases Φ(t). To develop

our technique, we start discussing the main drawbacks of the CS reconstruction algorithm

described in Section 2.5.2 of Chapter 2. The first drawback is that the sparse representation
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u(t) for the current time slot t is obtained from (2.5) and the solution of this system solely

depends on y(t) and Φ(t) in time slot t. Hence, while the temporal correlation is accounted

for in the estimation of matrix Φ(t) (obtained from the sample covariance matrix, see Al-

gorithm 1) in chapter 2, the CS algorithms that are used to invert (2.5) only exploit the

spatial correlation of the signal of interest. This, in turn, means that CS only takes advan-

tage of the signal’s sparsity in the spatial domain, whereas sparsity in the temporal domain

is not exploited. A second problem, that will be quantified in Section 3.3, is that the sample

covariance matrix is often affected by large estimation errors and this has a considerable

impact on the performance of CS reconstruction algorithms.

Here, the first problem is addressed by extending (2.5) in order to cover multiple time slots;

this will be achieved adapting the Kronecker compressive sensing framework of [24], which

was also adopted in [25]. The second problem is instead addressed using covariograms for

the estimation of the sample covariance matrix Σ.

Kronecker CS (Kron-CS): with Kron-CS we extend our vector representation of the

spatial signal x ∈ R
N so as to include W subsequent time slots. Hence, we consider a new

vector xW ∈ R
NW that develops along two dimensions, where W is the number of time slots

that are jointly considered by the CS inversion tools, and N is the size of the spatial input

signal x. Equation (2.5) and the corresponding CS framework need then to be extended to

jointly account for the temporal and spatial dimensions. Next, we do this by calculating a

new sampling matrix and a new sparsifying matrix. The Kronecker product of two matrices

A and B of sizes P ×Q and R× S, respectively, is:

A⊗B =




a11B · · · a1QB

...
. . .

...

aP1B · · · aPQB



, (3.1)

where aij is element (i, j) of matrix A. In our specific case, we want to jointly operate along

the temporal dimension (W subsequent time slots) and the spatial one (N spatial samples

per time slot). Hence, if ΦT ∈ R
W×W is the sparsifying basis that we use for the temporal
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domain and ΦS ∈ R
N×N is the sparsifying basis for the spatial domain, it can be proven

that ΦW = ΦT ⊗ ΦS with ΦW ∈ R
NW×NW is the joint sparsifying basis over time and

space [24].

If t is the present time slot, the new signal is xW (t) ∈ R
NW :

xW (t)
def
= [x(t−W + 1)†, . . . ,x(t− 1)†,x(t)†]† , (3.2)

which covers a time window of W slots. Likewise, the new sampled signal is a vector of

MW readings, i.e., M readings are acquired for each of the W subsequent time slots. That

is:

yW (t)
def
= [y(t−W + 1)†, . . . ,y(t− 1)†,y(t)†]† , (3.3)

with yW (t) ∈ R
MW . At time t, the new transformation matrix is obtained applying the Kro-

necker product asΦW (t) = ΦT(t)⊗ΦS(t) and the new sampling matrixRW (t) ∈ R
MW×NW

is:

RW (t) =




R(t−W + 1) 0 · · · 0

0 R(t−W + 2) · · · 0

...
...

. . .
...

0 0 · · · R(t)




, (3.4)

where R(·) ∈ R
M×N , 0 ∈ R

M×N is the all zero matrix and RW (t) ∈ R
MW×NW . Note that

(3.4) has a block-diagonal structure as the entries of the sparse vector are grouped by signal,

as done in [24, 25]. Hence, we have that yW (t) = RW (t)xW (t) and (2.5) becomes:

yW (t) = RW (t)ΦW (t)uW (t) + n = ΨW (t)uW (t) + n , (3.5)

where ΨW (t) = RW (t)ΦW (t), ΨW (t) ∈ R
MW×NW , uW (t) ∈ R

NW is the sparse represen-

tation of xW (t) and n is the measurement noise.

Covariogram-based CS (CB-CS): for the present and the previous W − 1 time slots we

estimate the transformation matrix ΦS using the covariogram theory. A typical measure of
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statistical distance in spatial phenomena is provided by the experimental variogram (EV).

Assume the random variableX defines the observed spatial phenomenon and x(p) represents

a sample of X at location p ∈ D. Then, for a given geographical distance h (referred to as

lag), EV is defined as [26]:

γ(h) =
1

2N(h)

∑

p′ s.t. ‖p−p′‖2=h

[
x(p)− x(p′)

]2
, (3.6)

where N(h) is the number of data pairs at distance h > 0.1 The spatial correlation of

X can be estimated through the computation of EV values for several distances h using

available samples. Function γ(h) can be experimentally evaluated. However, (3.6) is often

insufficient to provide correlation information for CS signal reconstruction schemes. In fact,

these often require correlation values between locations where no samples are available. To

solve this issue, in geostatistics correlation models are established by fitting a curve on

the computed EV values. This curve is then used to approximate the correlation of X at

arbitrary locations. The best known covariogram functions follow the spherical, Gaussian

and exponential models. These have been successfully used to describe a large number of

environmental phenomena:

• Spherical:

γs(h) =





n+ s×
[
1.5
(
h
a

)
− 0.5

(
h
a

)3]
h ≤ a

n+ s h > a .

(3.7)

• Gaussian:

γg(h) = n+ s×
[
1− exp

(
−3h2

a2

)]
. (3.8)

• Exponential:

γe(h) = n+ s×
[
1− exp

(
−3h

a

)]
. (3.9)

n is the nugget, which represents the value of γ(0), n+ s is the sill, which is related to the

limit of γ(h) as h grows to infinity, i.e., n + s = limh→∞ γ(h), and a is the range, which

1When evaluating the EV of a randomly generated set of points, the lag is defined in a discrete set of
contiguous intervals rather than as a continuous variable, for further details see [26]
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represents the distance h for which γ(h) converges (within a certain small tolerance) to the

limiting value n + s. The spherical model is almost linear at small distances but flattens

out as h increases. The Gaussian model shows a parabolic behavior near the origin and

for this reason fits well extremely continuous phenomena. The exponential family provides

excellent approximations for many classes of signals, such as meteorological data (as we

show in Section 3.3).

The best covariogram fit is obtained as follows. Equation (3.6) is used to compute the

experimental variogram for each pair of nodes i, j ∈ N , i.e., every time the two nodes

send their samples within a data collection round, we update the corresponding EV. Hence,

we obtain a number of EV estimates according to the nodes that transmit their readings

and we sort them according to the geographical distance h of the corresponding sensors.

We consider that the spatial distribution is circularly symmetric, i.e., γ(h) only depends

on the distance h and not on the initial point p. In this case, the nugget n is obtained

as n = 0.5
∑

i∈N σ2
i /N , where σ2

i is the variance associated with the readings sampled at

node i. To fully specify a covariogram function, we still have to compute the parameters

s and a. Here, we obtained them using two nested Brent-Dekker minimizations. This

is a fast and reliable algorithm using bisection, the secant method and inverse quadratic

interpolation [27]. The algorithm has the reliability of bisection and is often as fast as less

reliable methods.

For a given phenomenon, the just described procedure is run to identify the best suited

covariogram model from (3.7), (3.8) and (3.9). The one that best matches the actual spatial

correlation (represented by the EV values) is then adopted. Upon calculating γ(h), we use

it to estimate the covariogram matrix Σ ∈ R
N×N . From the theory in Chapter 12 of [26],

for any given distance h, the covariogram γ(h) is related to the covariance C(h) through

C(h) = n+s−γ(h). Accordingly, element (i, j) ofΣ, σi,j , is computed as σi,j = n+s−γ(hi,j),

where hi,j is the geographical distance between the two nodes i and j.

Compression strategy: data samples are collected from the sensor nodes every T times

slots. The ECB-DNS sampling strategy is used to obtain the monitoring schedule, which

is computed at the sink as per Algorithm 3 of chapter 2 and disseminated to the sensor
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nodes. The sensor nodes sample in their assigned time slot(s) and aggregate their samples

in as few packets as possible, which are sent to the sink at the end of the data collection

round. For the sake of illustration, let T = W and let T be the current time slot. The

signal reconstruction algorithm at the sink works as follows:

Algorithm 1:

1. At time t = T , the sink collects yW . The sampling matrix RW for the present and the

previous W −1 time slots is computed using (3.4). Note that, according to ECB-DNS,

the monitoring schedule changes from slot to slot and for this reason matrices R(i)

with i ∈ {1, . . . , T} differ.

2. The covariance matrix Σ is estimated through the covariogram-based technique in the

previous paragraph, i.e., using the best covariogram fit at time slot T .

3. PCA is used with Σ to obtain the spatial transformation basis ΦS. For the temporal

transformation basis, ΦT, we use DCT as it has a good energy compaction property,

see, e.g., Chapter 4 of [28]. The joint transformation basis over time and space is

obtained through the Kronecker product as ΦW = ΦT ⊗ΦS.

4. Matrix ΨW is obtained as ΨW = RWΦW and the sparse signal estimate ûW is

retrieved solving (3.5) for uW .

5. The signal xW is approximated as x̂W = ΦW ûW . With this approach, we obtain an

approximation of x for each of the W time slots.

Algorithm 1 can be repeated every T time slots, i.e., signal recovery for an entire window

occurs at the end of each data collection round. Alternatively, one could perform this

procedure at every time slot. Considering slots T and T +1, at time T we obtain x̂W (T ) =

[x̂(1)†, . . . , x̂(W )†]† and at time T + 1 we retrieve x̂W (T + 1) = [x̂(2)†, . . . , x̂(W )†, x̂(W +

1)†]†. Note that the last two vectors overlap in W − 1 positions, i.e., W − 1 instances

of the spatial signal x are reestimated at time T + 1. This fact allows the refinement of

the estimated multidimensional signal. In this chapter we have used the latter approach by
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always replacing the old estimates with the new ones. Finally, we remark that unlike [24] and

[25], we adaptively compute the spatial transform according to our combined covariogram-

PCA estimation procedure. This allows tailoring the transformation basis on the non-

stationary statistical structures of real WSN datasets. In the literature, the 2D Wavelet

transform was used instead. This transform is independent of the data statistics and,

while providing excellent results for video flows, does not necessarily perform well for non-

stationary WSN data [21].

3.3 Results

In this section, we compare temporal compression algorithms (LTC, DCT) against DSC

and the discussed CS-based techniques. For the network setup, we consider N = 50 nodes

with the signal model of Section 2.2 of Chpater 2 with varying spatial (γ) and temporal

(ρ) correlation parameters and a data collection cycle length of T = 100 time slots. We

compute the average reconstruction error at the sink ξ , Et [‖x(t)− x̂(t)‖1], where x(t) and

x̂(t) respectively represent the original signal from the N sensors and the one reconstructed

at the sink at time t, and the total average energy consumption per time slot, E, expressed in

Joule (including the transmission and processing tasks performed by the WSN nodes). For

the computation of the energy consumption figure, we considered the number of operations

executed by the micro-controller to compress the signal and the number of bits sent to

transmit it, as detailed in Section 2.2.4 of Chpater 2. Each sensor reading takes n = 16 bits

of memory and for DSC we have used k = 4 bits to represent the bin identifiers.

In the graphs that follow, with CS-RNS we mean the technique of [12], which employs

random sampling (see Section 2.6.1 of Chapter 2) together with the recovery scheme of

Section 2.5.2, where the sample covariance matrix is exploited to obtain the PCA sparsi-

fication basis. CS-DNS uses the same CS-based approach, but considers the deterministic

node selection technique of Section 2.6.2. CB-CS is our new covariogram-based technique of

Section 3.2, where with “(DCT)” we indicate that a DCT transform is used for the temporal

dimension (matrix ΦT), whereas “(iid)” indicates an identity transform. Kron-CS indicates
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the Kronecker CS technique of [24, 25] where DCT and the sample covariance matrix are

considered for ΦT and ΦS, respectively.

Next, we show tradeoff curves comparing ξ (y-axis) against E (x-axis), where the perfor-

mance of DSC and CS schemes is obtained by varying an independent parameter as follows:

DSC: the number of clusters Nc is varied between 5 and N − 5 in steps of 5; CS-RNS:

ptx goes from 0.1 to 1 in steps of 0.1; CS-DNS, CB-CS and Kron-CS: M goes from 5 to

N in steps of 5. A free parameter is not needed for DCT and LTC as our implementation

of these two schemes is self-tuning, i.e., it takes the error ξ as the input parameter. As a

benchmark, we also obtained a lower bound on the error recovery performance of CB-CS

by calculating the sample covariance matrix from the complete signal x(t), assuming that

all the past samples (excluding the current one at time t) are available at the sink with no

errors and at no additional cost with respect to the acquisition of the incomplete signal set.

This idealized algorithm is referred to in the following plots as “Lower Bound” and has the

same energy consumption as CB-CS.

In Figs. 3.1 and 3.2 we compare the performance of the compression algorithms for three

selected (ρ, γ) pairs. Note that, for this set of results, the signals were generated using the

framework of Section 2.2.1 of Chpater 2 and their statistics is stationary. As can be seen

from these plots, temporal compression algorithms perform worse than those exploiting the

spatial (DSC) or spatio-temporal (CS) features of the signal. Moreover, when the spatial

correlation γ is high (Fig. 3.1), CS-DNS and Kron-CS perform worse than DSC. Instead,

our CB-CS algorithm still performs very close to the lower bound and better than all the

other schemes across the entire range of correlations.2 This indicates that the proposed

covariogram-based estimation technique of Section 3.2 is very effective in providing reliable

and robust estimates of the covariogram matrix, although the signal collected at each round

is incomplete. We also note that the gap between CB-CS (DCT) and CB-CS (iid) increases

with an increasing temporal correlation, which can be observed as we go from Fig. 3.1

(uncorrelated in time and correlated in space) to a case where data is correlated in time

and space (e.g., ρ = 0.5 and γ = 5, not shown in the interest of space). Remarkably,

2We checked this through an extensive simulation campaign, although we report here only the most
significant results for the sake of space.
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Figure 3.1: Reconstruction error ξ vs energy consumption E for ρ = 0 and γ = 5 (signal
uncorrelated in time, but highly correlated in space).
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Figure 3.2: Reconstruction error ξ vs energy consumption E for ρ = 0.8 and γ = 0.1
(high temporal correlation and low spatial correlation).

in Fig. 3.2 CB-CS (DCT and iid), Kron-CS and CS-DNS perform similarly, as for this

particular choice of the parameters (very high temporal correlation) the sample covariance

matrix accurately matches the real covariance structure of the signal. As expected, when the

number of sampling sensors is low, DSC performs worse than temporal compression schemes

because the signal is uncorrelated in space. Moreover, the Kronecker framework alone does

not provide substantial benefits and this holds across the entire range of correlations (we

will see shortly that this is not the case for non-stationary signals). Another interesting

observation, as ρ increases, the performance of DSC remains unchanged, whereas CB-CS

takes advantage of the increased temporal correlation by lowering its reconstruction error

across the entire range of M .
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Figure 3.3: Results for experimental data: temperature dataset from [2].
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Figure 3.4: Results for experimental data: precipitation dataset from [2].

In Figs. 3.3 and 3.4 we show the reconstruction error vs energy tradeoff for real and non-

stationary environmental data. Fig. 3.3 refers to a temperature dataset from [2] and provides

further insights into the comparative performance of the selected schemes. Specifically, from

this plot we observe a much bigger gap between Kron-CS and CS-DNS. This gap can also be

observed, to a smaller extent, in Fig. 3.4 (precipitation dataset from the same database). The

reason for this resides in the fact that for the temperature dataset the temporal correlation is

higher and the spatial correlation is lower. The smaller spatial correlation is also confirmed

by the fact that, in Fig. 3.3, DSC performs worse than temporal compression in terms of

reconstruction error when, e.g., less than 50% of the nodes transmit. In this case, the

impact of sparsifying over the temporal dimension, using DCT, is noticeable when M is

small, as testified by the gap between CB-CS (iid) and CB-CS (DCT). Also, our CB-CS

algorithm still performs close to the lower bound and outperforms the other schemes, even

in the presence of non-stationary data.



Chapter 3. Environmental WSN: Covariogram-Based Compressive Sensing

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

\l
a

rg
e

 R
e

c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r 
$

\x
i$

\large Time slots

Kron-CS
WB-CS
CB-CS

Figure 3.5: Results for a non-stationary data trace for M = 15 and N = 50, i.e., 30% of
the nodes transmit in each collection round.

Finally, in Fig. 3.5 we look at the temporal behavior of CS-based solutions. Here, we perform

an experiment considering a non-stationary dataset where in the first time period (between

time slots 0 and 200) temporal and spatial correlations are set to ρ = 0.8 and γ = 0.001,

respectively, to reproduce a scenario with uncorrelated spatial samples and high temporal

correlation. At time 200, these values are changed to ρ = 0.5 and γ = 5 and they are

finally restored to the initial values from time 600 onwards. In this plot we show a new

scheme, termed Window Based Compressive Sensing (WB-CS). This algorithm uses DNS in

conjunction with the covariogram-based covariance estimation of Section 3.2 and adopts the

CS reconstruction approach of CS-DNS (see Section 2.5.2 of Chpater 2). That is, in every

time slot the last time window (W time slots) is used to refine the estimated covariance

matrix and reconstruct the original signal through the inversion of (2.5), but the Kronecker

framework is not used. This means that WB-CS only sparsifies the data along the spatial

dimension. On the other hand, note that Kron-CS sparsifies the data along space and time

but the spatial transformation ΦS is computed from the sample covariance matrix. The

gap between Kron-CS and WB-CS is due to the covariogram-based estimation procedure,

which produces better estimates for ΦS. The gap between WB-CS and CB-CS is instead

due to using the Kronecker framework, i.e., performing the joint sparsification of the signal

over time and space. Overall, the highest benefits are obtained by using the Kronecker

framework combined with our covariogram-based estimation, as confirmed by the results of

CB-CS. We finally observe that, right after time 200 and after time 600, WB-CS shows a

rather long transient period before it stabilizes to the steady state performance for the new
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correlation model. This shows the benefits brought about by the Kronecker approach in

terms of adaptability to abrupt changes in the signal statistics.

3.4 Conclusion

In chapter 3, we have addressed the design of spatio-temporal compression schemes for

environmental wireless sensor networks by, at the same time, delving into their performance

comparison with respect to relevant compression algorithms from the literature. Our results

revealed that CS is a powerful tool for the compression of correlated signals (in time, space

or both) and that the joint sparsification along the temporal and spatial dimensions is

key to achieve good performance and improve upon distributed source coding schemes,

even when signals are highly correlated in space. In addition, a crucial role is played by

the spatial transformation (sparsification) basis, which has to be adapted to the specific

characteristics of the signal at hand. In this chapter, we did so via a covariogram-based

algorithm for the estimation of the signal covariance matrix and its refinement as time

evolves. Our quantitative results, obtained for synthetic and real signals, reveal that our

final covariogram based compressive sensing scheme performs satisfactorily across all values

of correlation, and is the algorithm of choice in terms of quality of reconstruction and energy

consumption at the sensor nodes.





