33 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Motor Control of Rapid Eye Movements in Larval Zebrafish

    Get PDF
    Animals move the same body parts in diverse ways. How the central nervous system executes one action over related ones is poorly understood. To investigate this, I assessed the behavioural manifestation and neural control of saccadic eye rotations made by larval zebrafish, since these movements are simple and easy to investigate at a circuit level. I first classified the larva’s saccadic repertoire into 5 types, of which hunting specific convergent saccades and exploratory conjugate saccades were the main types used to orient vision. Convergent and conjugate saccades shared a nasal eye rotation, which had kinematic differences and similarities that suggested the rotation was made by overlapping but distinct populations of neurons between saccade types. I investigated this further, using two-photon Ca2+ imaging and selective circuit interventions to identify a circuit from rhombomere 5/6 to abducens internuclear neurons to motoneurons that was crucial to nasal eye rotations. Motoneurons had distinct activity patterns for convergent and conjugate saccades that were consistent with my behavioural observations and were explained largely by motoneuron kinematic tuning preferences. Surprisingly, some motoneurons also modulated activity according to saccade type independent of movement kinematics. In contrast, pre-synaptic internuclear neuron activity profiles were almost entirely explained by movement kinematics, but not neurons in rhombomere 5/6, which had mixed saccade type and kinematic encoding, like motoneurons. Regions exerting descending control on this circuit from the optic tectum and anterior pretectal nucleus had few neurons tuned to saccade kinematics compared to neurons selective for convergent saccades. My results suggest a transformation from encoding action type to encoding movement kinematics at successive circuit levels. This transformation was not monotonic or complete, and suggests that control of even simple, highly comparable, movements cannot be entirely described by a shared kinematic encoding scheme at a motor or premotor level

    Naturalistic depth perception and binocular vision

    Get PDF
    Humans continuously move both their eyes to redirect their foveae to objects at new depths. To correctly execute these complex combinations of saccades, vergence eye movements and accommodation changes, the visual system makes use of multiple sources of depth information, including binocular disparity and defocus. Furthermore, during development, both fine-tuning of oculomotor control as well as correct eye growth are likely driven by complex interactions between eye movements, accommodation, and the distributions of defocus and depth information across the retina. I have employed photographs of natural scenes taken with a commercial plenoptic camera to examine depth perception while varying perspective, blur and binocular disparity. Using a gaze contingent display with these natural images, I have shown that disparity and peripheral blur interact to modify eye movements and facilitate binocular fusion. By decoupling visual feedback for each eye, I have found it possible to induces both conjugate and disconjugate changes in saccadic adaptation, which helps us understand to what degree the eyes can be individually controlled. To understand the aetiology of myopia, I have developed geometric models of emmetropic and myopic eye shape, from which I have derived psychophysically testable predictions about visual function. I have then tested the myopic against the emmetropic visual system and have found that some aspects of visual function decrease in the periphery at a faster rate in best-corrected myopic observers than in emmetropes. To study the effects of different depth cues on visual development, I have investigated accommodation response and sensitivity to blur in normal and myopic subjects. This body of work furthers our understanding of oculomotor control and 3D perception, has applied implications regarding discomfort in the use of virtual reality, and provides clinically relevant insights regarding the development of refractive error and potential approaches to prevent incorrect emmetropization

    The prevalence of visual deficiencies in children with learning problems in the region of Johannesburg

    Get PDF
    M.Phil. (Optometry)The purpose of this study was to determine the prevalence of vision deficiencies in the children from the schools of the learning disabled compared to the children from the mainstream schools. One hundred and twelve (N = 112) children from the two learning disabled schools and eighty (N = 80) children from the mainstream school, in Johannesburg had their vision assessed. The evaluation of functional vision included visual acuity (Snellen Acuity), refractive status (Static Retinoscopy), ocular health status (Internal and External evaluations), accommodation (Monocular Estimate Method (MEM), ±2.00D Flippers, Donder's push up method), binocularity (Cover Test, Vergence Facility, Smooth Vergences, Near Point of Convergence (NPC) and ocular motilities (Direct Observation). The results of this study revealed a significant relationship of poor vergence facility (Cramer's V =0.369); lead of accommodation of the right (Cramer's V = 0.379) and left eye (Cramer's V= 0.386); poor amplitude of accommodation of the left eye (Cramer's V=0.316) and the mainstream group. A significant relationship was found between the learning disabled group and poor saccadic accuracy (Cramer's V=0.343) and a high lag of accommodation of the right (Cramer's V= 0.379) and the left eye (Cramer's V= 0.386). Both the learner groups in the current study present with different visual deficiencies, and thus comparisons in terms of prevalence is complicated. It will be erroneous to say one group presents with a high prevalence of visual deficiencies than the other nor to conclude that the prevalence of visual deficiencies is the same in both groups. The results of this study provide further support for full vision screenings (including visual integrity pathway, and visual efficiency skills) to be routinely done in both mainstream and schools for the learning disabled

