2,263 research outputs found

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one

    ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards

    Get PDF
    This article details the current work status of the ETSI Reconfigurable Radio Systems Technical Committee, positions the ETSI work with respect to other standards efforts (IEEE 802, IEEE SCC41) as well as the European Regulatory Framework, and gives an outlook on the future evolution. In particular, software defined radio related study results are presented with a focus on SDR architectures for mobile devices such as mobile phones. For MDs, a novel architecture and inherent interfaces are presented enabling the usage of SDR principles in a mass market context. Cognitive radio principles within ETSI RRS are concentrated on two topics, a cognitive pilot channel proposal and a Functional Architecture for Management and control of reconfigurable radio systems, including dynamic self-organizing planning and management, dynamic spectrum management, joint radio resource management. Finally, study results are indicated that are targeting a SDR/CR security framework.Postprint (published version
    • 

    corecore