Chapter 4

Body sensor networks – Online

Dictionary compression

4.1 Introduction

Internet of Things (IoT) technology enables objects to sense the physical environment and

to seamlessly integrate the gathered data into sophisticated Internet applications that allow

for substantial improvements of human activities at large. The focus of this chapter is on

human sensing [29] through wearable IoT devices, such as smart watches, chest straps or

wristbands, which can be used to help address the individual health and the fitness needs

of the users [30].

For instance, wearables can be utilized to gather and share information about the status

of outpatients, making it possible to collect, record and analyze new data streams faster

and more accurately. This allows for an improved access to healthcare, an increase of its

quality and ultimately, a reduction in its cost. Telehealth systems could deliver care to

people in remote locations and provide streams of accurate data for making better care

decisions (e.g., in terms of therapy adjustments or prompt interventions). In addition,

these systems are expected to have a big impact on the field of rehabilitation where, for

example, users may wear e-textile systems for remote, continuous monitoring of physiological

45
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and movement data [31]. Through IoT technology, a large number of physiological signals

can be monitored including oxygen saturation, blood pressure, heart rate, respiration rate,

glucose level [30, 32] and user activities such as walking, standing, sleeping, etc., can be

inferred [33]. A recent survey of wearable devices and their use is offered in [30], whereas

rehabilitation systems are discussed in [31].

We look at an IoT scenario for e-health, where wearables are utilized to collect physiological

signals, preprocess and transmit them over their wireless interface for their final storage

and manipulation via backend server infrastructures. Within this context, we are concerned

with the design of online signal compression algorithms, so that the gathered signals can be

effectively stored in the limited memory space of wearables and conveniently transmitted

over their radio interface. Ideally, we would like this software to adapt to the signals being

sampled. This means that, high resolution should be provided when the user is up to some

dynamic activity and wants to track that or when a critical behavior is detected. Toward

this end, we advocate the use of lossy compression as a means to reduce the space taken

by the collected biosignals and, at the same time, to save battery power through a reduced

transmission time. This amounts to compressing the physiological data directly at its source.

As for the physiological signals of interest, we consider one dimensional and quasi-periodic

biomedical signals as those provided by typical sensors in chest straps or wristbands, i.e.,

electrocardiography (ECG), photo-plethysmographic (PPG) and respiratory (RESP) sig-

nals. ECG is probably the most important among them for the diagnosis of heart mal-

functions and IoT technologies are expected to be very useful to assess cardiac conditions

within patient-monitoring applications. Commercial devices such as the BioHarness 3 from

Zephyr Technology Corporation [34] can be utilized to measure this type of signal. RESP

signals are also very relevant and can be obtained from chest straps [35] or rubber straps [36]

placed around the abdomen to, e.g., assess the status of outpatients affected by chronic res-

piratory failure and allow monitoring them from home. PPG is often available in low-cost

IoT devices for the consumer market (such as smart watches or wristbands designed for

fitness applications), see the Angel sensor wristband [37]. PPG can be used to estimate

heart-rate [38] and recent studies indicate that blood pressure can also be inferred [39].
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We believe that, despite the focus and hype on wearable technology, research on data

processing algorithms for wearable IoT devices is still in its infancy and most still has

to be done to take full advantage of this portable technology. In past research, a large

number of compression algorithms were proposed for ECG, but signal compression has

never been applied to RESP or PPG. Moreover, performance assessments were only carried

out for quality of compression and reconstruction, whereas the energy consumption aspect

has often been neglected. Instead, we stress that energy should be sparingly used by the

software running on wearables, as these devices are often battery operated and, in turn, their

energy consumption is a key consideration. Also, to the best of the authors’ knowledge, no

quantitative comparison among existing solutions can be found in the literature and, due

to this, it is unclear which algorithms are best suited for use in wearable devices.

In this chapter, we aim at filling these gaps. First, in Section 4.2 we present a general Idea

of Internet of Things. then, we state about wearable devices and their uses in Section 4.2.1.

After that, we talk about biosignals and types of the biosignals that we have considered

for compression in Section 4.3.1. Section 4.4 we present a taxonomy of popular signal

compression schemes from the literature, touching upon linear approximations [40, 41],

Fourier [42], Wavelet [43] transforms and novel compression techniques based on compressive

sensing [44, 45] and denoising autoencoders [46].

A novel compression architecture based on vector quantization and pattern recognition [47]

is proposed in Section 4.5, where a suitable codebook (or dictionary) is built and maintained

in an online fashion to efficiently represent data patterns. Compression is achieved as

codebook indices are sent to the decompressor in place of the original time series. Despite

its simplicity, this technique is found to be appealing due to its excellent performance in

the high compression regime.

To summarize, the main contributions of this chapter are:

• Idea of Internet of Things and wearable devices as one of its main branches.

• Classification of existing signal compression schemes that are amenable to implemen-

tation on wireless wearable IoT devices.
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• A simple but effective dictionary-based approach to the online compression of biosig-

nals, along with its validation.

4.2 Internet of Things

In the last decade there has been the diffusion of a very large number of emerging tech-

nologies that enabled the gathering of data through a variety of sensors, operating in many

different fields (e.g environmental, mobility-related, medical). The so collected data, as a

result, gave rise to the development of applications able to organize it, analyze it a finally

present it in a suitable way, thus allowing for substantial improvements in human activities

at large.

This concept grew in what is now called the Internet of Things (IoT) paradigm: the scenario

is that of a very large number of sensor devices with communication capabilities, connect-

ing both in an ad-hoc fashion or to a sink node, which collects data for further elaboration.

These sensor nodes would not have high capabilities in terms of computational power and

self-sustainability. This framework, according to the IoT vision, will be realized by enhanc-

ing everyday objects with a communication interface and then exploiting their ability to

sense and collect data.

Up to now, the development of the Internet of Things, has proceeded by proliferation of

islands, i.e. groups of devices able to communicate and exchange information that are, due

to multiple incompatibility issues, unable to communicate with devices of other IoT islands.

In [48], the authors examine this fundamental problem and suggest directions that are to

be taken in order to reach a real Internet of Things: enabling, not only the collection of the

sensed data in the physical world, but also the exchange and elaboration of it in the digital

domain.

This convergence should take start, again according to [48], from the design of a general

architecture, able to integrate existing efforts and current technologies and thus overcom-

ing the current fragmentation where “many INTRAnets of things cannot operate in an
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well-integrated INTERnet of Things”. Thus, it is not advisable to design from scratch a

communication architecture that would, probably, just increase the number of different and

non-interoperable communication architectures, but rather to provide a sort of middleware

that would let, already operating technologies, to be interoperable.

4.2.1 Wearable Devices

A category of devices whose presence has become prevasive in the very last years is that of

wearable devices: if we include in this class also smartphones, then it is clear that an immense

potential was unleashed as these devices, originally made for communication, nowadays ship

a large number of sensors. As noted in [3], the IoT paradigm has recently shifted from a

scenario in which sensors are integrated in the environment to one in which we, as humans,

carry ourselves the sensor devices and participate actively in the sensing process.

As stated in [3], it is observable that a conjunction in the spread of two technology ad-

vancements has boosted the development of applications for which the sensing process has

a personal and social character: the first technology involves the update of the commu-

nication network and the second the diffusion of inexpensive sensing devices. The rapid

improvements which the cellular network has undergone are in front of everyone and they

are paralleled by the update of the core network. The terminals too, namely the now-called

smartphones, besides powerful processors, carry, nowadays many sensing devices which tar-

gets different fields: imaging (cameras), position (GPS), movement (accelerometer and gy-

roscope) and geomagnetical field (magnetometer) among others. Also, through a number

of applications, e.g. Twitter, Facebook, Whatsapp, etc., it is possible to collect and share

massive amounts of data.

New small and lightweight wearable devices for the sensing of biomedical signals are also

appearing in the market, thus pushing the interest of reseachers and posing new challenges.

The first section of market to see a spread of adoption has been fitness: wristbands able to

communicate to the mobile phones (usually via Bluetooth) started to integrate accelerom-

eters that could give sufficiently accurate estimate of the number of steps walked, UV light
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sensors that can measure how much solar radiation one have been exposed to and, most

importantly, photodiodes able to generate a photoplethysmogram (PPG) signal. A possible

second section of market, which is, according to the author, the next one which will go

through rapid expansion, is that of biomedical devices for the monitoring of non critical pa-

tients such as elderly people or patients who have to undergo Holter exam: this, of course,

entails a shift in requirements from energy-economy to reliability.

4.2.2 Fitness

As already noticed, the fitness market was the first to see the appearence of products directly

involved in the measurements of biomedical quantities: most modern smartphones already

implemeted some of these functions but dedicated devices let people not owning cutting-

edge smartphones, to benefit of these technologies and to shape the device on the purpose.

Dedicated fitness devices could be thus improved by adding more sensors to collect more

quantities, and, most importantly, saving energy, given that they incorporate a separate

battery.

The proliferation of these devices was spurred by factors similar to those that made smart-

phones so widespread: first of all the integration of reliable sensors that have become quite

cheap and then the possibility to interface them with the internet, thus storing online, shar-

ing and analyzing the signals they collect. Among others, the possibilty to generate PPG

signals form photodiodes positioned on the wrist, as proven by some of the devices already

in the market, has impressed a faster pace to their diffusion. The PPG signals generated

this way led to the possibility of estimating an important parameter such as the Heart Rate

(HR): the main issue that wearable devices have to overcome is motion noise, which, under

intensive exercise could be very disrupting. This problem along with others, though not

completely solved, is already analyzed and studied in works such as [49] [50].

A minor group of more sophisticated and advanced devices such as the BioHarness form

Zephyr [51], are able to collect a proper ECG signal (single lead). These are devices that,
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even though available on the market, are targeted to professionals and athletes at high levels

and their cost confirms this assertion.

4.2.3 Medical

The hospital wards have different requirements from devices which retrieve biomedical sig-

nals, although some are shared with the fitness world. A lasting battery would be appre-

ciated also by this last category but precision and reliability are of foremost importance,

given that we are talking about unhealthy people. Thus the possible sources of errors should

be bounded or errors should be reported instantly in some way. In fact, in the Hospitals,

biomedical signals are gathered through machines that are often large, expensive and have

very high computational capabilities (and are, implicitly, not portable); these devices were

made with the purpose of being reliable and precise, given that they are mainly used in

scenarios such as Intensive Care Units. Another important factor, which could seem unim-

portant at a first sight, is cost: these devices should be accessible to as much institutions

as possible given that, in many Public Health Hospitals, their adoption will be directly

influenced by the costs.

This work is targeted to health devices with the vision that, in the coming years, assistance

to people affected by not serious patologies, could be automated through the use of portable

and inexpensive devices to let, for example, these people continue living at their houses;

another improvement could be done inside the Hospital wards where, very often, the staff

is undersized. The challenge is, thus, to develop the fitness devices, already available, and

to port them to a more technical level of application.

4.3 Signal Compression in wearable devices

This work is focused on temporal compression of biosignals, with the aim of allowing battery-

operated devices to save energy: it is known, indeed, that the most part of the energy

expenditure of a mobile device is given by its wireless communication interface [52]. This
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fact led, in the past, to a common pitfall: the concern to compress as much as possible,

very often obfuscated the fact that the processor too, when compressing, consumes energy;

there exists thus the possibility for this energy to be more than that required for sending

the data without any compression. A complete study of this possibility was accomplished in

[52], where a number of lossy compression techniques, spanning a large number of different

approaches, were tested in terms of compression capabilities and energy expenditure. The

reconstruction capability of the algorithms was taken out of the study by implementing all of

them in a way, that let the tolerance, i.e. the difference between original and reconstructed

sequence, to be set as a parameter common to all. The results show that there is actually a

threshold below which compression becomes inefficient, for it entails more energy than that

needed for uncompressed data forwarding. It is remarked that, although compression can

be lossless and lossy, this work only considers lossy techniques.

A group of appealing techniques are also advised in [52], as these techniques are beyond, or

near to, the efficiency treshold: among these there is the Discrete Cosine Transform (DCT),

for the transform based approach, and the Lightweight Temporal Compression (LTC), for

the linear approximation approach (they will be explained in detail later). For this reason,

these techniques are considered for comparison later in this work, even though in [52] a

very constrained hardware architecture was considered, such as the MSP430, which is far a

different choice from that made in this work.

4.3.1 Biomedical signals

Biomedical signals, or biosignals, are signals generated form the activity of the body during

its everyday functions; these signals, collected as voltages or currents through some types

of transducers, can have different nature: chemical, electrical, mechanical and magnetical

and can be instrumental to the diagnosis process. Among the most commonly analyzed

functions there are respiration, heart activity, brain activity and many others. A first

dicotomy that can be made involves the presence of some repetition: signals such as ECG,

PPG, Respiratory Signal and Arterial Blood Pressure (ABP) clearly present some sort of
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repeatability given by the cycling activity of the organs involved; other type of signals, on

the contrary, do not exhibit a high degree of repetition.

In this work only repetitive signals will be taken into consideration, for which the redundancy

can be removed thus achieving compression. The word repetitive was used, rather than

periodic, to highlight the fact that the repeatability occurs with some variations. We can

formally define such a signal, allowing some variation, both in time and amplitude, in the

definition of a periodic signal; so, a quasi-periodic signal can be mathematically defined as

x(t) = x(t+ T +∆T ) + ∆x, t ∈ R+, (4.1)

where ∆T and ∆x are random variables that in general, but not necessarily, satisfy ∆T <<

T and ∆x << (maxx−minx). Since we operate on discrete time signals, we can write

x(n) = x(n+ T +∆T ) + ∆x, ∆T,∆x ∈ R+, n ∈ N. (4.2)
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Figure 4.1: Basic structure of a typical QRS complex

4.3.2 Types of the considered biosignals

ECG The heart pumps blood through arteries and veins, permitting it to oxygenate organs

and to carry out carbon-dioxide; to this aim, it follows a cycle in which, it generates voltage

differences which activates its muscular structure and that are measurable through the skin

immediately above it. The myocardial activity of the heart is induced by a signal which
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structure has been deeply studied: it is formed by three groups of components and totally by

five components: these are the P-, Q-, R-, S- and T-wave, among which the Q-R-S complex

forms a special group. A typical P-QRS-T period of an ECG trace from a healthy person

is shown in Figure 4.1.

We note that the most high-frequency component is the so-called R peak : it is indeed this

peak that is used to keep track of the Heart Rate (HR); however all the other components

still convey important information about the health state of a person’s heart and are, thus,

to be preserved in their shape.

As already mentioned, there exists a large amount of literature on efficient methods for

locating the R peaks: among these the most widely used has certainly been the Pan-

Tompkins algorithm [53]. Using a sequence of passband filtering, squaring, integrating and

tresholding it proved to be a very effective procedure and it remained, until today, a very

robust R peak detector. Lately, some works made large and exhaustive reviews on QRS

complex detection algorithms, such as [54], while others already considered the scenario of

wearable devices and made device-oriented reviews [55].

Machines able to collect the ECG signal were, in the past, only present in Hospitals and

Healthcare structures, mainly in the form of Intensive Care Unit (ICU) bedside worksta-

tions. In the last decade a small number of new portable devices appeared in the market,

which are able to collect a single lead ECG track such as the already mentioned Bioharness

module [51].
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Figure 4.2: Sample traces for ECG and PPG
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PPG Photoplethysmography (PPG) is a simple but effective technique used to measure

volume changes in the microvascular bed of tissue: basically it works by measuring the

light reflected, or refracted, by the capillaries. The PPG waveform, as can be seen in

Figure 4.2b, comprises a pulsatile (AC) physiological waveform attributed to cardiac syn-

chronous changes in the blood volume with each heart beat, and is superimposed on a slowly

varying (DC) baseline with various lower frequency components. Photoplethysmography can

also be used to asses oxygen saturation (SpO2), blood pressure and cardiac output [56].

The pulse oximeter is a typical medical application of the photoplethysmography: it is

a device used to monitorate, at the same time, blood oxygenation and heart rate. It is

based on the physical principle according to which the colour of the blood depends on the

amount of saturated hemoglobin (HbO2). Saturated hemoglobin is red-coloured contrary to

desaturated hemoglobin, which is blue-coloured. Hemoglobin, indeed, changes its structural

configuration when it is involved in a chemical reaction; each configuration shows a different

behavior in reflecting and refracting light: so, two different wavelengths are used to detect

different saturation levels.

In recent years many fitness bands available on the market, started to integrate a photo-

plethysmograph able to collect PPG signals while positioned on the wrist: a LED paired

with a photodiode are used to measure blood volume changes and, subsequently, to extract

the Heart Rate (HR).

Other biosignals Other types of signals may include Arterial Blood Pressure (ABP) and

Respiration Signal (RS). ABP is measured through a cuff, once put on the upper part of the

arm and now also on the forearm, which once inflated, measures the pressure of the arteries

by the oscillometry method. Respiration, on the other hand, must be derived, through some

signal processing, from the previously described signals, namely ECG, PPG or both.
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4.4 Lossy Compression Schemes’ Classification

In the last few years, a great deal of work has been carried out on tools for the efficient

analysis of ECG and other biosignals [57]. PPG is being intensively investigated for the

estimation of the heart rate [38] and motion data is being used for activity detection [58].

Nevertheless, apart from ECG, little has been done regarding the compression of other

signals, such as PPG, RESP, etc. We first focus on ECG and then elaborate on the use of

compression for other signal types.

The two most important tasks to be accomplished in the ECG domain are 1) QRS complex

detection and 2) signal compression. As per QRS detection, it is crucial to split the ECG

time series into heart beat segments (one segment per beat) as this allows the fine-grained

assessment of inter-beat signal features, which are useful to detect certain pathologies. Note

that ECG can be efficiently split into beat segments as it is a quasi-periodic time series ex-

hibiting recurrent patterns. As per signal compression, we emphasize that wearable devices

are energy and memory constrained and, as such, minimizing the amount of data to store

and send is an important consideration. As an example, a typical sampling rate of 250 sam-

ples per second with 12 bits per sample (e.g., from a Zephyr’s BioHarness 3 device) leads to

32.4 Mbytes of data for a full day. As we shall see below, compression algorithms can easily

reduce this number by 60 times to about 573 kbytes, leading to much higher transmission

efficiencies. This is achieved through online dictionaries which take less than 10 kbytes, see

Section 5.3 of Chapter 5.

