810 research outputs found

    Adaptive Time Synchronization for Homogeneous WSNs

    Get PDF
    Wireless sensor networks (WSNs) are being used for observing real‐world phenomenon. It is important that sensor nodes (SNs) must be synchronized to a common time in order to precisely map the data collected by SNs. Clock synchronization is very challenging in WSNs as the sensor networks are resource constrained networks. It is essential that clock synchronization protocols designed for WSNs must be light weight i.e. SNs must be synchronized with fewer synchronization message exchanges. In this paper, we propose a clock synchronization protocol for WSNs where first of all cluster heads (CHs) are synchronized with the sink and then the cluster nodes (CNs) are synchronized with their respective CHs. CNs are synchronized with the help of time synchronization node (TSN) chosen by the respective CHs. Simulation results show that proposed protocol requires considerably fewer synchronization messages as compared with the reference broadcast synchronization (RBS) protocol and minimum variance unbiased estimation (MUVE) method. Clock skew correction mechanism applied in proposed protocol guarantees long term stability and hence decreases re‐ synchronization frequency thereby conserving more energ

    Synchronization protocols and implementation issues in wireless sensor networks: A review

    Get PDF
    Time synchronization in wireless sensor networks (WSNs) is a topic that has been attracting the research community in the last decade. Most performance evaluations of the proposed solutions have been limited to theoretical analysis and simulation. They consequently ignored several practical aspects, e.g., packet handling jitters, clock drifting, packet loss, and mote limitations, which affect real implementation on sensor motes. Authors of some pragmatic solutions followed empirical approaches for the evaluation, where the proposed solutions have been implemented on real motes and evaluated in testbed experiments. This paper gives an insight on issues related to the implementation of synchronization protocols in WSN. The challenges related to WSN environment are presented; the importance of real implementation and testbed evaluation are motivated by some experiments we conducted. The most relevant implementations of the literature are then reviewed, discussed, and qualitatively compared. While there are several survey papers that present and compare the protocols from the conception perspectives, as well as others that deal with mathematical and signal processing issues of the estimators, a survey on practical aspects related to the implementation is missing. To our knowledge, this paper is the first one that takes into account the practical aspect of existing solutions

    New advances in designing energy efficient time synchronization schemes for wireless sensor networks

    Get PDF
    Time synchronization in wireless sensor networks (WSNs) is essential and significant for maintaining data consistency, coordination, and performing other fundamental operations, such as power management, security, and localization. Energy efficiency is the main concern in designing time synchronization protocols for WSNs because of the limited and generally nonrechargeable power resources. In this dissertation, the problem of time synchronization is studied in three different aspects to achieve energy efficient time synchronization in WSNs. First, a family of novel joint clock offset and skew estimators, based on the classical two-way message exchange model, is developed for time synchronization in WSNs. The proposed joint clock offset and skew correction mechanisms significantly increase the period of time synchronization, which is a critical factor in the over-all energy consumption required for global network synchronization. Moreover, the Cramer-Rao bounds for the maximum likelihood estimators are derived under two different delay assumptions. These analytical metrics serve as good benchmarks for the experimental results thus far reported. Second, this dissertation proposes a new time synchronization protocol, called the Pairwise Broadcast Synchronization (PBS), which aims at minimizing the number of message transmissions and implicitly the energy consumption necessary for global synchronization of WSNs. A novel approach for time synchronization is adopted in PBS, where a group of sensor nodes are synchronized by only overhearing the timing messages of a pair of sensor nodes. PBS requires a far smaller number of timing messages than other well-known protocols and incurs no loss in synchronization accuracy. Moreover, for densely deployed WSNs, PBS presents significant energy saving. Finally, this dissertation introduces a novel adaptive time synchronization protocol, named the Adaptive Multi-hop Timing Synchronization (AMTS). According to the current network status, AMTS optimizes crucial network parameters considering the energy efficiency of time synchronization. AMTS exhibits significant benefits in terms of energy-efficiency, and can be applied to various types of sensor network applications having different requirements

    Doctor of Philosophy

    Get PDF
    dissertationLow-cost wireless embedded systems can make radio channel measurements for the purposes of radio localization, synchronization, and breathing monitoring. Most of those systems measure the radio channel via the received signal strength indicator (RSSI), which is widely available on inexpensive radio transceivers. However, the use of standard RSSI imposes multiple limitations on the accuracy and reliability of such systems; moreover, higher accuracy is only accessible with very high-cost systems, both in bandwidth and device costs. On the other hand, wireless devices also rely on synchronized notion of time to coordinate tasks (transmit, receive, sleep, etc.), especially in time-based localization systems. Existing solutions use multiple message exchanges to estimate time offset and clock skew, which further increases channel utilization. In this dissertation, the design of the systems that use RSSI for device-free localization, device-based localization, and breathing monitoring applications are evaluated. Next, the design and evaluation of novel wireless embedded systems are introduced to enable more fine-grained radio signal measurements to the application. I design and study the effect of increasing the resolution of RSSI beyond the typical 1 dB step size, which is the current standard, with a couple of example applications: breathing monitoring and gesture recognition. Lastly, the Stitch architecture is then proposed to allow the frequency and time synchronization of multiple nodes' clocks. The prototype platform, Chronos, implements radio frequency synchronization (RFS), which accesses complex baseband samples from a low-power low-cost narrowband radio, estimates the carrier frequency offset, and iteratively drives the difference between two nodes' main local oscillators (LO) to less than 3 parts per billion (ppb). An optimized time synchronization and ranging protocols (EffToF) is designed and implemented to achieve the same timing accuracy as the state-of-the-art but with 59% less utilization of the UWB channel. Based on this dissertation, I could foresee Stitch and RFS further improving the robustness of communications infrastructure to GPS jamming, allow exploration of applications such as distributed beamforming and MIMO, and enable new highly-synchronous wireless sensing and actuation systems

