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Wave MIMO in 5G Systems

Rico Mendrzik∗, Henk Wymeersch†, Gerhard Bauch∗
∗Institute of Communications, Hamburg University of Technology, Hamburg 21073, Germany

†Department of Electrical Engineering, Chalmers University, Gothenburg 412 58, Sweden

Abstract—Millimeter wave signals with multiple transmit and
receive antennas are considered as enabling technology for
enhanced mobile broadband services in 5G systems. While
this combination is mainly associated with achieving high data
rates, it also offers huge potential for radio-based positioning.
Recent studies showed that millimeter wave signals with multiple
transmit and receive antennas are capable of jointly estimating
the position and orientation of a mobile terminal while mapping
the radio environment simultaneously. To this end, we present
a message passing-based estimator which jointly estimates the
position and orientation of the mobile terminal, as well as
the location of reflectors or scatterers. We provide numerical
examples showing that our estimator can provide considerably
higher estimation accuracy compared to a state-of-the-art es-
timator. Our examples demonstrate that our message passing-
based estimator neither requires the presence of a line-of-sight
path nor prior knowledge regarding any of the parameters to
be estimated.

I. INTRODUCTION

A. Motivation and State of the Art

In many conventional wireless networks, accurate radio-

based positioning relies on the existence of a line-of-sight

(LOS) path between the transmitter and the receiver. Based on

the signaling and antenna apertures, position-related parame-

ters can be derived from the received signal. Such parameters

include the time-of-arrival (TOA), angle-of-arrival (AOA),

angle-of-departure (AOD), and received signal strength (RSS).

Based on the capabilities of the systems, one or more of

these parameters can be determined and leveraged for position

estimation. For instance, lateration uses the TOAs with respect

to multiple transmitters in order to obtain an estimate of

the position of the receiver [1], while angulation employs

the AOAs with respect to multiple transmitters to estimate

the position of the receiver [2]. In contrast to many conven-

tional systems, the millimeter wave (mmWave) multiple input

multiple output (MIMO) physical (PHY) layer proposal in

5G enables the determination of a triplet of position-related

parameters for every received multipath component. Due to

the high temporal and spatial resolution of mmWave MIMO,

the TOA, AOD, and AOA of every multipath component can

be estimated [3]–[5]. Due to this these triplets of position-

related parameters, every non-line-of-sight (NLOS) path can

be leveraged for position and orientation estimation [6]. Even

in the absence of LOS1, accurate positioning using only a

1We refer to the scenario where only NLOS components are received as
obstructed line-of-sight (OLOS).

single transmitter becomes possible if at least three NLOS

paths exist [6]. Note that harnessing NLOS paths for position

estimation clearly marks a paradigm shift in the field of radio-

based positioning, where NLOS paths were conventionally

considered as useless if no prior information is available [7].

Recently, different estimators have been presented in the

literature which employ NLOS paths for position estimation

and mapping [4], [8]–[10]. In [4], a least-squares approach

with extended invariance principle (EXIP) is used to recover

the position and orientation of the receiver from the TOAs,

AODs, and AOAs. This approach can be used in the presence

and absence of LOS. However in the absence of LOS, the

approach requires to solve a large number of parallel least-

squares (LS) problems. In particular, a fine-grained grid of

trial orientations is created and one LS problem has to be

solved for every point on the grid. The residuals of all solved

problems are cached and only the solution with the lowest

overall residual is retained. The drawback of this approach

is that generally a fine granularity of the trial values for

the orientation is required to achieve accurate estimates. In

[8], a Gibbs sampling-based approach is presented where an

iterative sampling process is executed. The Gibbs sampler

starts with an initial guess regarding the position and orienta-

tion of the mobile. Based on this guess, the positions of the

reflectors or scatterers are determined and the initial guesses

on the position and orientation are updated sequentially. This

procedure is repeated numerous times. A selection of all

samples is retained and used for position and orientation

estimation of the mobile, as well as for the estimation of

the reflectors or scatterers. However, the authors in [8] did

not show that their proposed Gibbs sampler works in the case

of OLOS, i.e. when the LOS component is missing. In [9],

[10], a sequence of observations including path delays and

acceleration data is used to sequentially estimate the position

of a mobile terminal and map the radio environment. This

simultaneous localization and mapping (SLAM) approach

requires multiple observations at different time instances.