1) QRS complex detection has been extensively studied in the literature. Several meth-

ods were proposed to detect QRS complexes and to enhance their features. The importance

of QRS enhancement has been demonstrated to detect the QRS complex [59]. In partic-

ular, amplitude thresholding [60], first and second derivative methods [61], mathematical

morphology [62, 63], filter banks [64], and wavelet transform techniques [65] are among the

methods used for the enhancement of the QRS complex. The QRS detection is instead

usually performed with a combination of techniques such as thresholding [60, 62], neural
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networks [66], wavelet transform [67], matched filters [68]. These techniques are of foremost

importance as they split the ECG time series into segments (i.e., the data points between

subsequent heartbeats), which are then utilized for the subsequent estimation of the pulse,

and for the compression of the ECG trace.

2) Signal compression. As we mentioned, most of the literature in the field of compres-

sion for biomedical signals, is devoted to compression schemes to be applied to the ECG:

little was written for what concern other types of biosignals. The compression algorithms

for ECG signals that have been developed so far, can be subdivided into three main families:

• Time domain processing: within this class we have AZTEC [69], CORTES [70]

and Lightweight Temporal Compression (LTC) [40]. AZTEC and CORTES achieve

compression by discarding some of the signal samples and applying a linear approxi-

mation, whereas LTC approximates the original time series through piecewise linear

segments, where the two end points of a segment are sent in place of the points in

between. As we show in Section 5.3 of Chapter 5, in spite of its simplicity, LTC closely

matches the performance of Principal Component Analysis (PCA) [41, 71].

• Transform based coding: these exploit transformations such as Fast Fourier Trans-

form (FFT) [42], Discrete Cosine Transform (DCT) [72] and Discrete Wavelet Trans-

form (DWT) [43]. The rationale behind them is to represent the signal in a suitable

transform domain and select a number of transform coefficients to be sent in place of

the original samples. The amount of compression depends on the number of coeffi-

cients that are selected, the representation accuracy depends on how many and which

coefficients are retained. Although the schemes belonging to this class have good

compression capabilities, their computational complexity is often too high for wear-

able devices [73]. Lightweight implementations are possible and are considered in the

present chapter. However, simpler linear and dictionary based algorithms have better

performance in terms of reconstruction error as we show in Section 5.3 of Chapter 5.
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• Parametric techniques: these schemes use neural networks [74], vector quantiza-

tion [75], Compressed Sensing (CS) [44, 45, 76] and pattern matching [77]. Their

rationale is to process the temporal series to obtain some kind of knowledge and use

it to model the signal morphology. Recently, denoising autoencoders [46] have been

proposed as universal approximators of biosignal patterns and have been shown to

provide excellent compression performance and to have much smaller computational

costs than competing algorithms. This is a field with limited investigation up to now.

Also, these algorithms have promising capabilities for the extraction of signal features.

The new technique that will be presented in this work belongs to the last category: it

identifies recurrent patterns and builds a codebook (or dictionary) based on the most

representative among them. Unlike previous solutions, our algorithm is not tailored

to a specific type of biomedical signal, and can be applied to any quasi-periodic time

series.

Despite these developments, we recall that no systematic comparison was carried out in

the existing literature and, more than that, the proposed algorithms were not evaluated in

terms of their energy expenditure. This is of course very important for wearables, which are

battery operated and thus call for algorithms that are at the same time extremely effective

and computationally cheap.

In addition, besides ECG, recent advances in technology for wearable devices have made it

possible to efficiently collect and analyze other signals such as PPG, motion and respiration

through body worn sensor technologies [78]. The PPG signal can be a powerful diagnostic

tool due to simple, portable, and low-cost technology available for its fast, easy, and reliable

acquisition and can be non-intrusively measured using wristbands or smart-watches. An

increasing number of works in the literature deal with the extraction of physiological pa-

rameters from the PPG signal such as heart rate, blood pressure, blood oxigen saturation,

and respiration [39, 79, 80]. Nevertheless, to the best of our knowledge no algorithms have

been proposed so far for the compression of these signals. Note that with future application

developments, besides the calculation of selected features or health indicators right on the



Chapter 4. Body sensor networks: Online Dictionary compression

mobile devices, users or doctors may want to fully monitor the vitals, which could be sent

to smartphones or control centers for further elaboration so as to provide a fine-grained

assessment of the patient’s condition, e.g., to assess the evolution or occurrence of a cer-

tain pathology. In this case, compressed but accurate representations of vital signals from

heterogeneous sensor technology are expected to be very useful.

4.4.1 Fundamentals

The framework at the core of the proposed algorithm originates from two fundamental

techniques which have already proven their effectiveness and whose capabilities has been

exploited in various fields: Motifs extraction and Vector Quantization.

4.4.2 The concept of Motif

The concept of Motif originated from the field of time series data mining and pattern

recognition to which the group of Keogh [81][82] contributed in a substatial way. The

term (having as synonyms expressions such as recurrent pattern or primitive shapes) was

taken from computational biology and aims at defining subportions of a signal which can

be of variable dimension and appear with a certain degree of frequency (which, however, is

expected to be high). In this section the basic concepts are given, which are necessary to

understand what comes next.

The problem of efficiently finding a given pattern in a database was, in last decades, studied

and analyzed to a great extent and can be considered, since long ago, a solved one. On

the contrary, identifying the most recurrent patterns and their occurences in a given signal

was not studied such deeply. A formal and complete definition of the problem is effectively

given in [81], where an algorithm to discover the Motifs is proposed. The framework in [81]

and it focuses, as we need, on time sequences. Given a time series of length N :

X = {x1, x2, ..., xn, ..., xN}, (4.3)
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a subsequence, of length M (M < N , but usually M << N), of the given sequence is

defined as

x = {xm, xm+1, ..., xm+M−1}, ∀m ≤ N −M + 1. (4.4)

It is now clear that we are looking for those subsequences which occur with the highest

frequency. To define the occurrence we account for a small difference among sebsequences,

that is we define a function to formally express dissimilarity, D(xi,xj) according to which

we have a match if the so defined distance does not exceed a treshold ε:

D(xi,xj) ≤ ε⇒ xi match xj (4.5)

It si worth noting that this kind of match is a relation which enjoys the symmetric and

reflexive properties, but not the transitive property.

Now, to discover the most frequent patterns, the authors of [81] define the 1-Motif, x1, to be

the pattern with the highest count of matches; the general K-Motif, ∀K > 1 is the pattern

with the highest number of matches that also satisfy the relation D(xi,xK) > 2ε, 1 <

i < K − 1: this condition is needed in order to correctly assign a match to a single Motif.

Therefore the authors proceed to illustrate a brute-force algorithm to find the 1-Motif.

4.4.3 Vector Quantization

The theory of Vector Quantization (VQ) can be found in the milestone by Gersho and Gray

[83]. The theory comes from a generalization of scalar quantization to vectors, i.e. ordered

sets of scalars. For what concern VQ, vectors can be formed by any sequence of samples of

the signal, which can be, among others, a speech signal, a temperature dataset, an image

or even a sequence of images, i.e. a video. First of all, we give some basic definitions

upon which we will build the entire algorithm; we define a Vector Quantizer, Q, to be a

mapping from the k-dimensional Euclidean space R
k to a finite set C containing N vectors

(codevectors or codewords) of length k:

Q : Rk → C. (4.6)
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The finite set C, also called codebook or dictionary, contains vectors who also live in the

Euclidean space R
k and can be formally defined as

C = {c1, c2, ..., cN}, ci ∈ R
k ∀i ∈ {1, 2, ..., N}. (4.7)

The codebook should be designed to be representative of the entire signal, i.e. the space

where vectors live in (formally a subspace of Rk), but it is used through the partition it

induces on this space.
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Figure 4.3: Encoder-Decoder structure of a Vector Quantizer

It could be more helpful to see the Vector Quantizer as a complete procedure including

encoding and decoding. As shown in Fig. 4.3, the encoder, as already explained, associates

to every input vector a codebook index, i; the decoder, on the other hand, uses this codebook

index to retrieve the corresponding codeword which represents the input vector, x̂ = Q(x).

The quantization error can thus be quantified through the distance between the input vector

at time t, xt, and the assigned codeword ci?: i.e. D(xt, ci?), t ∈ R+, where ci? = Q(xt).

4.4.4 The time-invariant codebook

Having defined how a vector quantizer operates on input signals or, more correctly, on input

vectors, it is time to describe how an efficient codebook can be built. The idea is to obtain a

good representation of the input vectors using the smallest number possible of entries in the

codebook. Such an optimization is obtained though a partition of the space where vectors

live in, i.e. a set of N regions such that

⋃

i

Ri = R
k, Ri ∩Rj = ∅. (4.8)
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For each region a vector, or codeword, is chosen as representative for all the input vectors

falling inside this region: this entails that, on the decoder side, this vector will be used

instead of the input one. It is important to note, with reference to the encoder-decoder

structure, that the partition of the space, the codebook, should be shared between the

encoder and the decoder, i.e. it must be the same.

We recall, for future use, the definition of convex set : a convex set is a set in which, the points

of any segment connecting any pair of points belong to the set too; thus a codebook formed

by convex regions is said to be regular otherwise it is said to be nonregular. A subset of the

regular quantizers, of particular interest, is constituted by the polytopal quantizers, where

the regions, not only are convex subsets, but also polytopes. To quickly recall the polytope

concept we highlight that polytopes are subsets of a space delimited by (k− 1)-dimensional

segments of hyper-planes.

Codebook

Nearest Neighbor VQ

Encoder

x I

C

Figure 4.4: Structure of a Nearest Neighbor Vector Quantizer Encoder

The codebook construction will change if it is going to preserve a maximum error between

input vectors and corresponding codewords or, else, if the requirement is for a maximum

allowed number of codewords. The most common type of codebook design is the so-called

nearest neighbor VQ or Voronoi VQ ; in fact, very often, these types of VQs are simply

referred to as the VQs. A Nearest Neighbor quantizer is formally defined as a VQ in which

the cells are given by

Ri = { x : d(x,yi) ≤ d(x,yj) ∀j ∈ I }, (4.9)

where I is the set of indices labeling the cells. A simple adjustment permits to obtain

the necessary mathematical correctness: when a vector lies exactly on a boundary between

two cells, the one with the smallest index is chosen. In the Nearest Neighbor VQ any



Chapter 4. Body sensor networks: Online Dictionary compression

computationally feasible distance measure d(·) con be used: anyway, the most used are the

k−space usual norms such as L2, L1 or the L∞-norm.

The structure of such a VQ relies completely on a codebook: in defining this codebook we

can get rid of the regions and only store the codewords, given that we only need to compute

a distance between them and the input vector: its structure can then be depicted as in

Figure 4.4.
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Figure 4.5: Partition given by a Nearest Neighbor VQ

If the Euclidean, or L2, norm is used we can see that that the regions defined by a fixed

set of codevectors are polytopes; in fact, we can rewrite the regions as an intersection of

hyperplanes as

Ri =
⋂

j,j 6=i

Hij , (4.10)

and the hyperplanes Hij are, in this case:

Hij = { x : ‖(x− yi)‖2 ≤ ‖(x− yj)‖2 }. (4.11)

An insight of how the parition is built is given by Figure 4.5, where the 2-dimensional

case with 5 codevectors is repesented, and it is clear that a complete Voronoi diagram is

generated.
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4.4.5 RAZOR: Uniting Motifs and VQ

The work in [84][85], already exploits the two previous explained techniques, namely, Motifs

extraction and Vector Quantization, to build an algorithm able to extract most frequent

patterns, classify them and use this classification for compression in a Wireless Sensor Net-

work (WSN): the approach has proven to be both lightweight in computational complexity

and accurate in reconstruction.

The algorithm takes advantage of two important tools of VQ, namely Shape-Gain VQ and

Mean-Removed VQ. These useful operations permit to obatin a normalized version of the

input vectors, thus retaining only the important features. The two needed parameters, gen-

erally called Offset(O) and Gain(G), are obtained from the input vector x = [x1, x2, ..., xk, ],

through

O =

∑k
i=1 xi
k

, G =

√∑k
i=1 x

2
i

k
, (4.12)

an thus the normalized version, x̄, of the vector x is given by

x̄ =
x−O

G
. (4.13)

The vectors resulting from this normalizaton have thus zero mean and unit gain.

The algorithm specifies also the codebook build-up procedure, to be run on an initial portion,

called training set, of the signal to be compressed: these initial samples are used to capture

the behavior of the signal and then to construct a codebook optimized for that signal.

The resulting algorithm, called RAZOR, has two main parts: a first, in which the Motifs

that will make up the codebook are selected, and a second one, in which, after the codebook

has been shared with all the nodes, compression takes place.

Motif extraction First, a distance metric , d(·), is selected as in standard VQ, second

a treshold dth, on the distance, is set and finally a maximum allowed size of the codebook,

Ktarget, is also set. From the training set sequence, of MS samples, segments of fixed size k
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are selected in this way:

S(i) = [Si, Si+1, ..., Si+k−1], ∀i = 1, 2, ...,MS − k + 1, (4.14)

and the normalized version of each one is obtained, S̄(i), as described earlier. A matrix,

DM , is then computed, of which the generic element DMij is the distance, according to

the selected distance measure, between the i-th and the j-th normalized segment:

DMij = d(S̄(i), S̄(j)). (4.15)

Algorithm 1 Codebook build-up procedure

1: procedure RAZOR Motifs extraction
2: for all m,n do
3: MMmn ← I(DMmn < dth)

4: i← 1
5: while DM 6= ∅ and k ≤ Ktarget do
6: for all m do
7: MCm ←

∑
nMMmn

8: i← argmaxm(MCm)
9: X(k)← S̄(i)

10: Delete the l-th rows and columns in DM and MM for which MMil = 1
11: k ← k + 1

12: K ← k

The Algorithm 1 is then applied, from which we obtain the codebook, X(k), k = 1, 2, ...,K,

but also its size, that could be smaller than the limit Ktarget: this procedure is to be done

on a high end machine, such as a sink operating in a WSN.

Encoding process After the codebook is determined, it is then shared among all the

nodes before the proper encoding process, which is illustrated in Algorithm 2. The procedure

simply takes as input vectors constituted by k signal samples and find which, among all the

codebook entries, has the minimum distance from the current one, according to the selected

dissimilarity measure.

Application of the algorithm proposed, as it is, has failed revealing what were the peculiar-

ities and thus the needs of biomedical signals: the length of the pseudo-period does not let



Chapter 4. Body sensor networks: Online Dictionary compression

Algorithm 2 VQ Compression

1: procedure RAZOR Compression
2: dmin ←∞
3: for all X(k) ∈ CB do
4: XR(k)← X(k)G+O
5: if d(S(i), XR(k)) < dmin then
6: X̂(i) = XR(k)
7: dmin = d(S(i), XR(k))

8: Return k

the procedure to build a dictionary (which has fixed size) able to be representative for the

entire signal. In fact, the first part of the algorithm could, and should, be skipped given

that we already know the recurrent patterns: at least where they begin and where they end.

4.5 Online Dictionary (OD) for biomedical signals

In this section, we propose a dictionary based compression algorithm based on the concept

of motif extraction [86] and pattern recognition. Its building blocks are shown in Fig. 4.6

and explained in what follows. Although the scheme is simple (it consists of a single pass

vector quantization without codeword reclustering) it provides excellent performance in the

high compression regime and its analysis sheds some light on the desirable properties that a

compression scheme should have, allowing the assessment of the pitfalls of offline dictionary

based schemes and the identification of future research directions, as we discuss in next

chapter.

The algorithm belongs to the inter-segment correlation class and can be applied to the

biomedical signals exhibiting recurrent patterns such as ECG, photo-plethysmographic traces

(PPG), arterial blood pressure (ABP), respiratory signals (RESP), etc. The idea is that

recurrent patterns can be efficiently identified and used to construct, at runtime, a codebook

(also referred to as dictionary). This codebook is built and maintained by the compressor

at the transmitter side and has to be synchronized with that at the decompressor at the

receiver. The compression of biosignals is achieved by sending, for each input pattern, the

corresponding index in the codebook, in place of the original data points. We achieved
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this through several processing functions, as shown in Fig. 4.6, namely: 1) a passband filter,

2) a peak detector, 3) a segment extractor, 4) pattern matching and 5) a codebook manager.

1) Passband filtering: as a first step, we use a passband filter to remove artifacts such

as high frequency noise and the DC component. For ECG, this filter operates in the band

[8, 20] Hz, although these can be changed to best suit other signal types. Here, we imple-

mented the third-order Butterworth filter of [87].

2) Peak detection: with this algorithm we detect the position of the main peaks in the

time series. For ECG, these correspond to the heart beats. To this end, we have adopted the

technique of [88], which has been conceived for ECG signals but can be easily modified to

effectively work with PPG or respiratory traces. This technique is self-tuning and optimizes

itself based on the input data sampling rate. We considered this scheme as it is fast and

lightweight and thus suitable for use in wearable and energy constrained devices.

3) Segment extractor: once the peaks are detected, we consider the data samples be-

tween subsequent peaks. These constitute the input segments for our compressor algorithm.

Note that, unlike the common practice of positioning the segments so that the peaks (heart

beats) are in their center, we define a segment as the data points between subsequent peaks.

Hence, all segments are normalized according to a predefined length of W samples, which

is the same size of the codewords in the dictionary. This is accomplished by re-stretching

the segment length to W samples through interpolation (this block is referred to as “period

normalization” in Fig. 4.6). While in principle any interpolation technique can be used, such

as quadratic or spline based, in our implementation we utilized a simple linear technique

as we found it sufficiently accurate while also being computationally inexpensive. Working

with such segments allows using machine learning algorithms for the construction of the

codebook, as we detail shortly.



Chapter 4. Body sensor networks: Online Dictionary compression

segment 
length

gain and
offset

peak 
detection

segment
extractor

period
normalization

physiological
signal

filtering

preprocessing
chain

Y

index
codeword

found

add codeword 
to codebook

create new 
codeword

new 
codeword

+ index

codebook manager

N

pattern
matching

calculate
G/O

Figure 4.6: Online codebook-based compression scheme.

4) Pattern matching: this block takes the current input segment and checks whether this

matches one of the codewords in the codebook (dictionary), which is built and maintained

at runtime as we explain in point 5) below. Several matching criteria are possible. One of

such criteria may be Dynamic Time Warping (DTW) [89], which has been extensively and

successfully used in the literature to compare patterns of different length and can also be

implemented in linear time [90]. However, we experimented with the DTW metric and we

found it inadequate for ECG signals – the main problem is that this metric is by construc-

tion unable to preserve the position of the inner peaks in the compressed representations.

Thus, in this work we resized each segment to a common length, as explained above, and

checked for the best matching codeword using a suitable distance function, as we explain

next.