    Neural mechanisms for reducing uncertainty in 3D depth perception

    Get PDF
    In order to navigate and interact within their environment, animals must process and interpret sensory information to generate a representation or ‘percept’ of that environment. However, sensory information is invariably noisy, ambiguous, or incomplete due to the constraints of sensory apparatus, and this leads to uncertainty in perceptual interpretation. To overcome these problems, sensory systems have evolved multiple strategies for reducing perceptual uncertainty in the face of uncertain visual input, thus optimizing goal-oriented behaviours. Two available strategies have been observed even in the simplest of neural systems, and are represented in Bayesian formulations of perceptual inference: sensory integration and prior experience. In this thesis, I present a series of studies that examine these processes and the neural mechanisms underlying them in the primate visual system, by studying depth perception in human observers. Chapters 2 & 3 used functional brain imaging to localize cortical areas involved in integrating multiple visual depth cues, which enhance observers’ ability to judge depth. Specifically, we tested which of two possible computational methods the brain uses to combine depth cues. Based on the results we applied disruption techniques to examine whether these select brain regions are critical for depth cue integration. Chapters 4 & 5 addressed the question of how memory systems operating over different time scales interact to resolve perceptual ambiguity when the retinal signal is compatible with more than one 3D interpretation of the world. Finally, we examined the role of higher cortical regions (parietal cortex) in depth perception and the resolution of ambiguous visual input by testing patients with brain lesions

    Computational Theories of Curiosity-Driven Learning

    Get PDF
    What are the functions of curiosity? What are the mechanisms of curiosity-driven learning? We approach these questions about the living using concepts and tools from machine learning and developmental robotics. We argue that curiosity-driven learning enables organisms to make discoveries to solve complex problems with rare or deceptive rewards. By fostering exploration and discovery of a diversity of behavioural skills, and ignoring these rewards, curiosity can be efficient to bootstrap learning when there is no information, or deceptive information, about local improvement towards these problems. We also explain the key role of curiosity for efficient learning of world models. We review both normative and heuristic computational frameworks used to understand the mechanisms of curiosity in humans, conceptualizing the child as a sense-making organism. These frameworks enable us to discuss the bi-directional causal links between curiosity and learning, and to provide new hypotheses about the fundamental role of curiosity in self-organizing developmental structures through curriculum learning. We present various developmental robotics experiments that study these mechanisms in action, both supporting these hypotheses to understand better curiosity in humans and opening new research avenues in machine learning and artificial intelligence. Finally, we discuss challenges for the design of experimental paradigms for studying curiosity in psychology and cognitive neuroscience. Keywords: Curiosity, intrinsic motivation, lifelong learning, predictions, world model, rewards, free-energy principle, learning progress, machine learning, AI, developmental robotics, development, curriculum learning, self-organization.Comment: To appear in "The New Science of Curiosity", ed. G. Gordon, Nova Science Publisher

    How to improve learning from video, using an eye tracker

    Get PDF
    The initial trigger of this research about learning from video was the availability of log files from users of video material. Video modality is seen as attractive as it is associated with the relaxed mood of watching TV. The experiments in this research have the goal to gain more insight in viewing patterns of students when viewing video. Students received an awareness instruction about the use of possible alternative viewing behaviors to see whether this would enhance their learning effects. We found that: - the learning effects of students with a narrow viewing repertoire were less than the learning effects of students with a broad viewing repertoire or strategic viewers. - students with some basic knowledge of the topics covered in the videos benefited most from the use of possible alternative viewing behaviors and students with low prior knowledge benefited the least. - the knowledge gain of students with low prior knowledge disappeared after a few weeks; knowledge construction seems worse when doing two things at the same time. - media players could offer more options to help students with their search for the content they want to view again. - there was no correlation between pervasive personality traits and viewing behavior of students. The right use of video in higher education will lead to students and teachers that are more aware of their learning and teaching behavior, to better videos, to enhanced media players, and, finally, to higher learning effects that let users improve their learning from video