B. Contribution and Paper Organization

We present a novel message passing-based estimator that

uses the concept of nonparametric belief propagation to deter-

mine estimates on the position and orientation of the mobile

terminal, as well as estimates on the locations of reflectors or

scatterers. We show that our message passing-based estimator

provides accurate estimates in the OLOS scenario. Our main



Fig. 1: Geometry of the scenario - A mobile terminal attempts

to determine its unknown position p and orientation α using

distance, AOA and AOD measurements to a base station.

Simultaneously, the mobile terminal estimates the locations

of the points of incidence corresponding to the NLOS paths.

contributions are summarized as follows:

• We propose a novel message-passing based estimator that

jointly estimates the position and orientation of a mobile

terminal along with the locations of the scatterers or

reflectors in the case of OLOS without assuming any

prior knowledge.

• The proposed estimator is capable of performing accurate

single-snapshot2 SLAM even in the absence of the LOS

path.

• Our numerical examples show that, in most cases, the

root-mean-square error (RMSE) of the proposed estima-

tor is significantly lower compared to the least-squares

approach from [4].

The rest of the paper is organized as follows. Section II

discusses our system model. In section III, we review the

theory regarding our novel message passing-based estimator,

while section IV describes the particle-based implementation

of the estimator. Section V contains numerical examples and

section VI concludes the paper.

II. SYSTEM MODEL

A. System Model

Fig. 1 depicts a scenario with J = 3 NLOS paths sce-

nario. We consider a base station (transmitter) and a mobile

terminal (receiver). The base station is located at the position

q∗ = [q∗x, q
∗
y]

T, while the mobile terminal is at p∗ = [p∗x, p
∗
y]

T.

The position and orientation of the base station are perfectly

determined and known to the mobile terminal. Without loss

of generality, we assume that the base station is at the origin

and its array is aligned with the y-axis. The received signal

comprises J ≥ 3 NLOS components with associated points

2By single-snapshot SLAM we mean that the observation from a single
transmission burst is sufficient to estimate the location and orientation of the
mobile terminal and create a map of the radio environment.

of incidence3 s∗j = [s∗x,j , s
∗
y,j ]

T, ∀j. Generally, the number of

NLOS components in the mmWave band is small [11]. In

addition, due to the high path loss in the mmWave band,

NLOS components are assumed to originate from single

bounce scattering or reflection only [12]–[14]. We assume

that the receiver determines a triplet of estimates (TOA, AOD,

and AOA) for every path as described in, e.g., [4]. We refer to

these estimates as observations and collect them in the vector

ẑ = [d̂0, θ̂TX,0, θ̂RX,0, ..., d̂J−1, θ̂TX,J−1, θ̂RX,J−1]
T, (1)

where τ̂j , d̂j = c · τ̂j , θ̂TX,j , and θ̂RX,j denote the estimates

on the TOA, distance, AOD, and AOA of the jth path, respec-

tively, and c is the speed of light. Note that, for synchronized

transmitter and receiver, we can substitute TOA with the

distance by considering the speed of light. The observations

related to the jth NLOS path are given by

d̂j = dj + edj
= ‖q− sj‖+ ‖sj − p‖+ edj

, (2a)

θ̂TX,j = θTX,j + eθTX,j
= atan2

(
sy,j − qy
sx,j − qx

)
+ eθTX,j ,

(2b)

θ̂RX,j = θRX,j + eθRX,j
= atan2

(
sy,j − py
sx,j − px

)
− α+ eθRX,j

,

(2c)

where atan2 is the four-quadrant inverse tangent and edj
,

eθTX,j
, eθRX,j

denote estimation errors regarding the distance,

AOD, and AOA, respectively. We assume that the observations

are conditionally independent [5] and the measurement noise

edj , eθTX,j , eθRX,j , ∀j can be modeled as Gaussian distributed

with zero mean and known variances σ2
dj

, σ2
θTX,j

, and σ2
θRX,j

[8], respectively. This assumption was originally introduced

in [8], where it was observed that the observation errors

which resulted from the considered TOA, AOD, and AOA-

estimator follow a Gaussian distribution. The variances of the

observation errors generally depend on the signal-to-noise-

power-ratio (SNR), the bandwidth, the antennas arrays, as well

as the actual estimation algorithm. For a given estimator, these

values can be obtained via simulation and stored in tables

for different SNRs. Finally, we assume that the position and

orientation of the mobile terminal and the points of incidence

are independent of each other.
The goal of the mobile terminal is to estimate its own

position and orientation, as well as the points of incidence

based on the observations ẑ in (1). We summarize these

parameters in the vector

η = [pT, α, sT0 , ..., s
T
J−1]