5) Codebook manager: this block has a key role in the proposed online compression

scheme. It is loosely based on vector quantization [91] and has two main functions: 1)
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to maintain a consistent and representative codebook (dictionary) and 2) to encode input

patterns into the corresponding indices from the codebook. Let zt be the segment provided

by the segment extraction block at the generic time t = 0, 1, 2, . . . (discrete time is assumed,

corresponding to the arrival of a new segment). With Ct = {c1, . . . , cN} we indicate the

codebook at time t, where ci, i = 1, . . . , N , are the codewords therein. Segment zt is

remapped into a new segment xt of length W samples as described above, where size(ci) =

size(xt) = W , for i = 1, . . . , N . The new segment xt is obtained using linear resampling

and removing offset ot and gain gt from zt (see equations (5)–(7) of [86]). Thus, a suitable

distance function d(xt, ci) is evaluated for all codewords ci in the codebook and the one

with the minimum distance, with index i?, is picked. Now, if d(xt, ci?) ≤ ε, codeword ci?

is deemed a good representative for the current segment zt, otherwise xt is added to the

codebook as a new codeword, where with i? we mean the associated index. ε is a tunable

parameter that we use to control the signal reconstruction fidelity at the decompressor.

Finally, the index i? is sent in place of the full segment, along with ot, gt and the original

segment length, `t. The whole process is detailed in Fig. 4.6 (codebook manager block):

if a match for zt is found in the codebook (i.e., a codeword providing a sufficiently good

accuracy, according to ε), then the corresponding index is sent over the transmission channel,

along with the original segment length, its offset and gain parameters. These quantities

correspond to the compressed bitstream, which is used at the decompressor to approximate

the original time series by reversing each operation. Specifically, the decompressor applies

three transforms to codeword i? from the codebook: renormalization with respect to offset

ot and gain gt and resampling according to the actual segment length `t. Otherwise, if

no match is found for zt at the compressor, this segment is added to the codebook as a

new codeword and its normalized version (W samples) and the corresponding index are

transmitted to the decoder so that the dictionary at the sender and that at the receiver

remain synchronized at all times.

We remark that several distance functions can be used in the codebook manager, the L∞-

norm has been considered for the results in this chapter as it performed satisfactorily across

a large range of signals.
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According to our numerical results, as we show in Section 5.3 of Chapter 5, the number of

codewords in the dictionary increases with decreasing ε but it tends to converge as time

goes on. So the accuracy parameter ε also directly affects the dictionary size and, in turn,

the memory requirements of the proposed algorithm. In case the codebook shall grow

larger than the allowed memory space, the removal of codewords from the codebook can be

implemented based on last used timestamps.



Chapter 5

Body sensor networks – a

taxonomy of existing approaches

and performance comparison

against the Online Dictionary

compression scheme

5.1 Introduction

In this chapter, we aim at continuing discussion of the previous chapter on biomedical sig-

nal compression. In the previous chapter, we have described the biosignal Compression in

wearable devices and prposed a slightly new dictionary based method for an efficient com-

pression. It is a novel compression architecture based on vector quantization and pattern

recognition [47], where a suitable codebook (or dictionary) is built and maintained in an

online fashion to efficiently represent data patterns. Compression is achieved as codebook

71
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indices are sent to the decompressor in place of the original time series. Despite its sim-

plicity, this technique is found to be appealing due to its excellent performance in the high

compression regime.

Here we present the other selected algorithms from the literature which are detailed in

Section 5.2 and a comparative performance evaluation of all the considered compression

approaches is carried out in Section 5.3, where we quantify their compression efficiency,

signal reconstruction fidelity and, most importantly, their energy consumption. Also, we

estimate the energy savings due to the adoption of the discussed compression technology

for continuous monitoring applications, which entail a longer battery life. Finally, our

conclusions are presented in Section 5.4, along with a discussion of open research issues.

To summarize, the main contributions of this chapter are:

• A taxonomy of existing signal compression schemes that are amenable to implemen-

tation on wireless wearable IoT devices.

• A detailed performance evaluation of the considered compression schemes in terms of

reconstruction error, energy consumption (isolating the energy required for compres-

sion and transmission) and compression efficiency when applied to ECG, RESP and

PPG signals.

• A discussion of open areas for improvement and new research avenues.

5.2 Signal Compression Algorithms

In Chapter 4, we have presented a novel technique based on the online construction of

a dictionary to represent input patterns. Here, we continue our discussion by detailing

the selected signal compression algorithms for quasi-periodic biosignals from the literature.

The compression methods that we describe below are based on differing paradigms. In fact,

some use the degree of similarity (correlation) across subsequent patterns (referred to here as

segments), whereas others consider the correlation within the same segment. We refer to the
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Figure 5.1: Diagram of the GSVQ compression technique.

former approach to as “inter-segment correlation” based compression, whereas for the latter

we use the term “intra-segment correlation”. The algorithms belonging to the inter-segment

class are: online dictionary (which has been presented in the previous chapter), vector

quantization and autoencoders, whereas algorithms based on principal component analysis,

LTC, discrete cosine and wavelet transforms exploit intra-segment correlation properties.

Two implementations of compressive sensing are considered, covering both classes.

5.2.1 Gain-Shape Vector Quantization (GSVQ)

In this section we review the Gain-Shape Vector Quantization (GSVQ) method of [75]. The

rationale behind this algorithm is to exploit the information redundancy among adjacent

heartbeats by segmenting the ECG signal into segments and normalizing the period to a

fixed length and amplitude. The normalized heartbeats are then used to build a dictionary

having a fixed number of codewordsK, through the Linde-Buzo-Gray algorithm [92]. While

the general compression principle (i.e., inter-segment correlation) is similar to that in our

online dictionary based scheme, GSVQ builds the codebook through an offline training

phase.

Once the dictionary is obtained, the method associates each normalized heartbeat with the

closest codeword, and sends the codeword index in place of the original time series. The
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algorithm also encodes the offset, the gain, and the length of the original segment, see

Fig. 5.1. As a last step, the encoder calculates the residual, i.e., the difference between

the current heartbeat (i.e., ECG segment) and the selected codeword, and uses the AREA

algorithm [93], an adaptive sampling scheme for one dimensional signals, which obtains

additional information to increase the quality of reconstruction. The principle behind the

residual encoding phase is to encode and send a small number of significant points so as to

bound the reconstruction error.

The decoder, upon receiving an encoded packet, retrieves the corresponding codeword from

its local copy of the dictionary, performs a denormalization using the gain, the offset, and

the length, and adds the residual stream to the reconstructed signal, see Fig. 5.1. As we

shall see below, GSVQ performance predominantly depends on its residual encoding phase.

The threshold used for residual encoding is in fact the main responsible for the amount of

data to be transmitted, affecting the performance in terms of compression, reconstruction

error, and energy efficiency.

5.2.2 Principal Component Analysis (PCA)

The goal of Principal Component Analysis (PCA) [41] is to shrink the information provided

by a large set of correlated variables into a set of principal components with lower dimen-

sionality. Each principal component is computed as a linear combination (linear transform)

of the original variables, and the combination weights are chosen so that the components

are mutually uncorrelated. This technique has been successfully applied in a multitude of

applications, including ECG signal compression [71].

Before applying PCA, the biomedical signal goes through the preprocessing chain of Fig. 4.6,

i.e., filtering, peak detection and segment extraction, where at time t = 0, 1, 2, . . . the last

block normalizes each input segment zt to a common length of W samples. The new

segment is then stored into a vector xt ∈ R
W and is fed to the PCA encoder. Specifically,

let µx = E[xt] and Rx = E[x̃tx̃
T
t ] respectively be the mean of xt and its covariance

matrix, with x̃t = xt − µx. PCA amounts to apply an orthonormal linear transformation
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Ψ = [ψ1, . . . ,ψW ] to x̃t, so that the elements w1, . . . , wW of the principal component vector

w = ΨT x̃t = ΨT (xt − µx) are mutually uncorrelated. It can be shown that the i-th

principal component is obtained as wi = ψix̃t, where ψi is the eigenvector corresponding to

the i-th largest eigenvalue of Rx, for i = 1, . . . ,W . The set of eigenvectors corresponding to

the W principal components is obtained solving RxΨ = Ψλ for Ψ, where λ is a diagonal

matrix containing the eigenvalues λ1, . . . , λW , placed in decreasing order. As the theoretical

covariance matrix Rx is difficult to compute, a matrix X ∈ R
W×m is built by stacking

m successive ECG segments: their sample mean µ̂x and their sample covariance matrix

R̂x = (XXT )/m ∈ R
W×W respectively replace µx and Rx for the calculation of the

eigenvectors.

According to the above discussion, we can write xt = µx +Ψw and, if the signal is suf-

ficiently correlated, only a fraction of the weights in w suffices to accurately describe the

input vector xt. Compression is thus achieved by applying the PCA transform and sending

the desired number h of principal components, i.e., the first h weights in w, with h ≤ W .

In Section 5.2.3, we follow a similar rationale by using a particular neural network instance

called autoencoder, which practically acts as a non-linear PCA [94].

5.2.3 Autoencoders (AE)

An autoencoder [95] is a neural network where input and output layers have the same

dimension W , whereas the deepest hidden layer has a smaller dimension h, with h < W ,

as we show in Fig. 5.2. With w
(1)
ij (w

(2)
ij ) we indicate the autoencoder weights from neuron

i to neuron j of the input (output) layer. Here, autoencoders are used as a non-linear

dimensionality reduction technique to compactly represent the information in the original

segments (of size W ) into a much smaller space (ideally h�W neurons).

The training of this neural network is accomplished through an unsupervised learning al-

gorithm that uses a number of training examples x ∈ R
W that are placed at the input of

the autoencoder. Specifically, backpropagation is executed by setting the output y = x so

that the neural network weights w
(1)
ij , w

(2)
ij are adjusted for the autoencoder to behave as
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Figure 5.2: Graphical representation of an autoencoder: input and output layers have
the same dimension W , whereas the compression layer has h = 2 neurons. g(·) : R→ R is

assumed to be the logistic activation function g(z) = (1 + exp(−z))−1.

an identity function. In this work, we consider the approach of [46] where the authors use

denoising autoencoders [96] to approximate the input biomedical patterns.

Once the autoencoder is trained to represent the input data, weights w
(1)
ij fully specify the

compressor (encoder), whereas w
(2)
ij specify the decompressor (decoder), see Fig. 5.2. Signal

compression is achieved by applying the preprocessing chain of Fig. 4.6, i.e., filtering, peak

detection and segment extraction. Note that the last block also normalizes each segment to

a common length of W samples. Each of such segments is inputted to the encoder section of

the autoencoder, which returns the h values associated with the neurons in the compression

layer. These h values correspond to the compressed representation of the current segment

and are sent to the decompressor along with the original segment length. Finally, the

decompressor at the receiver uses the values of these h inner neurons, along with weights

w
(2)
ij , to obtain the reconstructed W -sample vector y through the decoder of Fig. 5.2. Vector

y is thus resized to the original segment length. We remark that AE also belongs to the

inter-segment correlation class of algorithms as it exploits the fact that patterns across

different segments have a quasi-periodic behavior.
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5.2.4 Compressive Sensing (CS)

Compressive sensing (CS) is a recently proposed theory [97][98] to efficiently acquire and

reconstruct a signal, by solving ill-posed linear systems of equations. This technique is

based upon the premise that the signal of interest is sparse in some transform domain. This

means that, the original signal can be represented in a domain where only a few transform

coefficients are required for its full description. To be more specific, let x ∈ R
W be an W -

sized vector and assume that this vector can be represented in a K-sparse domain through

the sparse vector s, where only K �W elements of s are non-zero, i.e., vector s is K-sparse

in this domain. If we refer to the sparsification basis as Ψ ∈ R
W×W , we have that x = Ψs.

Now, let Φ ∈ R
m×W be a sampling matrix. Note that, using this matrix to sense the full

signal x, we have y = Φx + n, where n ∈ R
m represents the measurement noise, y ∈ R

m

and m < W , which means that x is being subsampled.

CS tools allow the recovery of x from its subsampled version y, where: y = Φx + n =

ΦΨs+ n. This is achieved solving for s the following equation:

min ‖s‖1 s.t. ‖y −ΦΨs‖2 ≤ ε , (5.1)

where ε represents a bound on the measurement noise. Numerically, a high number of

techniques are available to solve (5.1); among them we cite `1-magic [18] subspace pur-

suit [19] and NESTA [20]. In this work, we consider two recent ECG compression frame-

works from [44] and [76], which are based on CS. At the encoder, they exploit a standard

CS matrix multiplication (sampling and sparsification), whereas at the decompressor the

former exploits a technique called Simultaneous Orthogonal Matching Pursuit (SOMP) [44],

whereas the latter uses Block Sparse Bayesian Learning (BSBL) [99]. The algorithms are

discussed next.
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5.2.4.1 Simultaneous Orthogonal Matching Pursuit (SOMP-CS)

this techniques first splits the ECG signal into a number of segments and then applies stan-

dard CS-sampling to R consecutive segments at a time. Recovery is based on Orthogonal

Matching Pursuit.

SOMP-CS encoder:

• Peak detection: similarly to codebook-based schemes, a peak detection method is

applied to the input signal to decompose it into segments xt, t = 0, 1, 2, . . . .

• Period normalization: each segment xt is normalized to a common length (W

samples) using cubic-spline interpolation.

• Sampling: each R consecutive ECG segments are stored into a W × R matrix X.

A CS sampled matrix Y is then obtained as Y = ΦX, where Φ ∈ R
m×W is a suit-

able sampling matrix, with m � W . As assumed in [44], for matrix Φ we use a

dense Gaussian matrix (each element is independently sampled from a Gaussian pdf

with zero mean and variance 1/m, i.e., N (0, 1/m)). Y and the corresponding origi-

nal lengths are quantized and sent to the decoder. Note that this implementation of

CS belongs to both the inter- and the intra-segment class as matrix Y spans across

different adjoining segments.

Note that the CS encoder is extremely lightweight as it just implies the multiplication of

the input time series by the sampling matrix Φ. The most computation intensive tasks are

period normalization and peak detection, which are needed in all segment-based approaches.

Under the assumption that the source data X can be rewritten as: X = ΨS, where the

matrix S ∈ R
W×R is sparse and the sparsification transform Ψ is the Daubechies wavelet

db4 [100], the original dataX can be retrieved solving problem (5.1) using Simultaneous Or-

thogonal Matching Pursuit. In our implementation, we have exploited the method in [101]
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and the Matlab Uvi Wave tool [102] to represent the wavelet transform into an equivalent

matrix form.

SOMP-CS decoder:

• Simultaneous Orthogonal Matching Pursuit: each segment is recovered from Y

using the modified Simultaneous Orthogonal Matching Pursuit (with partially known

support) of [103], which exploits the structure of the wavelet coefficients (through the

knowledge of the support). This method solves for S the ill-posed system Y = ΦΨS.

Upon recovering S, the original data is approximated through X̂ = ΨS.

• Period Recovery: the reconstructed segments are re-interpolated to their original

lengths.

Note that SOMP-CS considers a number R of subsequent segments (R = 6 in our imple-

mentation) and, in turn, also accounts for the “inter-segment” correlation structure of the

ECG signal.

5.2.4.2 Block Sparse Bayesian Learning (BSBL)

BSBL exploits the fact that the ECG signal x is already sparse in the temporal domain,

being composed of peaks spaced apart by an almost-flat signal. Hence, the input ECG

signal is written as y = Φx + n, where y ∈ R
m is the compressed vector, Φ ∈ R

m×W

is a suitable sampling matrix (m � W ), x ∈ R
W is a sparse vector and n ∈ R

m is the

noise vector. Generally, vector x has additional structure and can be further represented

as a concatenation of a certain number g of blocks xi, possibly having different length di

so that x = (x1,x2, . . . ,xg)
T . Each block xi ∈ R

di , i = 1, . . . , g, is assumed to satisfy

a parametrized multivariate Gaussian distribution p(xi, γi,Bi) ∼ N (0, γiBi) with the un-

known parameters γi and Bi. γi ≥ 0 controls the block-sparsity of xi and when γi = 0 the
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i-th block becomes the all zero vector. MatrixBi ∈ R
di×di is a positive definite matrix which

captures the correlation structure within the i-th block. Assuming that the sub-blocks xi are

uncorrelated the prior of x is p(x, {γi,Bi}) ∼ N (0,Σ0), where Σ0 = diag{γ1B1, . . . , γgBg}.

For the noise, it is assumed that p(n, λ) ∼ N (0, λI), where λ ∈ R
+ and I ∈ R

m×m is the

identity matrix. The posterior of x (given the measured vector y) is thus obtained as

p(x|y; {γi,Bi}gi=1) ∼ N (µx,Σx) (5.2)

where µx and Σx can be readily derived from λ, Σ0 and Φ. Finally, the Maximum-A-

Posteriori (MAP) estimate of x, denoted by x̂, is given by [99]:

x̂ = Σ0(Φ)T
[
λI +ΦΣ0(Φ)T

]−1
. (5.3)

Thus, the problem boils down to the estimation of the parameters λ and {γi,Bi}gi=1. This

is achieved using a Type II maximum likelihood procedure. Moreover, different techniques

have been developed according to whether the block partition is known or not [99].

BSBL encoder: the ECG signal is split into a number of segments x, each of which consists

of W samples, where W is a tunable parameter not necessarily representing the number of

samples in a segment. What the encoder does is to compute y = Φx, which only entails a

matrix multiplication. In our results, Φ is the 0/1 matrix that was used in [76, 104].

We remark that the encoder is extremely lightweight as it does not have to split the ECG

trace into segments, so peak detection and period normalization are not executed.

BSBL decoder: the decoder operates according to the above Bayesian estimation / max-

imum likelihood approach, see Eq. (5.3). Typical values for m and W are m = 256 and

W = 512 [76] and, in turn, the maximum compression efficiency is given by W/m = 2 (in

Section 5.3, we experiment with different (m,W ) pairs).
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We observe that BSBL accounts for the intra-block correlation without considering the

correlation structure among subsequent ECG segments. We thus classify BSBL as an “intra-

segment” compression scheme. For SOMP-CS, we have written our own encoder/decoder

pair, whereas for BSBL-CS we used the code provided by the authors of [76]. The numerical

results are discussed in Section 5.3.

5.2.5 Discrere Cosine Transform (DCT)

In the signal compression field, Discrete Cosine Transform (DCT) is often preferred to the

Fourier Transform due to its superior energy compaction capabilities and the fact that it

entails the use of real coefficients. Several ECG compression methods exploiting DCT have

been proposed in the literature [105–110]. Basically, in all of the proposed algorithms DCT

is used to reduce the amount of data to be sent through the transmission of a subset of

transform coefficients, i.e., those which carry more information. Some solutions employ

advanced techniques for the pre/post processing of the DCT coefficients that, however, for

wearable devices are expected to be energetically prohibitive.

In this chapter, we consider two DCT based compression methods that differ in the adopted

coefficient selection approach:

• DCT-Cardinality Thresholding: with this selection method the number of coeffi-

cients to be retained is given as input, and the coefficients are added starting from the

lowest frequencies, i.e., the leftmost coefficient. Through this strategy the compression

ratio can be finely tuned, but there are no guarantees on the reconstruction error at

the decompressor.

