9 research outputs found

    Joint Localization and Mapping through Millimeter Wave MIMO in 5G Systems - Extended Version

    Full text link
    Millimeter wave signals with multiple transmit and receive antennas are considered as enabling technology for enhanced mobile broadband services in 5G systems. While this combination is mainly associated with achieving high data rates, it also offers huge potential for radio-based positioning. Recent studies showed that millimeter wave systems with multiple transmit and receive antennas are capable of jointly estimating the position and orientation of a mobile terminal while mapping the radio environment simultaneously. To this end, we present a message passing-based estimator which jointly estimates the position and orientation of the mobile terminal, as well as the location of reflectors or scatterers. We provide numerical examples showing that this estimator can provide considerably higher estimation accuracy compared to a state-of-the-art estimator. Our examples demonstrate that our message passing-based estimator neither requires the presence of a line-of-sight path nor prior knowledge regarding any of the parameters to be estimated

    Joint Localization and Mapping through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals with multiple transmit and receive antennas are considered as enabling technology for enhanced mobile broadband services in 5G systems. While this combination is mainly associated with achieving high data rates, it also offers huge potential for radio-based positioning. Recent studies showed that millimeter wave signals with multiple transmit and receive antennas are capable of jointly estimating the position and orientation of a mobile terminal while mapping the radio environment simultaneously. To this end, we present a message passing-based estimator which jointly estimates the position and orientation of the mobile terminal, as well as the location of reflectors or scatterers in the absence of the line-of-sight path. We provide numerical examples showing that our estimator can provide considerably higher estimation accuracy compared to a state-of-the-art estimator. Our examples demonstrate that our message passing-based estimator neither requires the presence of a line-of-sight path nor prior knowledge regarding any of the parameters to be estimated

    Joint CKF-PHD Filter and Map Fusion for 5G Multi-cell SLAM

    Get PDF
    5G is expected to enable simultaneous vehicle localization and environment mapping (SLAM). Furthermore, vehicular networks will be covered with 5G small cells, wherein the map information is collected at each base station (BS) and then fused so as to promote the overall performance of SLAM. In 5G multi-cell SLAM, there are challenges such as the unknown number of targets, uncertainty regarding the association between the targets and the measurements, unknown types of targets, as well as map management among BSs. To address those challenges, we propose a new method for 5G multi-cell SLAM which comprises a joint cubature Kalman filter and multi-model probability hypothesis density, and a map fusion routine. Simulation results demonstrate that the proposed method solves the aforementioned challenges and also improves vehicle state and map estimates

    5G mmWave Cooperative Positioning and Mapping using Multi-Model PHD Filter and Map Fusion

    Get PDF
    5G millimeter wave (mmWave) signals can enable accurate positioning in vehicular networks when the base station and vehicles are equipped with large antenna arrays. However, radio-based positioning suffers from multipath signals generated by different types of objects in the physical environment. Multipath can be turned into a benefit, by building up a radio map (comprising the number of objects, object type, and object state) and using this map to exploit all available signal paths for positioning. We propose a new method for cooperative vehicle positioning and mapping of the radio environment, comprising a multiple-model probability hypothesis density filter and a map fusion routine, which is able to consider different types of objects and different fields of views. Simulation results demonstrate the performance of the proposed method.Comment: This work has been accepted in the IEEE Transactions on Wireless Communication

    A survey on 5G massive MIMO Localization

    Get PDF
    Massive antenna arrays can be used to meet the requirements of 5G, by exploiting different spatial signatures of users. This same property can also be harnessed to determine the locations of those users. In order to perform massive MIMO localization, refined channel estimation routines and localization methods have been developed. This paper provides a brief overview of this emerging field

    5G mmWave Cooperative Positioning and Mapping Using Multi-Model PHD Filter and Map Fusion

    Get PDF
    5G millimeter wave (mmWave) signals can enable accurate positioning in vehicular networks when the base station and vehicles are equipped with large antenna arrays. However, radio-based positioning suffers from multipath signals generated by different types of objects in the physical environment. Multipath can be turned into a benefit, by building up a radio map (comprising the number of objects, object type, and object state) and using this map to exploit all available signal paths for positioning. We propose a new method for cooperative vehicle positioning and mapping of the radio environment, comprising a multiple-model probability hypothesis density filter and a map fusion routine, which is able to consider different types of objects and different fields of views. Simulation results demonstrate the performance of the proposed method
    corecore