T. (3)

III. MESSAGE PASSING FOR JOINT POSITIONING,

ORIENTATION ESTIMATION, AND MAPPING

This section contains the theory required for the proposed

message passing-based estimator. First, we derive the fac-

3Note that scatterers are objects that are much smaller than the wavelength
of the signal, while reflectors are objects with a specific reflection point that
are much larger than the wavelength of the signal. In order to cover both
reflectors and scatterers, we use the term point of incidence in place of the
location of a scatterer and the point of reflection of a reflector.



torized a posteriori distribution (short: posterior) and the

corresponding factor graph. Based on this factor graph, we

briefly review the concept of belief propagation and discuss

the initialization of the message passing algorithm.

A. Factorized A Posteriori Distribution

The joint a posteriori distribution is proportional to

p(η|ẑ) ∝ p(ẑ|η)p(η), (4)

where the joint likelihood function p(ẑ|η) can be factorized

based on the conditional independencies described in section

II, i.e.

p(ẑ|η) =
J−1∏
j=0

p(d̂j |p, sj ,q)p(θ̂TX,j |sj ,q)

× p(θ̂RX,j |sj ,p, α),
(5)

and the joint a priori distributions (short: priors) can be

factorized as follows:

p(η) = p(p)p(α)
J−1∏
j=0

p(sj). (6)

The factors related to the distance, AOD, and AOA of the jth

NLOS path in (5) are given by

p(d̂j |p,q, sj) ∝ e
−(d̂j−‖q−sj‖−‖sj−p‖)2/2σ2

dj , (7a)

p(θ̂TX,j |sj ,q) ∝ e
−
(
θ̂TX,j−atan2

(
sy,j−qy

sx,j−qx

))2
/2σ2

θTX,j , (7b)

p(θ̂RX,j |sj ,p, α) ∝ e
−
(
θ̂RX,j−atan2

(
sy,j−py

sx,j−px

)
+α

)2
/2σ2

θRX,j ,
(7c)

respectively. Note that due to the nonlinear factors in (7a)-

(7c), the posterior distribution in (4) is also nonlinear. In addi-

tion, the posterior distribution has many local maxima. Hence

it is difficult to obtain optimum estimates (e.g., maximum a

posteriori (MAP) estimates) since numerical solvers will get

stuck in these local extrema if the initial estimate is far away

from the global optimum.

B. Factor Graph

We can visualize the factorized a posteriori distribution in

a graphical way using the notion of factor graphs. The factor

graph corresponding to the a posteriori distribution in (4) is

depicted in Fig. 2. Factor graphs are bipartite graphs that

consist of factor nodes (rectangles in Fig. 2), variable nodes

(circles in Fig. 2), and edges to connect the nodes [15].

The factor graph in Fig. 2 help us to reveal the structure

of the estimation problem. In particular, we observe that any

factor node dj is connected to p, q, and sj meaning that the

distance estimate is useless for p if we have no information

regarding the point of incidence sj and vice versa. Similarly,

θRX,j becomes only useful for α if we have knowledge about

p and sj . From the factor graph, we can deduce that we have

to initialize the message passing algorithm from q via sj , ∀j
to p and α. In other words, the information from the base

station initially trickles down to the position and orientation

Fig. 2: Factor graph of the posterior distribution in (4)-
Messages are passed along the edges of the factor graph to

iteratively determine the marginals of p, α, and sj , ∀j.

via the points of incidence. We will use these observations in

section III-D, to derive an initialization strategy.

C. Belief Propagation

In contrast to numerical solvers which try to find optimum

estimates based on the high-dimensional joint posterior distri-

bution (here dim(η) = 3+2J), belief propagation determines

the lower-dimensional marginal posterior distributions (short:

marginals) (e.g., p(p|ẑ) with dim(p) = 2 � dim(η)) first.

Estimates are obtained based on the marginals subsequently.

The marginals are determined iteratively by passing messages

along the edges of the underlying factor graph [15]. At all

nodes of the graph, outgoing messages are updated based

on the incoming messages and the type of node. Belief

propagation has two main update operations, namely, message
filtering (messages from factor to variable nodes) and message
multiplication (messages from variable to factor nodes).