• DCT-Energy Thresholding: with this method the coefficients are selected so as

to meet an energy threshold constraint. The total energy of the DCT spectrum, E,

is calculated and the coefficients that contain a predetermined fraction Eth of this

energy are kept. The coefficients are selected again from the lowest to the highest

frequencies, exploiting the energy compaction property of the DCT, so that their

frequency position does not have to be encoded.
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5.2.6 Discrere Wavelet Transform (DWT)

LTC [40] is a fast linear approximation technique working as follows. Let z[n], n = 0, 1, 2, . . .

be the input time series. The algorithm starts selecting z[0] as the left endpoint of the current

approximating segment. The following points z[n] with n > 0 are transformed into vertical

intervals [z[n] − ε, z[n] + ε] where ε > 0 is an error tolerance on the reconstructed signal.

When point n > 1 is considered, LTC evaluates the segment with extremes (z[0], z[n]) and

checks whether this segments falls within each of the previously obtained vertical intervals

around z[1], z[2], . . . , z[n− 1]. If this is the case, the algorithm obtains the vertical interval

for the current point n and performs the check for the next point n + 1. Otherwise, the

algorithm stops, taking z[n − 1] as the right endpoint of the current segment. Thus, 1)

z[0] and z[n − 1] are sent as the left and right endpoints of the current segment as an

approximation to values {z[0], z[1], . . . , z[n − 2], z[n − 1]} and 2) the algorithm reiterates

with a new approximating segment, taking z[n− 1] as its left endpoint.

5.2.7 Lightweight Temporal Compression (LTC)

LTC [40] is a fast linear approximation technique working as follows. Let z[n], n = 0, 1, 2, . . .

be the input time series. The algorithm starts selecting z[0] as the left endpoint of the current

approximating segment. The following points z[n] with n > 0 are transformed into vertical

intervals [z[n] − ε, z[n] + ε] where ε > 0 is an error tolerance on the reconstructed signal.

When point n > 1 is considered, LTC evaluates the segment with extremes (z[0], z[n]) and

checks whether this segments falls within each of the previously obtained vertical intervals

around z[1], z[2], . . . , z[n− 1]. If this is the case, the algorithm obtains the vertical interval

for the current point n and performs the check for the next point n + 1. Otherwise, the

algorithm stops, taking z[n − 1] as the right endpoint of the current segment. Thus, 1)

z[0] and z[n − 1] are sent as the left and right endpoints of the current segment as an

approximation to values {z[0], z[1], . . . , z[n − 2], z[n − 1]} and 2) the algorithm reiterates

with a new approximating segment, taking z[n− 1] as its left endpoint.
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5.3 Results

In this section, we show quantitative results for the considered signal compression algo-

rithms, detailing their energy consumption, compression efficiency and reconstruction fi-

delity.

For the energy consumption, following the approach of [111, 112] we compute three metrics:

1) the energy consumption for the execution of the compression algorithms in the node

(termed compression energy), 2) the energy drained by the the transmission of the (either

compressed or original) signal over a wireless channel (transmission energy) and 3) the total

energy, which is given by the sum of the previous two metrics. The compression energy

has been evaluated by taking into account the number of operations performed by the

Micro-Controller Unit (MCU), i.e., the number of additions, multiplications, divisions and

comparisons. These were then translated into the corresponding number of MCU cycles

and, in turn, into the energy consumption in Joule per bit considering a Cortex M4 [113]

processor, see also [111]. For the transmission energy, we took a Texas Instruments CC2541

low-energy Bluetooth system-on-chip [114], which is widely adopted for IoT devices.

The Compression Efficiency (CE) has been computed as the ratio between the total

number of bits that would be required to transmit the full signal divided by those required for

the transmission of the compressed bitstream. For the reconstruction fidelity, we computed

the Root Mean Square Error (RMSE) between the original and the compressed signals

normalizing it with respect to the signal’s peak-to-peak amplitude, that is:

RMSE =
100

p2p

√∑L
i=1(xi − x̂i)2

L
, (5.4)

where L corresponds to the total number of samples in the trace, xi and x̂i are the original

sample and the one reconstructed after the decompressor in position i, respectively. p2p

is the average peak-to-peak signal’s amplitude. We observe that other metrics such as the

Percentage Root mean square Difference (PRD) are also possible. As pointed out in [115],

PRD can mask the real performance of compression algorithms since it depends on the
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mean value of the original signal, whilst our RMSE metric allows one to immediately gauge

the error against the signal’s range. For this reason, we use (6.15) as our preferred metric

throughout the chapter.

In Section 5.3.1 we first assess the performance of the considered compression algorithms

for the standard test ECG traces from the PhysioNet MIT-BIH arrhythmia database [116].

In Section 5.3.2, we extend our analysis to ECG traces that we collected from a Zephyr

BioHarness 3 wearable chest strap. In Section 5.3.3, we consider PPG and RESP signals.

5.3.1 PhysioNet ECG traces

In the first set of graphs, we show results for ECG signals. To this end, we considered the

following traces from the MIT-BIH arrhythmia database [116]: 101, 112, 115, 117, 118, 201,

209, 212, 213, 219, 228, 231 and 232, which were sampled at rate of 360 samples/s with

11−bit resolution. Note that not all the traces of the database are usable (some are very

noisy due to heavy artifacts probably due to the disconnection of the sensing devices) and

an educated selection has to be carried out for a meaningful performance analysis, as done

in previous work [116, 117]. The above performance metrics were obtained for these traces

and their average values are shown in the following plots.

In Figs. 5.3, 5.4 and 5.5 we show the RMSE vs CE performance for all compression al-

gorithms. Fig. 5.3 shows the performance of standard compression approaches, namely,

DCT, DWT and linear approximation (LTC), Fig. 5.4 presents that of the codebook-based

schemes (GSVQ and OD), whereas in Fig. 5.5 we show results for dimensionality reduc-

tion algorithms, namely, BSBL-CS, SOMP-CS, PCA and AE. Our online dictionary (OD)

scheme is plotted in all figures for comparison. The tradeoff curves of OD have been obtained

by varying the representation accuracy ε as a free parameter.

In Fig. 5.3, we consider the energy thresholding version of DCT (DCT-ET). We also ex-

perimented with its cardinality thresholding (CT) variant and we found its performance

to be very similar to that of DCT-ET in every respect (RMSE, compression efficiency and

energy). Thus, implementation convenience will dictate which of the two variants is to be
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Figure 5.3: RMSE vs compression efficiency for ECG signals: DCT, DWT, LTC and OD.
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preferred. LTC outperforms DCT-ET in terms of RMSE and CE; although, we remark that

this is not always the case. For example, in [73] a DCT implementation that considerably

surpasses LTC in terms of RMSE is proposed, but this comes at the price of a much higher

computational complexity. This is possible through a more sophisticated selection of the

coefficients, which requires performing inverse transforms for every ECG segment. This

DCT variant is however not considered here as it is not deemed appropriate for wearable

devices, due to its high computational cost. DWT does a much better job than DCT in

terms of RMSE, especially at relatively small compression efficiencies, say, smaller than 30,

but it is unable to reach higher compression efficiencies, for which LTC and OD are to be

preferred. At small compression efficiencies, adaptive algorithms may be a valuable option –

for instance, one may switch between LTC and OD as a function of the required compression

level. For OD, we also look at the number of codewords in the dictionary as a function of
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the compression efficiency, see Fig. 5.6. From that plot, we see that using OD is especially

convenient at high compression efficiencies, i.e., higher than 45. In this region, the size of

the dictionary is in fact reasonably small (smaller than 35 codewords) and it is thus feasible

to store it in the limited memory of wearables. Specifically, for the considered setup the size

of each codeword is (W × 11)/8 = 275 bytes, where W = 200 is the codeword length 1 and

11 is the number of bits to represent the signal samples from the MIT-BIH database. This

means that a dictionary of 35 codewords takes 35× 275 = 9.625 kbytes of memory space.

A comparison for the codebook-based algorithms is presented in Fig. 5.4. For GSVQ we

move along the RMSE vs CE curves by changing the threshold that governs the number

of bits that are encoded into the residual stream. As discussed in Section 5.2.1, residual

encoding is the operation that affects the most the performance of GSVQ. The dictionary

size K affects the maximum achievable compression but the maximum CE is always smaller

than that of OD, where the dictionary adapts to the signal in an online fashion. Although

not shown in the plot, one may be thinking of not sending the residual encoding stream, so

as to reach higher compression efficiencies. However, due to the use of a precomputed and

fixed dictionary, this leads to a very high RMSE and is not recommended.

1A codeword represents one full ECG segment. We experimented with different values of W , varying it
from 150 to 350. In the considered databases, the number of samples in an ECG segment ranges between
190 and 318. The value W = 200 was chosen as it leads to a good tradeoff between accuracy, complexity
and compression efficiency.
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Figure 5.6: Online dictionary compression: codebook size as a function of the compression
efficiency. The tradeoff curve is obtained by varying the representation accuracy parameter

ε.

PCA is shown in Fig. 5.5. From this graph we see that the performance of PCA closely

matches that of LTC, which is plotted in the same figure for the sake of comparison. This is

quite interesting and non trivial – although both algorithms rely on linear approximations,

PCA is rather involved, whereas LTC has a much lighter computational cost, as we show

shortly. Also, in Fig. 5.5 the tradeoff curve for PCA is obtained by varying the number of

principal components h from 100 (leftmost point in the figure) down to 5 (rightmost point)

in steps of 5, whereas the performance of LTC is plotted varying ε within a continuous

interval. Overall, LTC permits a fine-grained control of the RMSE vs compression tradeoff,

whereas this is not possible with PCA, especially at high compression efficiencies (small

h). Finally, LTC provides a means to precisely control the maximum reconstruction error,

through the parameter ε, whereas the number of retained principal components h does not

provide any guarantee in terms of reconstruction accuracy.2

AE is shown in Fig. 5.5, where the number of inner neurons h is varied as a free parameter

in {100, 50, 25, 10, 5, 2}: h = 100 is represented by the leftmost point in the graph, whereas

the rightmost one corresponds to h = 2. AE obtains the best performance both in terms

of RMSE and CE. We underline that this algorithm entails an offline training phase which

has two drawbacks: 1) usually, this phase is computationally demanding and requires a

representative dataset, 2) although autoencoders have excellent generalization capabilities,

2With PCA, an inverse transform at the compressor is required to assess the reconstruction error provided
by a certain value of h.
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Table 5.1: Average complexity [no. operations] and energy consumption [µJ] per ECG
segment. RMSE is 7.5% for all algorithms except AE for which the average RMSE is 3.75%

(the highest with AE, obtained with h = 2 neurons in the inner compression layer).

DCT-ET DWT-ET GSVQ BSBL-CS SOMP-CS LTC OD AE

Additions 13463 7809.9 98114 3747 97302 1258.8 84411 82439
Multiplications 9089.8 6883.5 82788 0 95805 0 82817 81535.7
Divisions 0 323.2 1137.2 0 1045 634.1 940.2 938.6
Comparisons 30.4 7723.1 475.6 0 522 1231.1 987 462.7

Compression energy 0.74 0.88 6.47 0.12 6.84 0.37 5.95 5.83
TX energy 124.22 45.85 35.82 639.03 272.36 37.90 20.37 13.45
Total energy 124.96 46.73 42.29 639.15 279.20 38.27 26.32 19.28

if the statistics of the underlying signal changes substantially, there are no guarantees that

autoencoders trained with the old data will still provide good approximations for the new

signals. However, the RMSE performance achieved by AE is striking and spurs the use

of neural networks within this domain. A note on the AE compression efficiency is in

order. For OD the compressed bitstream comprises the following fields, which are sent for

each new ECG segment: the codeword index, the original segment length, the gain and

the offset. Thus, when no updates of the dictionary occur, 4 parameters are to be sent

for each new segment. The maximum compression efficiency of OD is thus obtained as3

CEmax
OD = SamplesPerSeg/4, where SamplesPerSeg corresponds to the number of samples

in a segment. With AE, for each segment we only send the h values associated with the

inner neurons, see Fig. 5.2, and the length of the original segment. Two additional offsets

are sent only once, when the compression starts. Thus, the maximum CE is approximated

as CEmax
AE ' SamplesPerSeg/(h + 1). For an average segment size of 318 samples, we

get CEmax
OD = 80 and CEmax

AE = 106, which explain the results in Fig. 5.2. Note that the

compression efficiency of OD is actually smaller than 80 and this is due to the new codewords

that must be sent to update the dictionary at the decompressor.

For AE, the memory occupation is fixed and amounts to the memory needed to store the

weights of the encoder in Fig. 5.2 and the output values generated by the inner layer, i.e.,

((W +1)×h× 11)/8 bytes, where W = 200, h is the number of inner neurons and 11 is the

number of bits to represent a floating point (either a weight or an encoder output). Given

this, with, e.g., h = 8 the memory footprint of AE is 2.211 kbytes.

3For the sake of clarity, we assume that input samples and parameters are represented through the same
number of bits. If this is not the case, the following equation should consider the different precision.
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Table 5.2: Energy breakdown [no. operations] and energy consumption [µJ] for the OD
processing blocks. RMSE is 7.5%.

Pass band Peak Segment Pattern Codebook
filtering detection extractor matching manager Total

Additions 4373 78723.8 396 399.8 518.3 84411
Multiplications 4061 78099 198 200 259 82817
Divisions 312.2 625 1 2 0 940.2
Comparisons 0 468.6 0 0 518.4 987

Compression energy 0.42 5.45 0.02 0.021 0.043 5.95

As for the CS-based algorithms, neither SOMP-CS nor BSBL-CS provides satisfactory per-

formance. The compression efficiency of SOMP-CS is rather small and the corresponding

RMSE tends to diverge for, e.g., CE larger than 5. As we shall see shortly below, the overall

energy performance of SOMP-CS is unsatisfactory when compared to that of other algo-

rithms and the compression strategy of BSBL-CS has the lowest energy consumption, but

its intra-segment approach is less effective in terms of CE than that of other inter-segment

schemes such as dictionary based algorithms (GSVQ, OD) and AE. Although the results

that we show here for SOMP-CS and BSBL-CS were respectively obtained using the theory

from [44] and [76], we found similar CE figures in other papers [45]. In these studies, the

compression efficiency is defined as CE′ = ((W −m)/W )× 100, with W being the number

of original samples and m the number of compressed samples that are transmitted to the

receiver. With this definition, CS schemes achieve maximum efficiencies of 80-90%. We ob-

serve that these figures correspond to a CE ranging from 5 to 10 according to the definition

that we use in the present chapter, i.e., CE = W/m.

In Fig. 5.7, we show the RMSE and the energy drained for compression at the transmitter,

expressed in Joule per bit of the original ECG sequence. These tradeoff curves are obtained

by varying the compression efficiency of each algorithm from 1 to the maximum achievable

(which is scheme-specific, see Fig. 5.9). The RMSE increases with an increasing compression

efficiency, whereas the compression energy depends weakly on CE. As expected, BSBL-CS

has the smallest energy consumption. LTC is the second best, whereas OD, SOMP-CS

and AE perform very close to one another and have the worst energy consumption for

compression. The good performance of BSBL-CS is due to its lightweight compression

algorithm, which just multiplies the input signal by sparse binary matrices, with entries in

{0, 1}. We underline that the energy consumption of OD, SOMP-CS and AE is dominated
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Figure 5.7: RMSE vs compression energy obtained varying CE as the independent pa-
rameter.

by the preprocessing chain of Fig. 4.6 (as we quantify below through the measurements

in Table 5.2). In this plot, we also show the performance of OD and AE by removing

the contribution of the pre-processing blocks: the corresponding curves are referred to

in the plot as “OD NoPre” and “AE NoPre”, respectively. Note that filtering is always

performed to remove measurement artifacts and peak detection is also very often utilized

to extract relevant signal features. Given this, the energy consumption associated with the

required pre-processing functions may not be a problem, especially if these functions are to

be executed anyway. Although not shown for the sake of readability of the plot, PCA and

GSVQ have nearly the same energy consumption of OD.

In Fig. 5.8, we show the RMSE as a function of the total energy consumption, which is

obtained summing the energy required for compression to that for the subsequent transmis-

sion of the compressed bitstream over a CC2541 Bluetooth low-energy wireless interface.

This total energy is then normalized with respect to the number of bits in the original

ECG signal. From this plot, we see that the total energy consumption is dominated by

the transmission energy, which depends on the compression efficiency. In this respect, the

best algorithms are LTC, OD and AE and the algorithm of choice depends on the target

RMSE that, in turn, directly descends from the selected CE. As discussed above, an adap-

tive algorithm may be a good option, where for each value of CE the scheme providing

the smallest RMSE is used. In Fig. 5.8, the energy consumption when no compression is

applied is also shown for comparison. We see that signal compression, and the subsequent
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Figure 5.8: RMSE as a function of the total energy consumption (compression plus
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reduction in size of the data to be transmitted, allows a considerable decrease in the total

energy consumption. Specifically, AE and OD respectively enable energy savings of about

one order of magnitude while respectively providing RMSEs smaller than 2% and 4%. The

performance of AE is particularly striking as it allows saving up to two order of magnitude

in terms of energy consumption by still keeping the RMSE around 4%. This motivates the

use of signal compression techniques for continuous monitoring applications for IoT devices.

Note that the actual RMSE can be dynamically tuned at runtime, by allowing slightly less

accurate representations (and thus much higher compressions) when no critical patterns

are detected. Also, for AE a visual inspection reveals that a RMSE smaller than 4% en-

tails excellent approximations to the original biosignals, and that the error is mainly due

to smoothing out spurious oscillations that are introduced and that are not filtered by the

preprocessing chain of Fig. 4.6.

A breakdown of the complexity and energy consumption figures for the considered algo-

rithms is provided in Tables 5.1 and 5.2 (for the same RMSE of 7.5%). These metrics were

obtained for the PhysioNet ECG signals and represent the average complexity (expressed in

terms of number of operations) and energy consumption (Joules) for the compression and

transmission of a single ECG segment of data. From Table 5.1 we see that BSBL-CS is

the most energy efficient in terms of compression, LTC is the second best, whereas SOMP-

CS utilizes more energy as the ECG signal has to be segmented prior to performing the

CS sampling, see Section 5.2.4. Other algorithms such as OD and AE are more computa-

tionally demanding, but their maximum compression efficiency is much higher. Since the
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transmission energy dominates that needed for data processing, AE and OD represent the

best alternatives when all the sources of energy consumptions are added up. In Table 5.2,

we show a breakdown of the energy demand for the various processing blocks of OD. Inter-

estingly, we see that peak detection accounts for 91% of the per-segment energy drainage.

The same fact applies to all the segment-based approaches (e.g., AE and COMP-CS). We

thus recommend working on lightweight peak detection algorithms.