    Saillance Visuelle, de la 2D à la 3D Stéréoscopique : Examen des Méthodes Psychophysique et Modélisation Computationnelle

    Get PDF
    Visual attention is one of the most important mechanisms deployed in the human visual system to reduce the amount of information that our brain needs to process. An increasing amount of efforts are being dedicated in the studies of visual attention, particularly in computational modeling of visual attention. In this thesis, we present studies focusing on several aspects of the research of visual attention. Our works can be mainly classified into two parts. The first part concerns ground truths used in the studies related to visual attention ; the second part contains studies related to the modeling of visual attention for Stereoscopic 3D (S-3D) viewing condition. In the first part, our work starts with identifying the reliability of FDM from different eye-tracking databases. Then we quantitatively identify the similarities and difference between fixation density maps and visual importance map, which have been two widely used ground truth for attention-related applications. Next, to solve the problem of lacking ground truth in the community of 3D visual attention modeling, we conduct a binocular eye-tracking experiment to create a new eye-tracking database for S-3D images. In the second part, we start with examining the impact of depth on visual attention in S-3D viewing condition. We firstly introduce a so-called "depth-bias" in the viewing of synthetic S-3D content on planar stereoscopic display. Then, we extend our study from synthetic stimuli to natural content S-3D images. We propose a depth-saliency-based model of 3D visual attention, which relies on depth contrast of the scene. Two different ways of applying depth information in S-3D visual attention model are also compared in our study. Next, we study the difference of center-bias between 2D and S-3D viewing conditions, and further integrate the center-bias with S-3D visual attention modeling. At the end, based on the assumption that visual attention can be used for improving Quality of Experience of 3D-TV when collaborating with blur, we study the influence of blur on depth perception and blur's relationship with binocular disparity.L'attention visuelle est l'un des mécanismes les plus importants mis en oeuvre par le système visuel humain (SVH) afin de réduire la quantité d'information que le cerveau a besoin de traiter pour appréhender le contenu d'une scène. Un nombre croissant de travaux est consacré à l'étude de l'attention visuelle, et en particulier à sa modélisation computationnelle. Dans cette thèse, nous présentons des études portant sur plusieurs aspects de cette recherche. Nos travaux peuvent être classés globalement en deux parties. La première concerne les questions liées à la vérité de terrain utilisée, la seconde est relative à la modélisation de l'attention visuelle dans des conditions de visualisation 3D. Dans la première partie, nous analysons la fiabilité de cartes de densité de fixation issues de différentes bases de données occulométriques. Ensuite, nous identifions quantitativement les similitudes et les différences entre carte de densité de fixation et carte d'importance visuelle, ces deux types de carte étant les vérités de terrain communément utilisées par les applications relatives à l'attention. Puis, pour faire face au manque de vérité de terrain exploitable pour la modélisation de l'attention visuelle 3D, nous procédons à une expérimentation oculométrique binoculaire qui aboutit à la création d'une nouvelle base de données avec des images stéréoscopiques 3D. Dans la seconde partie, nous commençons par examiner l'impact de la profondeur sur l'attention visuelle dans des conditions de visualisation 3D. Nous quantifions d'abord le " biais de profondeur " lié à la visualisation de contenus synthétiques 3D sur écran plat stéréoscopique. Ensuite, nous étendons notre étude avec l'usage d'images 3D au contenu naturel. Nous proposons un modèle de l'attention visuelle 3D basé saillance de profondeur, modèle qui repose sur le contraste de profondeur de la scène. Deux façons différentes d'exploiter l'information de profondeur par notre modèle sont comparées. Ensuite, nous étudions le biais central et les différences qui existent selon que les conditions de visualisation soient 2D ou 3D. Nous intégrons aussi le biais central à notre modèle de l'attention visuelle 3D. Enfin, considérant que l'attention visuelle combinée à une technique de floutage peut améliorer la qualité d'expérience de la TV-3D, nous étudions l'influence de flou sur la perception de la profondeur, et la relation du flou avec la disparité binoculaire
    corecore