1) Message Filtering: Every factor node computes an

outgoing message for every edge based on the function related

to the factor node and all incoming messages, excluding the

message from the edge for which the outgoing message is

computed. For instance, the message from factor node dj in

Fig. 2 to the variable node sj is computed as follows [15]

μ
(l)
dj→sj

(sj) ∝
∫

p(d̂j |p,q, sj)× μ
(l−1)
p→dj

(p)δ(q− q∗)dpdq,

(8)

where the superscript (l) refers to the iteration index,

p(d̂j |p,q, sj) is defined in (2a), μ
(l−1)
p→dj

(sj) and δ(q−q∗) are

the incoming message from p and q, respectively. Note that

the integral in (8) cannot be solved in closed-form unless the

position is perfectly determined, i.e. μ
(l)
p→θdj

(sj) = δ(p−p∗).
For incoming messages of generic structure, we have to

resort to particle-based approximations, as will be explained

in section IV-B.



2) Message Multiplication: Every variable node computes

an outgoing message for every edge based the product of the

belief from the previous iteration and all incoming messages

excluding the message from the edge for which the outgoing

message is computed. For instance, the message from the

variable node sj to the factor node θRX,j is given by

μ
(l)
sj→θRX,j

(sj) = b(l−1)
sj (sj)μ

(l)
θTX,j→sj

(sj)μ
(l)
dj→sj

(sj), (9)

where b
(l−1)
sj (sj) is the belief on sj from the previous itera-

tion, while μ
(l)
θTX,j→sj

(sj) and μ
(l)
dj→sj

(sj) are the incoming

messages as depicted in Fig. 2.

The belief of the current iteration is computed as the

product of all incoming messages and the previous belief.

For the previous example,

b(l)sj (sj) =b(l−1)
sj (sj)μ

(l)
θTX,j→sj

(sj)

× μ
(l)
θRX,j→sj

(sj)μ
(l)
dj→sj

(sj).
(10)

D. Initialization

Message passing algorithms are generally initialized by the

leaf nodes of the graph [15]. Recall that we are considering the

most general case, where we have no prior information regard-

ing p, α, and sj∀j. Consequently, the base station node q is

the only node with a non-uniform prior and belief propagation

is initialized at this node. Recall that the base station’s position

and orientation are perfectly known and, thus, a Dirac distribu-

tion δ(q−q∗) is passed towards all connected nodes, where q∗

is the true location of the base station. Note that in the upper

part of the factor graph (dashed box in Fig. 2), message-flow

is unidirectional, i.e. no messages are sent back to the base

station since its position is perfectly determined. We choose

the following sequence of messages for initialization: 1)

μθTX,j→sj , ∀j, 2) μsj→dj = μθTX,j→sj , ∀j, 3) μdj→p, ∀j, 4)

μp→dj , ∀j and μp→θRX,j , ∀j, 5) μdj→sj , ∀j, 6) μsj→θRX,j , ∀j,

7)μθRX,j→α, ∀j, 8) μα→θRX,j , ∀j, 9) μθRX,j→p, ∀j and

μθRX,j→sj , ∀j. After this sequences of messages, the factor

nodes have incoming messages from all edges, and the beliefs

are determined based on these messages. In all subsequent

iterations, a so-called flooding schedule is used to update

messages [16].

Remark: Note that the initialization strategy is not unique.

We chose the aforementioned sequence of messages for

initialization to reduce the uncertainty of the messages which

are sent along the edges of the factor graph. For instance,

μθTX,j→sj is basically a cone of infinite length originating at

q∗ with mean angle θ̂TX,j . By incorporating the information

regarding p invoked in step 4) (which is sent back to sj via

μdj→sj , in step 5)), the message μsj→θRX,j
remains a cone but

with finite length which reduces the uncertainty considerably.

IV. PARTICLE-BASED MESSAGE COMPUTATION AND

ESTIMATION

First, we briefly review the concept of importance sampling

to approximate the continuous messages by sets of weighted

samples (particles). Afterwards, we explain how the contin-

uous messages in (8) and (9) are approximated by sets of

particles. Finally, we explain how to obtain estimates of the

parameters based on their beliefs. For notational convenience,

we drop the iteration-superscript in this section.

A. Importance Sampling

To perform belief propagation, we have to have means to

compute the outgoing messages. The filtering operation in

(8) requires solving an integral which cannot be solved in

closed-form in general. Since all messages can be interpreted

as probability distributions, our goal is to draw samples

from these distributions without computing these distributions

explicitly. To that end, we employ importance sampling.