5.3.2 Wearable ECG Signals

We now present some results for ECG signals that we acquired from a Zephyr BioHarness 3

wearable device [34]. To this end, we collected ECG traces from eleven healthy individuals,

which were continuously recorded during working hours, i.e., from 8am to 6pm. These were

sampled at a rate of 250 samples/s with each sample taking 12 bits.

The RMSE vs CE tradeoff for these signals is shown in Fig. 5.9 for the best performing

compression algorithms. The results are similar to those of Figs. 5.3–5.5 with the main

difference that in this case the ECG signals have more artifacts and a higher variability. As

such, the resulting RMSE is also higher for all schemes and the compression performance

is degraded. The general trends and recommendations remain unchanged, i.e., SOMP-CS

and LTC are good choices at low up to intermediate compression efficiencies, whereas OD

and AE perform better at higher CEs. However, we remark that the OD’s compression

efficiency is impacted with respect to that in Fig. 5.5 as the non-steady data of wearables

requires more frequent dictionary updates. AE is still very effective, providing the highest

compression efficiencies and the smallest RMSE.

The energy consumption figures of all schemes, although slightly rescaled, have a totally

similar behavior as those obtained with the PhysioNet MIT-BIH traces (see Figs. 5.7 and 5.8)

and are thus not shown in the interest of space. In fact, the energy consumption is marginally

affected by the non-steady behavior of wearable signals, which impacts more on the RMSE

and compression performance.
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Figure 5.9: RMSE vs compression efficiency for ECG signals: DWT-ET, SOMP-CS, LTC,
OD and AE.

As an illustrative example, in Figs. 5.10 and 5.11 we respectively look at the per segment

RMSE and CE performance of LTC, OD and AE. In Fig. 5.10 we fix the compression

efficiency to CE = 28 for all schemes and we show the RMSE for each segment considering

12 minutes of ECG readings from one of the subjects. Overall, OD performs satisfactorily,

providing an average RMSE of 4%, LTC settles around an RMSE of 11% and AE achieves the

best accuracy, i.e., RMSE = 2.6%. Artifacts and the non-steady behavior of the BioHarness

ECG traces require more frequent dictionary updates for OD, which then entail some major

variability in its RMSE performance, as can be clearly seen in the range [600, 700] segments

in both plots. Specifically, when the current dictionary is no longer representative of the

input data, at first the RMSE increases and then it sharply decreases due to the consequent

dictionary update. Fig. 5.11 shows the per segment compression efficiency for the same ECG

trace by operating LTC, OD and AE so that their average RMSE is 3%. From this plot we

see that AE reaches much higher CEs, delivering strikingly good performance. Besides, the

CE of OD sometimes drops to 1 (no compression) and this happens when the dictionary is

updated (see again the range [600, 700] seg. in Fig. 5.11). Note that the first update occurs

at time zero, as OD has no dictionary at the beginning of the ECG sequence.

5.3.3 PPG and RESP Signals

As a final result, in Figs. 5.12 and 5.13 we respectively show the RMSE vs CE perfor-

mance for PPG and respiratory (RESP) signals from the PhysioNet MIMIC-II waveform
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Figure 5.10: RMSE as a function of time. CE = 28 for both schemes, RMSE(LTC) =
11%, RMSE(OD) = 4% and RMSE(AE) = 2.6%.
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Figure 5.11: CE as a function of time. RMSE = 3% for all schemes, CE(LTC) = 15,
CE(OD) = 19 and CE(AE) = 56.

database [116]. In these graphs, we only show the performance of the three best algo-

rithms, namely, LTC, OD and AE. AE is plotted considering the number of inner neurons

h ∈ {100, 50, 25, 10, 5, 2}, where h = 100 is represented by the leftmost point, whereas h = 2

by the rightmost, and outperforms all the remaining schemes for h ≤ 5. Clearly, OD and

AE are still effective for these signal types. For respiratory signals, LTC performs best

for compression efficiencies up to 40, OD is to be preferred for intermediate efficiencies be-

tween 40 and 80. The compression efficiency obtained for PPG signals is smaller than that

achieved for ECG and RESP but this is due to the lower sampling rate in the PPG traces.

For all signals, the RMSE of AE never exceeds 4%, while its CE respectively reaches 56 and

156 for PPG ad RESP when just two inner neurons (h = 2) are utilized. These results are

impressive and motivate further research, especially to make the AE learning phase online

and subject-adaptive, as we do for OD.
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Figure 5.12: RMSE vs compression efficiency for PPG signals.
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Figure 5.13: RMSE vs compression efficiency for RESP signals.

5.4 Lesson Learned and Open Issues

In this chapter, we advocated the use of lossy compression as a means to boost the battery

life of wireless wearable devices for health monitoring. As a first contribution, we presented

an original dictionary based technique, where compression is achieved by building and main-

taining at runtime a dictionary. This dictionary is subsequently used to approximate signal

sequences transmitting codeword indices in place of the original samples. This technique

is found to be very effective, showing excellent approximation capabilities and very high

compression efficiencies at the cost of a reasonably small amount of computation. We then

considered compression algorithms based on linear approximations. Despite their inherent

simplicity, we found them to be quite effective and, when the required compression effi-

ciency is not too high, they represent the best option among competing solutions. We also
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found that a recent scheme belonging to this class, called lightweight temporal compression,

very closely matches the performance of principal component analysis, at a much smaller

computational cost and additionally providing inbuilt guarantees on the maximum approxi-

mation error at the decompressor. Thus, we explored the performance of recent approaches

based on autoencoders. These neural network architectures are found to be extremely ef-

fective, leading to the highest compression efficiencies at a reasonable computational cost.

Their performance is striking especially at very high compression rates, where just two inner

neurons are utilized to represent input patterns comprising several hundreds of points, still

providing very small approximation errors (usually the RMSE remains bounded within 4%).

The performance of these algorithms was numerically evaluated against that of the most

prominent schemes from the literature, i.e., Fourier and Wavelet transforms, compressive

sensing and vector quantization techniques.

Open research areas. From the numerical analysis that we have carried out in this

chapter, we have identified several avenues for future research. We have seen that the

most promising means to reach high compression efficiencies is to exploit inter-segment

correlation. Dictionary based algorithms belong to this category and do a very good job in

all respects. Nevertheless, the online scheme proposed in this chapter uses too much memory

space at relatively small compression efficiencies, say, smaller than 40. Autoencoders also

have a main drawback. In fact, these networks need to go through an offline training phase,

during which their weights are shaped utilizing a representative dataset. Although they

have excellent generalization capabilities, they will be nevertheless unable to satisfactorily

represent input patterns that sharply differ from those in the dataset used for training.

Hence, a desirable contribution would be to concoct a new neural network based algorithm

with the following properties, both very relevant from a practical standpoint: a) we would

like the size of the dictionary not to grow with a diminishing RMSE or, equivalently, with

a decreasing compression efficiency. Ideally, the dictionary size should be kept constant.

b) We would also like the training phase to be carried out in an online fashion. In this

way, the dictionary will adapt to the specific signal statistics of the subject wearing the

device. Another interesting subject for future investigations is the joint compression of
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multiple vitals, including respiratory rate, electrocardiogram, plethysmograph, and data

from motion sensors.





Chapter 6

Body sensor networks – SURF:

Subject-adpative Unsupervised ecg

compressor for weaRable Fitness

monitors

6.1 Introduction

In this chapter, we continue our processing solutions for the long-term monitoring of quasi-

periodic electrocardiography (ECG) signals.

We achieve this through the use of unsupervised neural maps for the construction and update

of online dictionaries, whose codewords are utilized to match input patterns. Specifically,

the acquired biomedical signal is decomposed into segmentsmade up of samples between two

consecutive signal peaks1 and we consider these segments as the signal’s recurrent patterns.

A preliminary training phase uses the incoming segments to learn the actual subject signal

distribution. The synaptic weights of the neural maps become progressively and adaptively

tuned to approximate such distribution, without any prior knowledge upon it. Note that

1This is possible thanks to the quasi-periodic nature of the considered biomedical time series.
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these weights represent the codewords. Each new (unseen) segment is thus encoded through

a vector quantization approach, which selects the best matching codeword and transmits

its index to the receiving end in place of the full data. Moreover, each new data segment

is also utilized to further train these algorithms in an online fashion, so as to maintain a

representative dictionary at all times. This last feature of our algorithms are particularly

appealing as it allows updating the dictionary to new subjects or to the same subject as

their signal statistics changes.

In a first design, dictionaries are built using Time Adaptive Self Organizing Maps (TASOM),

see [118–120]. These have excellent learning and adaptation capabilities but are found to

have limitations when new and sporadic patterns arise or in the presence of artifacts due

to, e.g., the motion of the wearer. In our final design, we exploit the Growing Neural

Gas network of [121]. Here, the dictionary size can be dynamically adapted through the

addition and removal of neurons, and this allows the exploration of new regions in the data

space without affecting the current accuracy reached by the dictionary in the region that

was already explored. Also, in this last approach dictionaries are learned in a suitable

feature space, with reduced dimensionality. This makes it possible to further enhance the

compression efficiency and reduce the cost of dictionary updates.

The final compression algorithm is called SURF, for “Subject-adpative Unsupervised ecg

compressor for weaRable Fitness monitors”. We stress that, although the considered pro-

cessing tools may seem sophisticated, SURF is rather simple, requiring dictionaries that

take less than 20kbytes and that entail computationally light operations at each update.

With SURF, the achievable compression ratios for ECG signals are in the range from 50-

to 96-fold (depending on the frequency of artifacts in the data). Also, the performance

of SURF is compared against that of selected compression algorithms from the literature

involving linear approximations [40], Fourier [42, 73, 108], Wavelet [43] transforms and

compressive sensing (CS) [44, 45]. Our approach surpasses all of them, achieving remarkable

performance, especially at high compression ratios where the reconstruction error (Root

Mean Square Error, RMSE) at the decompressor is kept between 2% and 7% of the signal

peak-to-peak amplitude.
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A thorough numerical analysis of SURF, carried out for the PhysioNet public dataset [116]

and own collected ECG traces from a Zephyr Bioharness 3 device, reveal the following facts:

i) its dictionaries gracefully and effectively adapt to new subjects or their new activities, ii)

the size of these dictionaries is kept bounded (i.e., within 20kbytes), making them amenable

to their implementation in wireless monitors, iii) high compression efficiencies are reaches

(reductions in the signal size from 50 to 96-fold), iv) the original ECG time series are

reconstructed at the receiver with high accuracy, i.e., within a peak-to-peak RMSE within

7% and often smaller than 3% and v) compression allows saving energy at the transmitter,

making it almost two orders of magnitude smaller.

A compression scheme for quasi-periodic time series can be found in [46], where the authors

target the lightweight compression of biomedical signals for constrained devices, as we do in

this chapter. They do not use a VQ approach but exploit sparse autoencoders and pattern

recognition as a means to achieve dimensionality reduction and compactly represent the

information in the original signal segments through shorter segments. Quantitative results

assess the effectiveness of their approach in terms of compression ratio, reconstruction error

and computational complexity. However, the scheme is based on a training phase that must

be carried out offline and is thus not suitable for patient-centered applications featuring

previously unseen signal statistics. Our approach is instead specifically designed to cope

with this type of learning, we lose some of the compression and accuracy performance

of [46] but we gain in terms of adaptability to the patient that wears the device, learning

and adapting the compression and pattern recognition functionalities over time through

the collection of measurements. The capability of another type of ANN called Input-Delay

Neural Network (IDNN) to capture the dynamic characteristics of the input signals is used

in [122] for a piecewise ECG compression approach. However, a different IDNN is used for

each ECG segment of duration 10 seconds and this implies the need for a dedicated training

phase for each segment, which entails a too high power consumption for a wearable-based

scenario.

Our present work improves upon previous research as neural network structures are utilized

to build compact representations of biomedical signals at runtime. Differently from previous
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techniques, our dictionaries are built and adapted at runtime to represent at best the signal

statistics of the subject that wears the device, following an unsupervised learning approach.

This chapter is structured as follows. In Section 6.2, we introduce the self-organizing maps

and in Section 6.3 we describe a first design based on them. The SURF compression algo-

rithm is presented in Section 6.4 and its performance is evaluated in Section 6.5, comparing

it against state-of-the art solutions. Our conclusions are drawn in Section 6.6.

6.2 Unsupervised Dictionary Learning through Self-Organizing

Maps

The SOM and its time-adaptive version (TASOM) are single layer feed-forward networks

having an input layer of source nodes that projects directly onto an output layer of neu-

rons. The SOM provides a structured representation of the input data distribution with

the synaptic-weight vectors acting as prototypes. For its output layer, we consider a rect-

angular lattice A with L neurons arranged in M rows and M columns. The input space is

m-dimensional, i.e., X ⊂ R
m with input vectors x = [x1, x2, . . . , xm]T ∈ X . The SOM input

layer has m source nodes, each associated with a single component of the input vector x and

each neuron in the lattice is connected to all the source nodes. The links (synapses) between

the source nodes and the neurons are weighted, such that the jth neuron is associated with

a synaptic-weight vector denoted by wj = [wj1, wj2, . . . , wjm]T ∈ R
m, j = 1, . . . , L, where

L = M2 is the total number of neurons in A. Training is unsupervised. Let {x(n)}Nn=0 be

the training set of unlabeled examples (training input patterns), selected at random from

X . The learning process proceeds iteratively, from n = 0 to n = N , where N should be large

enough so that self organization develops properly. At iteration n, the nth training input

pattern x(n) is presented to the SOM and the following three steps are performed [119].

Step 1: competition. The neurons compete among themselves to be selected as the

winning neuron, the one whose synaptic-weight vector most closely matches x(n) according
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to the Euclidean distance. Its index i(x) satisfies:

i(x) = argminj ‖x(n)−wj(n)‖ , j = 1, . . . , L . (6.1)

Step 2: cooperation. The winning neuron i(x) identifies the center of a topological neigh-

borhood of cooperating neurons modeled by the function hij(n). If dij is the lateral distance

between i(x) and neuron j in A, then hij(n) is symmetric around i(x) and its amplitude

decreases monotonically with increasing lateral distance dij . Moreover, hij(n) shrinks over

time. In this work, we set hij(n) = exp(−d2ij/(2σ(n)2)), where σ(n) is the width of the topo-

logical neighborhood, exponentially decreasing with increasing time n [119]. These prop-

erties are reflected by the unnormalized Gaussian function: hij(n) = exp(−d2ij/(2σ(n)2)),

where σ(n) is the width of the topological neighborhood at iteration n. σ(n) decreases with

time according to an exponential decay function.

Step 3: synaptic Adaptation. The synaptic-weight vector wj(n) of neuron j at time n

is changed through the equation:

wj(n+ 1) = wj(n) + η(n)hij(n)(x(n)−wj(n)) . (6.2)

(6.2) has the effect of moving the synaptic-weight vector wi(x) of the winning neuron i(x)

(and the synaptic-weight vectors of the neurons in its topological neighborhood, according

to hij(n)) toward the input vector x. The learning-rate parameter η(n) starts at some initial

value η(0) and then exponentially decreases with increasing time n.

η(n) = η0 exp

(
− n

τ2

)
, n = 0, 1, . . . (6.3)

where τ2 is another time constant. The adaptive process of the synaptic weights in the

network, computed in accordance with Eq. (6.2) , may be decomposed into two phases:

an ordering phase, during which the topological ordering of the weight vectors takes place,

followed by a convergence phase, which fine-tunes the feature map and therefore provide an
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accurate statistical quantification of the input space. As a general rule, the total number of

iterations allowing the map to develop properly should be at least N = 1000+500×L [119].

Once the SOM algorithm has terminated, a nonlinear transformation (feature map) Φ : X →

A is obtained as Φ(x) = wi(x), where the index i(x) is found according to (6.1). Φ(·) is a

quantization rule as it approximates the input data space X with the finite set of weights

(prototypes) wj ∈ A. In fact, the same weight vector wj is returned in response to all the

input vectors x for which Φ(x) = wj . Thus, the SOM algorithm is a VQ algorithm and

we use it to design a subject-adaptive dictionary for biomedical signals. However, upon

completion of the learning phase, the SOM map stabilizes and further learning / adaptation

to new input distributions is difficult. In the presence of non-stationary signals, adaptive

learning must be employed to update the feature map. The time-adaptive self-organizing

map (TASOM) does this by allowing the map to increase the learning rate when the signal’s

statistics changes and for this reason is a more appealing technique with non-stationary

signals. The TASOM has been introduced in [120] as an extended version of the basic

SOM and preserves its properties in stationary and non-stationary settings. In a TASOM,

each neuron j, j = 1, . . . , L, has a synaptic-weight vector wj ∈ R
m with its own learning-

rate ηj(n) and neighborhood width σj(n), which are continuously adapted so as to allow

a potentially unlimited training of the synaptic-weight vectors. This feature enables the

TASOM to be more flexible and to approximate the input data space distribution as it

evolves. For more details on the TASOM algorithm, the reader is referred to [120].

6.3 A first design: TASOM-based ECG compression

We leverage the quasi-periodic nature of the considered vital signs to develop a lossy com-

pression technique with subject-adaptive dictionary. First, we identify as motifs the se-

quence of samples between consecutive peaks (which we call segments) and we use them

to build a dictionary that stores typical segments and is maintained consistent and well

representative through online updates. The TASOM unsupervised learning algorithm is

utilized to construct and manage the dictionary. A diagram of the proposed technique
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Figure 6.1: Diagram of the TASOM-based compression algorithm.

is shown in Fig. 6.1. The physiological signal is first preprocessed through a third-order

Butterworth filter to remove artifacts. Then the fast and simple peak detection algorithm

exposed in [88] is employed to locate the signal peaks. The segment extractor splits the

signal into segments made up of samples between subsequent peaks and inputs them to the

normalization module. Since the segments may have different lengths, linear interpolation

resizes the current segment with length rx(n) to a fixed length m. We refer to the resized

segment as x(n) = [x1(n), . . . , xm(n)]T , whereas

ex(n) =

∑m
k=1 xk(n)

m
(6.4)

is its offset and

gx(n) =

(
m∑

k=1

xk(n)
2/m

)1/2

(6.5)

is the corresponding gain. The normalization module applies the following transformation

to each entry of x(n):

xk(n)←
xk(n)− ex(n)

gx(n)
, k = 1, . . . ,m (6.6)

The normalized segment feeds the dictionary manager, which uses it to update the dictio-

nary, and the pattern matching module, which returns the best matching codeword from the

dictionary and outputs its index. The segment’s original length, offset, gain and codeword

index are then sent to the receiver in place of the original samples.

