5,949 research outputs found

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    Depth Enhancement and Surface Reconstruction with RGB/D Sequence

    Get PDF
    Surface reconstruction and 3D modeling is a challenging task, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. It is fundamental to many applications such as robot navigation, animation and scene understanding, industrial control and medical diagnosis. In this dissertation, I take advantage of the consumer depth sensors for surface reconstruction. Considering its limited performance on capturing detailed surface geometry, a depth enhancement approach is proposed in the first place to recovery small and rich geometric details with captured depth and color sequence. In addition to enhancing its spatial resolution, I present a hybrid camera to improve the temporal resolution of consumer depth sensor and propose an optimization framework to capture high speed motion and generate high speed depth streams. Given the partial scans from the depth sensor, we also develop a novel fusion approach to build up complete and watertight human models with a template guided registration method. Finally, the problem of surface reconstruction for non-Lambertian objects, on which the current depth sensor fails, is addressed by exploiting multi-view images captured with a hand-held color camera and we propose a visual hull based approach to recovery the 3D model

    Joint interpolation of multi-sensor sea surface geophysical fields using non-local and statistical priors

    No full text
    This work addresses the joint analysis of multi-source and multi-resolution remote sensing data for the interpolation of high-resolution geophysical fields. As case-study application, we consider the interpolation of sea surface temperature fields. We propose a novel statistical model, which combines two key features: an exemplar-based prior and second-order statistical priors. The exemplar-based prior, referred to as a non-local prior, exploits similarities between local patches (small field regions) to interpolate missing data areas from previously observed exemplars. This non-local prior also sets an explicit conditioning between the multi-sensor data. Two complementary statistical priors, namely a prior on the spatial covariance and a prior on the marginal distribution of the high-resolution details, are considered as sea surface geophysical fields are expected to depict specific spectral and marginal features in relation to the underlying turbulent ocean dynamics. We report experiments on both synthetic data and real SST data. These experiments demonstrate the contributions of the proposed combination of non-local and statistical priors to interpolate visually-consistent and geophysically-sound SST fields from multi-source satellite data. We further discuss the key features and parameterizations of this model as well as its relevance with respect to classical interpolation techniques
    • …
    corecore