    Time Synchronization in Wireless Sensor Networks

    Get PDF

    An Exploratory Analysis Of A Time Synchronization Protocol For UAS

    Get PDF
    This dissertation provides a numerical analysis of a Receiver Only Synchronization (ROS) protocol which is proposed for use by Unmanned Aircraft Systems (UAS) in Beyond Visual Line of Sight (BVLOS) operations. The use of ROS protocols could reinforce current technologies that enable transmission over 5G cell networks, decreasing latency issues and enabling the incorporation of an increased number of UAS to the network, without loss of accuracy. A minimum squared error (MSE)-based accuracy of clock offset and clock skew estimations was obtained using the number of iterations and number of observations as independent parameters. Although the model converged after only four iterations, the number of observations needed was considerably large, of no less than about 250. The noise, introduced in the system through the first residual, the correlation parameter and the disturbance terms, was assumed to be autocorrelated. Previous studies suggested that correlated noise might be typical in multipath scenarios, or in case of damaged antennas. Four noise distributions: gaussian, exponential, gamma and Weibull were considered. Each of them is adapted to different noise sources in the OSI model. Dispersion of results in the first case, the only case with zero mean, was checked against the Cramér-Rao Bound (CRB) limit. Results confirmed that the scheme proposed was fully efficient. Moreover, results with the other three cases were less promising, thus demonstrating that only zero mean distributions could deliver good results. This fact would limit the proposed scheme application in multipath scenarios, where echoes of previous signals may reach the receiver at delayed times. In the second part, a wake/sleep scheme was imposed on the model, concluding that for wake/sleep ratios below 92/08 results were not accurate at p=.05 level. The study also evaluated the impact of noise levels in the time domain and showed that above -2dB in time a substantial contribution of error terms disturbed the initial estimations significantly. The tests were performed in Matlab®. Based on the results, three venues confirming the assumptions made were proposed for future work. Some final reflections on the use of 5G in aviation brought the present dissertation to a close

    A Time Synchronization Protocol for TDMA Based Wireless Sensor Networks

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 전기공학부, 2013. 8. 이정우.There has been much interest in wireless sensor networks recently, due to their diverse range of possible applications. Although there have been much research in MAC layer protocols for wireless sensor networks, these works are mainly focussed on the power savings and efficiencies of the protocols. For sensor networks which are in-situ and do not require much flexibility, such as a battery management system, energy is not always the most important factor, but rather reliability and scalability (where sensing periods are known). As such, a traditional TDMA protocol can be considered as a good option. Time synchronization in wireless sensor networks have also been considered by many academics, but work related to time synchronization in TDMA networks have been much less popular. In this thesis, a time synchronization protocol for TDMA based wireless sensor networks is proposed, Propagating Chain Time Synchronization. Propagating Chain Time Synchronization is a novel protocol for synchronizing TDMA based networks. The scheme achieves improved synchronization errors compared to traditional beacon synchronization methods, through skew correction estimated from chained two-way message exchanges, which employ piggybacking and overhearing.1 Introduction 1 1.1 Wireless Sensor Networks 1 1.1.1 Challenges in Designing Wireless Sensor Networks 2 1.2 Thesis Motivation 7 1.2.1 Wireless Sensor Networks in Battery Management Systems 7 2 Time Synchronization 10 2.1 Overview 10 2.2 Models of Clock Synchronization 11 2.2.1 Typical Synchronization Errors 13 2.3 Related Work 14 2.3.1 Sender-Receiver Synchronization 14 2.3.2 Receiver-Receiver Synchronization 16 2.3.3 Receiver-Only Synchronization 17 2.3.4 Clock Skew Estimation and Correction 18 2.3.5 Clock Synchronization in TDMA Based Networks 19 3 Propagating Chain Time Synchronization for TDMA Based Wireless Sensor Networks 21 3.1 Overview 21 3.2 System Model 21 3.2.1 Basic Assumptions 22 3.2.2 Topology 22 3.2.3 Chained Synchronization 23 3.2.4 Overhearing and Piggybacking 24 3.2.5 Propagating Skew Correction 28 4 Theoretical Error Analysis 31 4.1 System Models 31 4.2 Node Clock Modelling 32 4.3 TSF 34 4.4 Chained Synchronization 36 4.5 Two-Way Message Exchange Synchronization Error 38 5 Simulation 42 5.1 Simulation Parameters 42 5.2 Simulation Results 46 6 Conclusion 52 Bibliography 54Maste
    corecore