The dictionary manager is the key block of the TASOM-based compressor. We design it

thinking of a communication scenario consisting of a transmitting wearable device and a
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receiver, such as a PDA or smartphone. At any time instant n, two dictionaries are main-

tained at the transmitter: the current dictionary Cc(n), which is used to compress the input

signal, and the updated dictionary Cu(n), which undergoes updating at each time instant

through the TASOM algorithm and is maintained to track statistical changes in the input

signal’s distribution. As for the dictionaries, we consider a TASOM with L neurons. When

the compression scheme is activated for the first time, a sufficient number N of signal seg-

ments are provided as input to the TASOM to perform a preliminary training phase. Such

training allows the map to learn the subject signal’s distribution. This may be accomplished

the first time the subject wears the device. After this, a first subject-specific dictionary is

available. It can be used for compression and can also be updated at runtime as more data

is acquired. Let assume that time is reset when the preliminary training ends and assume

n = 0 at such point. Both Cc(0) = {cc1(0), . . . , ccL(0)} and Cu(0) = {cu1(0), . . . , cuL(0)} are

defined as the dictionaries whose codewords c∗∗(0) are equal to the synaptic-weight vectors

of the TASOM. At time n = 0, we have ccj(0) = cuj (0) = wj(0), j = 1, . . . , L. Let also

assume that the decompressor at the receiver is synchronized with the compressor, that is,

it owns a copy of Cc(0). From time 0 onwards, for any new segment x(n) (n = 1, 2, . . . ) the

following procedure is followed:

Algorithm 1 [TASOM-based compressor]:

1) Map x(n) onto the index of the best matching codeword in Cc(n), i.e., map x(n) onto

the index ix(n) such that

ix(n) = argminj ‖x(n)− ccj(n)‖ , j = 1, . . . , L . (6.7)

2) Let d(n) = ‖x(n) − cci (n)‖ be the distance between the current segment and the asso-

ciated codeword, where we use index i as a shorthand notation for ix(n). Use x(n) as the

new input for the current iteration of the TASOM learning algorithm and obtain the new

synaptic-weight vectors wj(n), j = 1, . . . , L.

3) Update Cu(n) by using the weights obtained in step 2, i.e., setting cuj (n) ← wj(n) for

j = 1, . . . , L.
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4) Let ε > 0 be a tuning parameter. If d(n)/‖x(n)‖ > ε, then update Cc(n) by replacing

it with Cu(n), i.e., Cc(n) ← Cu(n) and re-map x(n) onto the index of the best matching

codeword in the new dictionary Cc(n), i.e., map x(n) onto the index ix(n) obtained through

(6.7) using the new dictionary Cc(n).

5) Send to the receiver the segment’s original length rx(n), its offset ex(n), gain gx(n), and

the codeword index ix(n). If the current dictionary has been changed in step 4, then also

send Cu(n).

Step 2 makes it possible to always maintain an updated approximation of the input segment

distribution at the transmitter. With step 4, we check the validity of the approximation

provided by the current dictionary (the one used for compression, which is also known

at the receiver). The tunable parameter ε is used to control the signal reconstruction

fidelity at the decompressor: if d(n)/‖x(n)‖ ≤ ε, codeword ccix(n)(n) is assumed to be a

suitable representation of the current segment, otherwise Cc(n) is replaced with the updated

dictionary Cu(n) and the encoding mapping is re-executed. Note that the higher ε, the

higher the error tolerance and the lower the number of updates of the current dictionary.

On the contrary, a small ε entails frequent dictionary updates: this regulates the actual

representation error and also determines the maximum achievable compression efficiency.

At the receiver, the n-th segment is reconstructed by picking the codeword with index ix(n)

from the local dictionary, performing renormalization of such codeword with respect to offset

ex(n) and gain gx(n) and stretching the codeword according to the actual segment length

rx(n).

6.4 The SURF compression scheme

The TASOM-based compressor described in the previous section is now improved through

the use of a more flexible neural network architecture in several respects.
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dictionary is updated. In the TASOM-based approach the old dictionary is entirely

replaced whenever it is no longer capable of approximating ECG segments within a

preset accuracy. Instead, in our new approach codewords are selectively updated, re-

placing them with new ones that better approximate the portion of signal space that

they are responsible for.

O3 Objective 3 - “coping with artifacts”: ECG signals gathered from wearable devices

are prone to artifacts due to the various body movements of the wearer. Dictionary-based

approaches are particularly impacted by them as the dictionary manager, may try to

match them with current codewords and then it may also adapt the dictionary either

adding new codewords or updating existing ones. This is of course to be avoided as it

results in a degraded dictionary. However, these noisy segments must be isolated and

differentiated from genuine ECG segments containing anomalous patterns as these

may have detected and learned. Our new compressor successfully copes with this by:

1) sending features in place of codewords whenever none of the current codewords pro-

vide a satisfactory match and 2) simultaneously starting an assessment phase for the

new pattern. During that phase a new neuron is temporarily added to the dictionary.

Its permanent addition to the dictionary only occurs if multiple matches occur within

a predetermined time frame.

The three objectives of above are achieved through the SURF compression algorithm that

we detail next. It exploits a GNG neural structure to learn and maintain a set of prototypes

in the signal’s feature space in a totally unsupervised fashion. This neural network structure

has a number L(n) of neurons, where n is the (discrete) time index and n ← n + 1 each

time a new ECG segment is processed.

A diagram of the SURF algorithm is shown in Fig. 6.2. The signal is at first prepro-

cessed through the same chain of Fig. 6.1, involving filtering to remove artifacts, ECG peak

detection and segment extraction. After this, ECG segments are normalized through resiz-

ing and offset removal. Since different ECG segments may have different lengths (num-

ber of samples), linear interpolation is used to resize them to a fixed length m. Let
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x(n) = [x1(n), . . . , xm(n)]T be the resized m-length ECG segment at time n. Offset re-

moval is achieved through:

xk(n)← xk(n)− ex(n) , k = 1, . . . ,m , (6.8)

where ex(n) is defined in (6.4). After this, the normalized ECG segment x(n) is fed to a

feature extraction block which reduces the dimensionality of x(n) through the computation

of a number f < m of features. This mapping is denoted by Ψ : R
m → R

f and we

have: y(n) = Ψ(x(n)), where y(n) = [y1(n), . . . , yf (n)]
T . For our experimental results, this

mapping is accomplished by computing the DCT transform of x(n) and retaining the first

(low-pass filtering) f coefficients in the transform (frequency) domain. We underline that

our method is rather general and any other mapping can be applied.

At this point, the SURF dictionaries come into play. Differently from the TASOM ap-

proach, three dictionaries are maintained at the transmitter: D1) the current dictionary

Cc(n) = {cc1(n), . . . , ccL(n)(n)}, D2) the reserved dictionary Cr(n) = {cr1(n), . . . , crR(n)(n)}

and D3) the updated dictionary Cu(n) = {cu1(n), . . . , cuL(n)(n)}. D1 and D3 contain the same

number of codewords at all times, whereas D2 contains R(n) codewords, where in general

R(n)� L(n).

Dictionary D1: the current dictionary D1 contains the codewords which are currently in

use. For each new feature segment y(n), the closest codeword cci∗(n) in D1 is fetched by

minimizing the distance d(y(n), ccj(n)) = ‖y(n) − ccj(n)‖ for all codewords ccj(n) ∈ Cc(n),

i.e.,

i∗ = argminj d(y(n), c
c
j(n)) , j = 1, . . . , L(n) (6.9)

If d(y(n), cci∗) is smaller than a preset error tolerance εf > 0,2 the codeword cci∗ from D1

is deemed a good candidate to approximate the current ECG segment. In this case, we

say that y(n) is matched by cci∗ . Index i∗ is thus sent to the receiver in place of the entire

feature set y(n). At the receiver side, a copy of D1 is maintained at all times and is used

2Here, εf represents the error tolerance in the feature space, which must not be confused with that in
the signal space ε, that was used for the TASOM-based compressor of Section 6.3.
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to retrieve cci∗ from its index.

Dictionary D2: if d(y(n), cci∗) > εf , none of the codewords in D1 can adequately approx-

imate the current feature vector, which is then termed unmatched. Note that this may be

due to changes in the signal statistics such as sudden variations in the subject’s activity,

to pathological (and often sporadic) ECG segments or to measurement artifacts. In these

cases, what we do is to check for a match in the reserved dictionary D2 (Cr(n)). If a match

occurs, the matching count of the matching codeword in D2 is increased by one. Other-

wise, a new codeword is added to D2. This is achieved by adding a neuron to dictionary

Cr(n) and using feature vector y(n) to initialize its synaptic-weight vector. We stress that

the codewords in D2 are not ready for use in the signal compression, but they rather go

through an assessment phase: they are then added to the dictionary D1 only if they are

matched at least γ times within ∆ time slots after their addition to D2, with γ and ∆ being

preset parameters. The rationale behind such an assessment is that these new codewords

are added to explore a new portion of the signal’s feature space, and this exploration is

prompted by the measurement of previously unseen patterns. Now, if these patterns are

very unlikely to occur again it does not make any sense to add them to the dictionary and

it is better to send the feature vector y(n) for these isolated instances. In turn, y(n) will be

utilized to reconstruct the pattern at the receiver. Instead, if after their first appearance,

these become recurring patterns, it does make sense to add them to D1 (and D3 for their

continuous refinement). Note that the combined use of D1 and D2 allows the specialization

of the dictionary to new signal areas (new patterns, i.e., objective O1) and as well to cope

with artifacts (objective O3).

Dictionary D3: this dictionary has the same number of neurons of D1 but its codewords

are updated for each new matched ECG segment. That is, when d(y(n), cci∗) < εf the fea-

ture vector y(n) is also used to update dictionary Cu(n).
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As stated above, dictionary D2 and D3 are continuously updated, D3 when a match occurs

between y(n) and a codeword in D1, whereas D2 when no codeword in D1 matches y(n).

In this case, if y(n) matches some codeword in D2, the corresponding matching count is in-

creased, otherwise D2 is extended through the addition of a new codeword. Dictionaries D1

and D3 are initialized with L(0) neurons, where L(n) is always bounded, i.e., L(n) ≤ Lmax

at all times n, where Lmax is a preset parameter to cope with memory constraints. At time

0, D2 is empty and the number of neurons therein is likewise bounded by Lmax. Similarly to

the TASOM-based approach, when the compression scheme is activated for the first time, a

sufficient number N of signal segments must be provided as input to perform a preliminary

training phase. Such training allows the dictionaries to learn the subject signal’s distribu-

tion. Let assume that time is reset when the preliminary training ends and assume n = 0

at such point. Both Cc(0) = {cc1(0), . . . , ccL(0)(0)} and Cu(0) = {cu1(0), . . . , cuL(0)(0)} are

defined as the dictionaries whose codewords ccj(0) and cuj (0), j = 1, . . . , L(0), are equal to

the synaptic-weight vectors at the end of the initial training. Hence, at time n = 0 we

have ccj(0) = c
u
j (0) = wj(0), j = 1, . . . , L(0). We also assume that the decompressor at the

receiver is synchronized with the compressor, that is, it owns a copy of D1 (Cc(0)). Also, for

any codeword c belonging to any dictionary, if d(y(n), c) < εf we say that y(n) is matched

by c. For the continuous update of the synaptic weight vectors (codewords) in dictionary

D3, we apply the following Algorithm 2, which is based on the Hebbian learning theory

in [123, 124].

Algorithm 2 [Synaptic weight vector update]:

At the generic time n, let y(n) and i∗ respectively be the current feature vector and the index

associated with the best matching codeword in D1, i.e., d(y(n), cui∗(n)) ≤ d(y(n), cuj (n)),

j = 1, . . . , L(n). We have that i∗ is the winning neuron in map (dictionary) D1 for this

input (feature) vector and its synaptic weight vector is wi∗ = cui∗(n), with wi∗ ∈ R
f . The

update rule for wi∗ is:

wnew
i∗ ← wi∗ + εb(y(n)−wi∗) . (6.10)

Moreover, when we have a match, an edge will be created in the neural map between i∗ and
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i∗∗, where i∗∗ is the second-closest neuron to the current input vector y(n). If i∗ and i∗∗

are already connected with an edge, no new edge will be created. After that, we update the

synaptic weight vector of every neuron j that is a neighbor of i∗, i.e., that is connected to

it through an edge:

wnew
j ← wj + εn(y(n)−wj) , (6.11)

where εb and εn are constant learning rates. The new weight vectors of (6.10) and (6.11)

correspond to the updated codewords for dictionary D3.

Keeping the above definitions and update rules into account, from time 0 onwards, for any

new feature segment y(n) (n = 1, 2, . . . ) the following procedure is executed:

Algorithm 3 [SURF]:

Step 1) for y(n), find the indices of the two closest codewords in D1 (Cc(n)), which are

respectively called i∗
y
(n) and i∗∗

y
(n), where

i∗
y
(n) = argminj d(y(n), c

c
j(n)) , j = 1, . . . , L(n) (6.12)

and i∗∗
y
(n) is the index of the second-closest codeword in D1.

Step 2) Let d(n) = d(y(n), cci∗(n)) be the distance between y(n) and the closest codeword

cci∗(n), where we use i∗ as a shorthand notation for i∗
y
(n). If d(n) > εf act as follows,

otherwise move to Step 3. Check the reserved dictionary D2 to see whether any of its

codewords matches y(n). If this is the case, then increase by one unit the matching count

for that codeword: if this count exceeds γ in the ∆ time slots following its addition to

D2, then this codeword is removed from D2, added to D1 and D3 (increasing their size,

i.e., L(n) ← L(n) + 1) and transmitted to the receiver. If no matching codeword exists

in D2, the feature vector y(n) is sent to the receiver along with the length and offset of

the corresponding signal segment. Also, a new codeword (neuron) is added to the reserved
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dictionary D2 this neuron has a weight vector w = y(n).

Step 3) Here, d(n) ≤ εf . 3.1) Use the weight vector of neuron i∗ as the approximating

vector for y(n). Hence, send index i∗ to the receiver along with the length and offset of the

signal segment associated with y(n). 3.2) Use y(n) to update D3 through Algorithm 2

above. 3.3) For dictionary D3 do the following. Increase the age aj of all the neighbors j

of neuron i∗. Remove any edge with age aj ≥ amax, with amax being a preset parameter.

If this makes it so a neuron remains with no neighbors (no edges connecting it to other

neurons in D3), then remove this neuron from both D1 and D3 and decrease their size,

L(n)← L(n)− 1. 3.4) For dictionary D1 do the following. The distance between the input

y and the nearest neuron i∗ will be added to the local accumulated error of neuron i∗:

error(i∗)new ← error(i∗)old + d(y(n), cci∗(n)) . (6.13)

Step 4) Dictionary management. The following dictionary update procedure follows

the growing neural gas network algorithm of [121]. Every λ time steps, we check the current

dictionary for its possible update as follows: 4.1) Each two corresponding neurons in Cc(n)

and Cu(n) will be considered. If their distance is greater than εf , the weight vector of

the neuron (codeword) in Cc(n) will be replaced with the one of the corresponding neuron

in Cu(n). The weight vectors (codewords) in Cc(n) that are updated as a consequence of

this check are sent to the receiver. 4.2) For dictionary D1, the neuron q (synaptic weight

vector wq) with the maximum accumulated error is determined. A new neuron r (synaptic

weight vector wr) is generated halfway between q and its neighbor f that has the largest

accumulated error:

wr = 0.5(wq +wf ) . (6.14)

The new neuron r is then added to both D1 and D3 and is also transmitted to the receiver

to update the decoder’s dictionary D1. For both D1 and D3, remove the edge connecting

neurons q and f (edge (q, f)) and add the two edges (q, r) and (r, f). Multiply the accumu-

lated error of q and f by constant α and initialize the accumulated error of r with the new
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value of the accumulated error of q.

Step 6) All the accumulated error will be multiplied by a second constant β. After this,

go to Step 1 for the next input segment.

In the above algorithm, Step 2 checks whether the current segment is matched by one

codeword in the current dictionary D1. If not, the current feature vector is tagged as an

unknown pattern and is added to dictionary D2 to go through an assessment phase. If in-

stead a matching codeword in D1 is found, this codeword is used in Step 3 to approximate

the current segment. This is achieved by sending the index associated with this match-

ing codeword to the receiver, which owns a copy of dictionary D1 and uses the index to

retrieve the approximating codeword. With Step 4, we periodically perform a dictionary

assessment, i.e., we check whether the current dictionary D1 is still well representative of

the actual input distribution. This assessment is accomplished by checking the distance be-

tween each codeword in D1 and its corresponding codeword in D3: if this distance gets too

large (namely, larger than the maximum tolerable error ε), the codeword in D1 is replaced

with its counterpart in D3. Note that, the higher εf , the higher the error tolerance and the

lower the number of updates that are carried out for the current dictionary D1. Conversely,

a small εf entails frequent dictionary updates. This regulates the actual representation

error and also determines the maximum achievable compression efficiency. Moreover, we

stress that in Step 4 the update procedure is solely applied to those neurons that need to

be updated as opposed to our previous design of Section 6.3, where the whole dictionary is

updated. This helps reduce the overhead associated with the dictionary update operation

(see objective O2).

At the receiver, the n-th segment is reconstructed by picking the codeword y∗ with index

i∗ from the local dictionary, moving it into the time domain through the inverse feature

map, i.e., x∗ = Ψ−1(y∗), adding back offset ex(n) and resizing the codeword to the actual

segment length rx(n).
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6.5 Numerical Results

In this section, we show quantitative results for the proposed signal compression algorithms,

detailing their energy consumption, compression efficiency and reconstruction fidelity.

For the energy consumption, following the approach of [111, 112] we compute three

metrics: 1) the energy consumption for the execution of the compression algorithms in the

node (termed compression energy), 2) the energy drained by the the transmission of the

(either compressed or original) signal over a wireless channel (transmission energy) and 3)

the total energy, which is given by the sum of the previous two metrics. The compression

energy has been evaluated by taking into account the number of operations performed by

the Micro-Controller Unit (MCU), i.e., the number of additions, multiplications, divisions

and comparisons. These were then translated into the corresponding number of MCU cycles

and, in turn, into the energy consumption in Joule per bit considering a Cortex M4 [113]

processor, see also [111]. For the transmission energy, we took a Texas Instruments CC2541

low-energy Bluetooth system-on-chip [114], which is widely adopted for IoT devices.

The Compression Efficiency (CE) has been computed as the ratio between the total

number of bits that would be required to transmit the full signal divided by those required for

the transmission of the compressed bitstream. For the reconstruction fidelity, we computed

the Root Mean Square Error (RMSE) between the original and the compressed signals

normalizing it with respect to the signal’s peak-to-peak amplitude, that is:

RMSE =
100

p2p

(∑K
i=1(xi − x̂i)

2

K

)1/2

, (6.15)

where K corresponds to the total number of samples in the trace, xi and x̂i are the original

sample and the one reconstructed after the decompressor in position i, respectively. p2p

is the average peak-to-peak signal’s amplitude. The SURF parameters have been set as

follows: εb = 0.01, εn = 0.005, α = 0.5, β = 0.995, λ = 200 and amax = 100.