In importance sampling, we wish to obtain a set of samples

x(k), k = 1, ..., Ns from p(x) which cannot be sampled

directly. In our context p(x) is any outgoing message, e.g.,

μ
(l)
θRX,j→sj

(sj). Therefore, we draw Ns samples x(k) from

a suitable proposal distribution qX(x) and attach a weight

w(k) to every sample. The weight accounts for the mismatch

between p(x) and q(x) [17]. The combination of a sample

and its weight is referred to as a particle {w(k),x(k)}. The

unnormalized weight is given by [17]

w̃(k) =
p(x(k))

q(x(k))
. (11)

For numerical stability, we normalize all weights such that

w(k) = w̃(k)/
∑

k w̃
(k). The set of samples with their as-

sociated weights is called particle representation of p(x),
denoted by RNs

(p(x)). Finally, we resample the particle

representation to stochastically discard particles with very low

weights [17]. After resampling all samples have equal weight,

i.e. 1/Ns.

B. Particle-based Message Computation

1) Message Filtering: At any factor node, assume that

all incoming messages are given as particle representations

and we wish to obtain a particle representation of an out-

going message. For instance, we want to obtain the particle

representation RNs

(
μdj→sj (sj)

)
= {w(k)

sj , s
(k)
j }Ns

k=1 of the

filtered message in (8) based on the particle representation of

the incoming message RNs

(
μp→dj (sj)

)
= {w(n)

p ,p(k)}Ns
n=1.

Given a set of samples {s(k)j }Ns

k=1 from the proposal distribu-

tion q(sj), the unnormalized weights are computed according

to

w̃(k)
sj =

μdj→sj (s
(k)
j )

q(s
(k)
j )

=

∑Ns

n=1 w
(n)
p p(d̂j |p(n),q∗, s(k)j )

q(s
(k)
j )

.

(12)

2) Message Multiplication: At any variable node, assume

that all incoming messages are given as particle represen-

tations and we wish to obtain a particle representation of an

outgoing message. For instance, we want to obtain the particle

representation RNs

(
μsj→θRX,j (sj)

)
= {w(k)

sj , s
(k)
j }Ns

k=1 of

the product in (9) based on particle representations of the

incoming messages and the previous belief. Since the samples

of the incoming messages and the previously belief are

drawn randomly and from independent proposal distributions,



they will be distinct with probability one. Direct message

multiplication is therefore not possible.

To enable multiplication, interpolated versions of these

messages (so-called kernel density estimates) are determined

[17]. In kernel density estimation, each particle is coated with

a continuous kernel and the superposition of all Ns kernels

yields the resulting density. For a set of particles {w(k),x(k)}
from the distribution p(x), a kernel density estimate p̂(x) is

given by

p̂(x) =

Ns∑
k=1

w(k)N (x;x(k), σ2
KDEI), (13)

where N (x;x(k), σ2
KDEI) denotes the Gaussian distribution

with mean x(k) and covariance matrix σ2
KDEI.

Using kernel density estimates of the incoming messages

and the previous belief, the current belief can also be de-

termined using importance sampling. In particular, we draw

a set of samples {s(k)j }Ns

k=1 ∼ q(sj) and adjust the weights

according to

w̃sj =
b̂sj (s

(k)
j )μ̂θTX,j→sj (s

(k)
j )μ̂τj→sj (s

(k)
j )

q(s
(k)
j )

. (14)

Due to space limitations, we provided an extended version of

this paper online to visualize the messages passed along the

edges of the factor graph. Please refer to [18] for a descriptive

illustration of the messages.

C. Estimation and Implementation Consideration

In every iteration, we obtain estimates on the position and

orientation of the mobile terminal, as well as the points of

incidence based on their beliefs. Since the beliefs are given

as particle representation, an MMSE estimate can be obtained

by computing the centroid of the cloud of particles [19]. For

instance, assume that the belief of the jth scatterer is given

by the set particles RNs

(
bsj (sj)

)
= {w(n)

p , s
(k)
j }Ns

n=1. The

MMSE estimate ŝj,MMSE is given by

ŝj,MMSE =

Ns∑
k=1

w(n)
p s

(k)
j . (15)

For the implementation of the algorithm, we have to care-

fully consider two aspects: (i) choice of the proposal distribu-

tions and (ii) choice of the kernel width σKDE. Regarding (i),

our goal is to draw samples in areas where a target distribution

(from which we cannot sample directly) has significant prob-

ability mass. Samples which reside in regions with negligible

probability mass will be assigned a weight that is closed

to zero. Eventually, with a high probability, these particles

will be discarded after resampling. However, it is generally

unknown where a target distribution has significant probabil-

ity mass. Hence we use proposal distributions which draw

samples uniformly inside an area of interest. For instance,

we know that the true position p∗ is with high probability

inside the disk with radius r = argmaxj d̂j centered around

the base station q∗. We use such observations to confine the

area of interest and draw samples efficiently. Regarding the

kernel width σKDE, we use a set of heuristic values as will be

explained in section V. In general, σKDE can be determined

using kernel density estimation algorithms [17]. However,

we found that many of such algorithms fail to determine

appropriate kernel widths which lead to convergence of the

message passing algorithm.

