425 research outputs found

    Joint learning of phonetic units and word pronunciations for ASR

    Get PDF
    Abstract The creation of a pronunciation lexicon remains the most inefficient process in developing an Automatic Speech Recognizer (ASR). In this paper, we propose an unsupervised alternative -requiring no language-specific knowledge -to the conventional manual approach for creating pronunciation dictionaries. We present a hierarchical Bayesian model, which jointly discovers the phonetic inventory and the Letter-to-Sound (L2S) mapping rules in a language using only transcribed data. When tested on a corpus of spontaneous queries, the results demonstrate the superiority of the proposed joint learning scheme over its sequential counterpart, in which the latent phonetic inventory and L2S mappings are learned separately. Furthermore, the recognizers built with the automatically induced lexicon consistently outperform grapheme-based recognizers and even approach the performance of recognition systems trained using conventional supervised procedures

    Acoustic data-driven lexicon learning based on a greedy pronunciation selection framework

    Full text link
    Speech recognition systems for irregularly-spelled languages like English normally require hand-written pronunciations. In this paper, we describe a system for automatically obtaining pronunciations of words for which pronunciations are not available, but for which transcribed data exists. Our method integrates information from the letter sequence and from the acoustic evidence. The novel aspect of the problem that we address is the problem of how to prune entries from such a lexicon (since, empirically, lexicons with too many entries do not tend to be good for ASR performance). Experiments on various ASR tasks show that, with the proposed framework, starting with an initial lexicon of several thousand words, we are able to learn a lexicon which performs close to a full expert lexicon in terms of WER performance on test data, and is better than lexicons built using G2P alone or with a pruning criterion based on pronunciation probability

    Multitask Learning with Low-Level Auxiliary Tasks for Encoder-Decoder Based Speech Recognition

    Full text link
    End-to-end training of deep learning-based models allows for implicit learning of intermediate representations based on the final task loss. However, the end-to-end approach ignores the useful domain knowledge encoded in explicit intermediate-level supervision. We hypothesize that using intermediate representations as auxiliary supervision at lower levels of deep networks may be a good way of combining the advantages of end-to-end training and more traditional pipeline approaches. We present experiments on conversational speech recognition where we use lower-level tasks, such as phoneme recognition, in a multitask training approach with an encoder-decoder model for direct character transcription. We compare multiple types of lower-level tasks and analyze the effects of the auxiliary tasks. Our results on the Switchboard corpus show that this approach improves recognition accuracy over a standard encoder-decoder model on the Eval2000 test set
    • …
    corecore