In Section 6.5.1 we first assess the performance of the considered compression algorithms

for the standard test ECG traces from the PhysioNet MIT-BIH arrhythmia database [116].
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Figure 6.3: RMSE vs compression efficiency for ECG signals – comparison of SURF
compression schemes.

In Section 6.5.2, we extend our analysis to ECG traces that we collected from a Zephyr

BioHarness 3 wearable chest monitor.

6.5.1 PhysioNet ECG traces

In the first set of graphs, we show results for ECG traces. To this end, we considered the

following traces from the MIT-BIH arrhythmia database [116]: 101, 112, 115, 117, 118, 201,

209, 212, 213, 219, 228, 231 and 232, which were sampled at rate of 360 samples/s with

11−bit resolution. Note that not all the traces of the database are usable (some are very

noisy due to heavy artifacts probably due to the disconnection of the sensing devices) and

an educated selection has to be carried out for a meaningful performance analysis, as done

in previous work [116, 117]. The above performance metrics were obtained for these traces

and their average values are shown in the following plots.

As a first result, in Figs. 6.3 and Fig. 6.4 we show the compression efficiency and the total

energy consumption of SURF, both plotted versus the RMSE. In these plots we quantify the

impact of feature space size f , which corresponds to the number of DCT coefficients that

are retained and stored in the feature vector y(n). Three SURF variants were implemented:
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1) SURF matching: LTC. It refers to the time domain implementation, i.e., the feature

map is an identity matrix and the feature vectors y(n) correspond to the original signal

segments, i.e., y(n) = x(n). Whenever an input segment is unmatched, the corresponding

LTC coefficients are transmitted to the receiver and the segment normalization block is

skipped (as LTC does not require it).

2) SURF matching: DCT. It is another time domain implementation of SURF where,

if an input segment is unmatched, the corresponding DCT coefficients are transmitted to

the receiver. So, in this case the DCT transform is only applied if a new pattern, that the

current dictionary is unable to approximate, is detected.

3) SURF-DCT. It is the feature domain implementation of Section 6.4, for which we con-

sidered the following values for the feature space dimensionality f ∈ {50, 75, 100, 150, 200}.

From Fig. 6.3, we see that SURF-DCT achieves the highest CE, up to 90-fold for the con-

sidered PhysioNet signals, whereas time domain processing allows for maximum efficiencies

of 60-fold. As expected, increasing f entails a smaller RMSE at the cost of a decreasing CE.

However, we see that when f increases beyond 100 the RMSE performance gest affected

and starts decreasing. In these cases, SURF-DCT behaves similarly to its time domain
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Figure 6.5: RMSE vs compression efficiency for ECG signals: comparison of compression
algorithms.

counterpart. This is because dictionary construction in feature space allows for more ro-

bustness and generalization capabilities than working in the time domain, which may lead

to overfitting codewords to specific signal examples. This means that an optimal value of

f can be identified, which in our case is around f∗ ' 100. Fig. 6.4 shows the total energy

consumption (adding up processing and transmission) and we see that savings of almost

two orders of magnitude are possible.

In Fig. 6.5, we plot RMSE vs CE for all the considered compression algorithms, namely, tech-

niques based on DCT, DWT and linear approximation LTC, the GSVQ and OD codebook-based

schemes, the BSBL-CS and SOMP-CS dimensionality reduction algorithms, the TASOM-

based algorithm of Section 6.3 and SURF-DCT. At very low compression efficiencies LTC

outperforms DCT in terms of RMSE. DWT does a much better job than DCT in terms of

RMSE, especially at relatively small compression efficiencies, say, smaller than 30, but it is

unable to reach a higher CE, for which LTC, TASOM, OD and SURF are to be preferred.

As for the CS-based algorithms, neither SOMP-CS nor BSBL-CS provides satisfactory per-

formance. The compression efficiency of SOMP-CS is rather small and the corresponding

RMSE tends to diverge for, e.g., CE larger than 5. As we shall see shortly below, although

the BSBL-CS compressor has the lowest energy consumption, the overall energy expendi-

ture is high as this approach is less effective in terms of CE than other schemes such as

dictionary based (GSVQ, OD) and neural map based algorithms (TASOM and SURF). For

GSVQ, we move along the RMSE vs CE curves by changing the threshold that governs the
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number of bits that are encoded into the residual stream (residual encoding is the opera-

tion that affects the most the performance of GSVQ). There, the dictionary size affects the

maximum achievable compression but the maximum CE is always smaller than that of OD,

where the dictionary adapts to the signal in an online fashion. Although not shown in the

plot, one may be thinking of not sending the residual encoding stream, so as to reach higher

compression efficiencies. However, due to the use of a precomputed and fixed dictionary,

this leads to a very high RMSE and is not recommended. SURF-DCT offers very good

performance both in terms of RMSE and CE, resulting the best algorithm. We also empha-

size the substantial gap in both performance metrics that SURF-DCT achieves with respect

to the TASOM-based approach. The reasons for this are that: i) SURF dictionaries more

effectively deal with new patterns and artifacts, ii) SURF works in the signal feature space,

where the size of codewords is reduced to f elements and dictionary updates are selectively

implemented only for the codewords that no longer meet the error tolerance.

For SURF, we also look at the number of codewords in the dictionary as a function of the

CE, see Fig. 6.6 and 6.7. From those plots, we see that the dictionary size never exceeds

17kbytes and that for this reason the approach is amenable to implementation on wearables.

We also note that the dictionary size at first (small CE) increases up to a maximum and

then starts decreasing for higher CE. This is because when the error tolerance εf is very

small, the compressor often sends the full feature vector as none of the current codewords

will match the new segment. Also, as a new pattern is detected and the corresponding

feature vector is added to dictionary D2, this codeword will be put into use (moving it to

D1 and D3) with small probability, as further “nearly exact” (εf → 0) matches are difficult

to occur. On the other hand, as εf increases, more codewords will be added to the dictionary

and they will be used to encode multiple patterns each. However, as εf increases beyond

a certain threshold, a smaller codeword set will suffice to represent the input signal space

and the dictionary size will correspondingly start decreasing.

In Fig. 6.8, we show the RMSE and the energy drained for compression (processing) at

the transmitter, expressed in Joule per bit of the original ECG sequence. These tradeoff
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curves are obtained by varying the compression efficiency of each algorithm from the min-

imum to the maximum achievable (which are scheme-specific, see Fig. 6.11). The RMSE

increases with an increasing compression efficiency, whereas the compression energy depends

weakly on CE. As expected, BSBL-CS has the smallest energy consumption. This good per-

formance is due to its lightweight compression algorithm, which just multiplies the input

signal by sparse binary matrices, with entries in {0, 1}. LTC is the second best, whereas

OD, SOMP-CS, GSVQ and TASOM perform very close to one another and have the worst

energy consumption for compression. SURF consumes a smaller amount of energy than

them. We underline that the energy consumption of SURF, TASOM, OD, SOMP-CS and

GSVQ is dominated by the preprocessing chain of Fig. 6.2 (as we quantify below through
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Figure 6.8: RMSE vs compression energy obtained varying CE as the independent pa-
rameter.

Tables 6.1 and 6.2). In Fig. 6.8, we also show the performance of OD by removing the

contribution of the pre-processing blocks (filtering, peak detection and segment extraction):

the corresponding curve is referred to in the plot as “OD NoPre”. Note that filtering is

always performed to remove measurement artifacts and peak detection is also very often

utilized to extract relevant signal features. Given this, the energy consumption associated

with the required pre-processing functions may not be a problem, especially if these func-

tions are to be executed anyway. The same decrease in processing energy is obtained by

removing these contributions from SURF-DCT.

In Fig. 6.9, we show the RMSE as a function of the total energy consumption, which is

obtained summing the energy required for compression to that for the subsequent transmis-

sion of the compressed bitstream over a CC2541 Bluetooth low-energy wireless interface.

This total energy is then normalized with respect to the number of bits in the original

ECG signal. From this plot, we see that the total energy consumption is dominated by

the transmission energy, which depends on the compression efficiency. In this respect, the

best algorithms are LTC, OD and SURF and the algorithm of choice depends on the tar-

get RMSE that, in turn, directly descends from the selected CE. As discussed above, an

adaptive algorithm may be a good option, where for each value of CE the scheme providing

the smallest RMSE is used. In Fig. 6.9, the energy consumption when no compression is

applied is also shown for comparison. We see that signal compression, and the subsequent

reduction in size of the data to be transmitted, allows a considerable decrease in the total
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Figure 6.9: RMSE as a function of the total energy consumption (compression plus
transmission) of ECG signals.

energy consumption. When the energy reduction is of one order of magnitude, LTC, OD

and SURF respectively provide RMSEs smaller than 2%, 4% and 2%. The performance of

SURF is particularly striking as it allows saving up to two order of magnitude in terms of

energy consumption by still keeping the RMSE around 6%. This motivates the use of signal

compression techniques for continuous monitoring applications for wearable devices. Also,

note that SURF’s actual RMSE is automatically adjusted at runtime, by allowing slightly

less accurate representations, and thus much higher compressions, when no critical patterns

occur.

A breakdown of the complexity and energy consumption figures for the considered algo-

rithms is provided in Tables 6.1 and 6.2. These metrics were obtained for the PhysioNet

ECG signals and represent the average complexity (expressed in terms of number of oper-

ations) and energy consumption (Joules) for the compression and transmission of a single

ECG segment of data. From Table 6.2 we see that SURF has a lower energy consumption

with respect to TASOM for compression, transmission and in total. From these results,

we also see that the peak detection block of TASOM and SURF accounts for 91% of the

per-segment energy drainage. The same fact applies to all the segment-based approaches

(e.g., OD and COMP-CS). We thus recommend working on lightweight peak detection al-

gorithms.

The plots in Fig. 6.10 show original and reconstructed ECG temporal signals using LTC,
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Table 6.1: Energy breakdown [no. operations] and consumption [µJ] for the TASOM
compressor. RMSE = 5.64%.

Pass band Peak Segment Pattern Codebook
filtering detection extractor matching manager Total

Additions 4874.89 61284.37 592 3142.99 7105.42 77001.68
Multiplications 4526.69 60587.96 298 3009.81 4260 72682.46
Divisions 348.21 696.41 3 0 29 1076.62
Comparisons 0 522.31 0 194.15 26.87 743.33

Compression energy [µJ] 0.47 4.34 0.03 0.21 0.39 5.43
Transmission energy [µJ] – – – – – 117.23

Total energy [µJ] 122.66

Table 6.2: Energy breakdown [no. operations] and consumption [µJ] for SURF. RMSE =
6.39%.

Pass band Peak Segment Pattern Codebook
filtering detection extractor matching manager Total

Additions 4843.93 60895.16 2497 1462.29 1136.80 70835.19
Multiplications 4497.94 60203.17 1498 1477.06 577.75 68253.19
Divisions 346 691.99 2 0 0 1039.99
Comparisons 0 518.99 0 11.27 137.01 667.27

Compression energy [µJ] 0.47 4.31 0.13 0.1 0.06 5.06
Transmission energy [µJ] – – – – – 16.3

Total energy [µJ] 21.36

TASOM and SURF, in the presence of anomalous ECG segments (toward the middle of the

plots). Remarkably, although all algorithms have the same average RMSE, LTC heavily

affects the ECG morphology as part of its approximation. TASOM does a better job,

but its dictionary is unable to effectively represent the new patterns. SURF provides the

best results as it preserves the signal morphology, while achieving the highest compression

efficiencies, i.e., up to CE = 53.

6.5.2 Wearable ECG Signals

We now present some results for ECG signals that we acquired from a Zephyr BioHarness 3

wearable device [34]. To this end, we collected ECG traces from eleven healthy individuals,

which were continuously recorded during working hours, i.e., from 8am to 6pm. These were

sampled at a rate of 250 samples/s with each sample taking 12 bits.

The RMSE vs CE tradeoff for these signals is shown in Fig. 6.11 for the best performing

compression algorithms. The results are similar to those of Fig. 6.5 with the main difference

that in this case the ECG signals are prone to artifacts and have a higher non-stationarity.

As such, the resulting RMSE is also higher and the compression performance is degraded for
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(a) LTC: CE = 22 and RMSE = 2%.
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(b) LTC: CE = 29 and RMSE = 3%.
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(c) TASOM: CE = 34 and RMSE =
2%.
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(d) TASOM: CE = 49 and RMSE =
3%.
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(e) SURF: CE = 43 and RMSE = 2%.
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(f) SURF: CE = 53 and RMSE = 3%.

Figure 6.10: Original and reconstructed signal in the presence of artifacts for LTC,
TASOM and SURF.
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Figure 6.12: RMSE vs Energy for Computation for Bioharness traces

all schemes. The general trends and recommendations remain unchanged, i.e., SOMP-CS

and LTC are good choices at low up to intermediate compression efficiencies, whereas OD

perform better at higher CEs. Here, SURF shows its superior performance and especially its

ability to gracefully adapt to artifact-prone and non-steady signals. Although its maximum

compression efficiency is affected, being lowered from 96 to 50, the RMSE remains within

6% and is much smaller than that achieved by all other schemes.

The energy consumption figures, although rescaled, have a totally similar behavior as those

obtained with the PhysioNet MIT-BIH traces and shown in Figs. 6.8 and 6.9. The energy

consumption associated with onboard processing and the total energy budget for the Zephyr

Bioharness ECG signals are respectively shown in Figs. 6.12 and 6.13.
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Figure 6.13: RMSE vs Total Energy for Bioharness traces

6.6 Conclusions

In this chapter, we have presented SURF, a Subject-adpative Unsupervised ecg compressor

for weaRable Fitness monitors. Our idea is to use lossy compression on the ECG signal at

the wearable device, to decrease the energy consumption entailed in its wireless transmission

and thus prolong the battery lifetime. SURF exploits unsupervised learning techniques to

build and maintain, at runtime, a subject-adaptive dictionary without requiring any prior

information on the signal itself. Dictionaries are constructed within a suitable feature space,

allowing the addition and removal of codewords according to the signal’s dynamics (for

given target fidelity and energy consumption objectives). It exploits Growing Neural Gas

(GNG) networks. Quantitative results, obtained with reference ECG traces and with our

own measurements from a commercial wearable wireless monitor, show the superiority of

SURF against state-of-the-art techniques: compression ratios of up to 90-times are generally

achievable, reconstruction errors (RMSE) remain often within 3%, energy consumption is

reduced up to two-orders of magnitude with respect to sending the signal uncompressed and

the input signal morphology is well preserved.

We have identified, from the numerical analysis, several avenues for future research that we

have carried out in this chapter. Firstly, the major part of the energy consumption related

to computation belongs to the filtering and peak detection sections. Implementation of

light-weight peak detection method will highly improve the efficiency. Moreover, we have
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started a feature domain compression. We have used DCT for this purpose which has a

great effect on performance improvement. Hence, a desirable subject for future research is

to study and analyze the feature domain more deeply.



Chapter 7

Conclusion

In this doctoral thesis, we have addressed the design and the performance evaluation of

signal compression schemes for wireless and battery operated sensor networks and body

sensor networks (wearable devices). The objective of these techniques is to perform signal

compression (either temporal or spatio-temporal) at the source(s) so as to reduce the amount

of data to transmit. This has the twofold beneficial effect of: i) decreasing the energy entailed

in the data transmission and ii) reducing the overall energy consumption (signal processing

plus transmission) at the source. These facts lead to obvious advantages in terms of memory

requirements and overall energy budget, making it possible to prolong the network or device

lifetime.

In the second part of the thesis, we have addressed the design of spatio-temporal compression

schemes for environmental wireless sensor networks by, at the same time, delving into their

performance comparison with respect to relevant compression algorithms from the literature.

Among other schemes, our results revealed that compressive sensing (CS) can be effectively

used for the compression of correlated signals (in time, space or both) and that the joint

sparsification along the temporal and spatial dimensions is key to achieve good performance

and improve upon distributed source coding schemes, even when signals are highly correlated

in space. In addition, a crucial role is played by the spatial transformation (sparsification)

basis, which has to be adapted to the specific characteristics of the signal at hand. In

129
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our work, we did so via an online covariogram-based algorithm for the estimation of the

signal covariance matrix and its refinement as time evolves. The main idea behind our CS

schemes is to estimate the signal sparsification basis on the fly, by analyzing the statistical

properties of the input signal. This allows for projections in a space where the signal

is with good approximation sparse and only a few of its coefficients suffice to represent

it. Our quantitative results, obtained for synthetic and real signals, reveal that our final

covariogram-based compressive sensing scheme performs satisfactorily across all values of

correlation, and is the algorithm of choice in terms of quality of reconstruction and energy

consumption at the sensor nodes.

In the second part of this thesis, we advocated the use of lossy compression as a means to

boost the battery life of wireless wearable devices for health monitoring. As a first contribu-

tion, we presented an original dictionary based technique, where compression is achieved by

building and maintaining at runtime a dictionary. This dictionary is subsequently used to

approximate signal sequences transmitting codeword indices in place of the original samples.

This technique is found to be very effective, showing excellent approximation capabilities and

very high compression efficiencies at the cost of a reasonably small amount of computation.

We then considered compression algorithms based on linear approximations. Despite their

inherent simplicity, we found them to be quite effective and, when the required compression

efficiency is not too high, they represent the best option among competing solutions. We also

found that a recent scheme belonging to this class, called lightweight temporal compression,

very closely matches the performance of principal component analysis, at a much smaller

computational cost and additionally providing inbuilt guarantees on the maximum approxi-

mation error at the decompressor. Thus, we explored the performance of recent approaches

based on autoencoders. These neural network architectures are found to be extremely ef-

fective, leading to the highest compression efficiencies at a reasonable computational cost.

Their performance is striking especially at very high compression rates, where just two inner

neurons are utilized to represent input patterns comprising several hundreds of points, still

providing very small approximation errors (usually the RMSE remains bounded within 4%).

The performance of these algorithms was numerically evaluated against that of the most
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prominent schemes from the literature, i.e., Fourier and Wavelet transforms, compressive

sensing and vector quantization techniques.

In the final chapter, we have presented an original subject-specific lossy compression algo-

rithm for wearable fitness monitors, called SURF. This algorithm is based upon dictionaries

that are learned and maintained at runtime through the use of neural network maps. Our

design utilizes unsupervised learning to accomplish the following objectives: i) dictionar-

ies gracefully and effectively adapt to new subjects or their new activities, ii) the size of

these dictionaries is kept bounded (i.e., within 20kbytes), making them amenable to their

implementation in wireless monitors, iii) high compression efficiencies are reaches, allowing

for 50 to 96-fold reduction in the signal size, depending on the frequency of artifacts in

the sampled signal, iv) the original biometric time series are reconstructed at the receiver

with high accuracy, i.e., within a peak-to-peak RMSE of 7% and often smaller than 3%

and v) compression allows saving energy at the transmitter, making it almost two orders of

magnitude smaller. These facts make SURF a compelling algorithm, that outperforms the

compression approaches that were proposed thus far for the considered vital signs.
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