V. NUMERICAL EXAMPLES

To assess the performance of our estimator, we performed

simulations to (i) determine the speed of convergence and

investigate the impact of the number of samples and (ii)

examine the effect of varying measurement noise. For that

purpose, we consider a scenario with J = 3 NLOS paths,

where the points of incidence are spatially correlated in the

AOD-domain: s∗1 = [20, 10]T m, s∗2 = [80,−10]T m, and

s∗3 = [40, 0]T m. The mobile terminal is located at p∗ =
[70, 70]T m and rotated by α = 45◦. For position-related

messages, we use the following iteration-dependent σKDE =
(7 − l) m, while we use σKDE = (6 − l · 0.6)◦ for angle-

related messages. As the performance metric, we consider

the RMSE. We estimate the RMSE using 1000 Monte Carlo

trials. We treat the error of the points of incidence jointly,

i.e. es = [ŝT0,MMSE, . . . , ŝ
T
J,MMSE]

T −[(s∗0)
T , . . . , (s∗J)

T ]T . As

performance benchmark, we consider the LS approach from

[4]. Recall that numerous LS solvers work in parallel each of

which uses a different trial value αtrial. For fair comparison,

we choose a very fine grid of Δαtrial = 0.57◦. Hence we

solve 629 LS problems in parallel.

A. Convergence and Number of Samples

Fig. 3 depicts the RMSE of the position (top) and ori-

entation (bottom) estimates against the number of iterations

for fixed measurement noise (σθTX,k
= σθRX,k

= 1◦ and

σdk
= 0.2 m). For comparison, we also depict the perfor-

mance of the LS estimator (solid, red horizontal lines). In

both cases, the RMSE reduces with the number of iterations.

The largest reduction of the RMSE occurs in the first few

iterations. Note that the decrease is not monotonic. Especially,

the RMSE of p shows some oscillating behavior which results

from the flooding schedule mentioned in section III-D. Other

schedules have to be investigated in future works to mitigate

the oscillation. In addition, we observe that the estimation

accuracy increases with the number of samples which gives

rise to a complexity-accuracy trade-off.

B. Varying Measurement Noise

Fig. 4 depicts the RMSE of the position, point of incidence,

and orientation estimates considering increasing angular mea-

surement noise (σθTX,k
= σθRX,k

↑ and fixed στk = 0.2 m).

We compare the RMSE of our message passing-based esti-

mator (after 6 iterations) to the RMSE of the LS approach in

[4]. We observe that, for σθTX,k
= σθRX,k

> 2◦, our proposed

estimator provides significantly lower RMSE compared to the

LS approach. Especially, points of incidence can be estimated

more precisely. When σθTX,k
= σθRX,k

is large the initial
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Fig. 3: RMSE of p and α versus number of iterations - The

RMSE of position and orientation estimates decreases with

the number of iterations. Increasing the number of samples

results in higher estimation accuracy.

estimates of the LS solver are far from the global minimum

and the solver tends to converge to a local minimum leading

to its poor performance in terms the of RMSE (see Fig. 4).

VI. CONCLUSIONS

We proposed a novel message passing-based estimator for

5G millimeter wave MIMO systems which jointly estimates

the position, orientation and the locations of scatterers or

reflectors based on distance, angle-of-departure, and angle-

of-arrival measurements. Our estimator determines the posi-

tion and orientation of a mobile terminal accurately, while

simultaneously generating a precise map of the radio envi-

ronment. Even in the absence of the LOS component and

without assuming prior knowledge on any of the parameters,

the position, orientation, and the locations of scatterers or

reflectors are estimated reliably. Our approach also provides

a measure of uncertainty of the estimates since it approximates

the marginal a posteriori distributions of the parameters. For

large measurement noise, our proposed algorithm performs

very well in terms of the estimation accuracy and outperforms

the state-of-the-art approach.
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