1,632 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Opening of Ancillary Service Markets to Distributed Energy Resources: A Review

    Get PDF
    Electric power systems are moving toward more decentralized models, where energy generation is performed by small and distributed power plants, often from renewables. With the gradual phase out from fossil fuels, however, Distribution Energy Resources (DERs) are expected to take over in the provision of all regulation services required to operate the grid. To this purpose, the opening of national Ancillary Service Markets (ASMs) to DERs is considered an essential passage. In order to allow this transition to happen, current opportunities and barriers to market participation of DERs must be clearly identified. In this work, a comprehensive review is provided of the state-of-the-art of research on DER integration into ASMs. The topic at hand is analyzed from different perspectives. First, the current situation and main trends regarding the reformation processes of national ASMs are analyzed to get a clear picture of the evolutions expected and adjustment required in the future, according to the scientific community. Then, the focus is moved to the strategies to be adopted by aggregators for the effective control and coordination of DERs, exploring the challenges posed by the uncertainties affecting the problem. Coordination schemes between transmission and distribution system operators, and the implications on the grid infrastructure operation and planning, are also investigated. Finally, the review deepens the control capabilities required for DER technologies to perform the needed control actions

    Scheduling of EV Battery Swapping, I: Centralized Solution

    Get PDF
    We formulate an optimal scheduling problem for battery swapping that assigns to each electric vehicle (EV) a best battery station to swap its depleted battery based on its current location and state of charge. The schedule aims to minimize a weighted sum of EVs’ travel distance and electricity generation cost over both station assignments and power flow variables, subject to EV range constraints, grid operational constraints, and ac power flow equations. To deal with the nonconvexity of power flow equations and the binary nature of station assignments, we propose a solution based on second-order cone programming (SOCP) relaxation of optimal power flow and generalized Benders decomposition. When the SOCP relaxation is exact, this approach computes a global optimum. We evaluate the performance of the proposed algorithm through simulations. The algorithm requires global information and is suitable for cases where the distribution grid, battery stations, and EVs are managed centrally by the same operator. In Part II of this paper, we develop distributed solutions for cases where they are operated by different organizations that do not share private information

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Methods for Optimal Microgrid Management

    Get PDF
    Abstract During the last years, the number of distributed generators has grown significantly and it is expected to become higher in the future. Several new technologies are being de-veloped for this type of generation (including microturbines, photovoltaic plants, wind turbines and electrical storage systems) and have to be integrated in the electrical grid. In this framework, active loads (i.e., shiftable demands like electrical vehicles, intelligent buildings, etc.) and storage systems are crucial to make more flexible and smart the dis-tribution system. This thesis deals with the development and application of system engi-neering methods to solve real-world problems within the specific framework of microgrid control and management. The typical kind of problems that is considered when dealing with the manage-ment and control of Microgrids is generally related to optimal scheduling of the flows of energy among the various components in the systems, within a limited area. The general objective is to schedule the energy consumptions to maximize the expected system utility under energy consumption and energy generation constraints. Three different issues related to microgrid management will be considered in detail in this thesis: 1. The problem of Nowcasting and Forecasting of the photovoltaic power production (PV). This problem has been approached by means of several data-driven techniques. 2. The integration of stations to charge electric vehicles in the smart grids. The impact of this integration on the grid processes and on the demand satisfaction costs have been analysed. In particular, two different models have been developed for the optimal integration of microgrids with renewable sources, smart buildings, and the electrical vehicles (EVs), taking into account two different technologies. The first model is based on a discrete-time representation of the dynamics of the system, whereas the second one adopts a discrete-event representation. 3. The problem of the energy optimization for a set of interconnencted buildings. In ths connection, an architecture, structured as a two-level control scheme has been developed. More precisely, an upper decision maker solves an optimization problem to minimize its own costs and power losses, and provides references (as 3 regars the power flows) to local controllers, associated to buildings. Then, lower level (local) controllers, on the basis of a more detailed representation of each specific subsystem (the building associated to the controller), have the objective of managing local storage systems and devices in order to follow the reference values (provided by the upper level), to contain costs, and to achieve comfort requirements
    corecore