
1

Synchronization Protocols and Implementation
Issues in Wireless Sensor Networks: A Review

Djamel Djenouri, Miloud Bagaa

Abstract—Time synchronization in wireless sensor networks
(WSN) is a topic that has been attracting the research community
in the last decade. Most performance evaluations of the proposed
solutions have been limited to theoretical analysis and simulation.
They consequently ignored several practical aspects, e.g. packet
handling jitters, clock drifting, packet loss, mote limitations etc,
which effect real implementation on sensor motes. Authors of
some pragmatic solutions followed empirical approaches for the
evaluation, where the proposed solutions have been implemented
on real motes and evaluated in testbed experiments. This pa-
per gives an insight on issues related to the implementation
of synchronization protocols in WSN. The challenges related
to WSN environment are presented, the importance of real
implementation and testbed evaluation are motivated by some
experiments we conducted. The most relevant implementations
of the literature are then reviewed, discussed, and qualitatively
compared. While there are several survey papers that present
and compare the protocols from the conception perspectives, and
others that deal with mathematical and signal processing issues
of the estimators, a survey on practical aspects related to the
implementation is missing. To our knowledge, this paper is the
first one that takes into account the practical aspect of existing
solutions.

I. INTRODUCTION AND BACKGROUND

A. Introduction

Time synchronization is of high importance for many appli-
cations and protocols in wireless sensor networks (WSN). For
instance, in a moving object (e.g. vehicle) tracking application,
sensor nodes report the location and time at which they detect
the object to a base-station, which combines the obtained
information to estimate the location and velocity of the tracked
object. Nodes should be synchronized to correlate the different
reports. Another example is in duty-cycling and contention-
based channel access scheduling, where nodes coordinately
switch between active and sleep modes. Time synchronization
is also required for many other applications in WSN, such
as data fusion/aggregation, TDMA scheduling, realtime mon-
itoring and actuation, etc. Time synchronization has always
been one of the fundamental and challenging problems in
distributed systems. The lack of a shared memory makes
exchange of high-layer messages or low-layer signals between
nodes inevitable for protocol construction. The high delay vari-
ability of communications in WSN, added to node limitations
(computation, memory, energy), elevate the complexity of the
problem.

Several protocols for time synchronization in WSN have
been proposed in the literature. The evaluation of the proposed

The authors are with CERIST Research Center, Algiers, Algeria. Email:
ddjenouri@acm.org, bagaa@mail.cerist.dz

solutions can be divided into two categories; i) analysis and
simulation-based evaluation, vs. ii) empirical evaluation. The
first category includes the use of network simulations for
comparison with state-of-the-art candidates. It also includes
numerical analysis of estimators and possible comparison
of the mean square errors (MSE), or its variants, with an
optimum, e.g. Cramer-Rao lower-bound (CRLB) [1]. This
provides a preliminary vision on the protocol performance,
and it is essential for investigating issues that are difficult to
evaluate with real tests, such as scalability. Nonetheless, it
cannot replace testbed experimentation as many aspects are
either neglected, or simulated with ideal assumptions at a
high level of abstraction. For instance, delays and jitters are
assumed to ideally follow some distribution (e.g. Gaussian), if
not neglected, clock drifting is not thoroughly modeled, packet
loss is seldom considered, etc.

Empirical evaluation where the protocols are implemented
on real motes and evaluated in a testbed experiment is thus
vital to get a concrete view on the synchronization protocol,
its features and limitations. Existing implementations can be
reused in other applications or by other protocols. Therefore,
having a horizontal vision on current implementations is essen-
tial to decide which implementation can be reused adequately
to fulfil one application’s requirements or another, or which
one can be adapted with minimum amendments. The aim of
this paper is to throw some light on issues related to the
implementation of a synchronization protocol, to present and
discuss state-of-the-art implementations.

The rest of the paper is organized as follows. The remainder
of this section introduces some general concepts that are used
throughout the paper. The related work is summarized in
the next section, followed by the implementation challenges
with some experimental illustrations in Section III. Section IV
presents our investigation on the impact of some empirical
parameters. Implementations of the literature are reviewed
Section V. Section VI provides discussions and summarizes
the lessons we have learnt. Finally, Section VII concludes the
paper.

B. General Concepts

1) Skew/Offset vs. Offset-Only: A hardware oscillator is
used to implement the sensor mote’s clock (similarly to any
computing device). Let C(t) denotes the value of the clock
at time t. The oscillator frequency determines the rate at
which the clock runs. The rate of an ideal clock would
equal one, i.e. its derivative vs. time (∂C/∂t = 1). However,
in practice the clock frequency varies unpredictably due to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323907639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

various physical effects, e.g, temperature, crystal aging, etc.
This is known as clock drifting. The clock value is then
approximated using appropriate estimators. Two estimation
models can be distinguished, the offset-only model vs. joint
skew/offset model. In the first model, the local clock at some
node, say ni, is approximated by [2]:

Ci(t) = t+ θi, (1)

where, θi, is the offset of node i’s clock to an ideal clock
(realtime). Relative equation relating two nodes’ clocks, Ci

and Cj , can be given by:

Cj(t) = Ci(t) + θni→nj
, (2)

where, θni→nj
, represents the relative offset relating time at

node, ni, to the corresponding one at node, nj .
This model has the simplicity advantage, but does not ensure

long-term estimation as it does not capture clock drifting.
Therefore, synchronization messages need to be exchanged
at a high frequency to assure good precision. The second
model provides long-term estimators at the price of augmented
calculation complexity. The local clock of node, ni, can be
approximated by [3],

Ci(t) = αit+ βi, (3)

where αi is the absolute skew, and βi is the offset of node i’s
clock. Relative equation relating two nodes’ clocks, Ci and
Cj , is given by,

Cj(t) = αni→njCi(t) + βni→nj , (4)

where αni→nj
and βni→nj

represents the relative offset and
skew, respectively.

All synchronization protocols proposed for WSN use some
sort of estimation for synchronization parameters, and they
thus fall either into the offset-only class or the joint skew/offset
class.

2) Sender-to-receiver vs. Receiver-to-receiver: In the
sender-to-receiver model, nodes periodically exchange times-
tamped synchronization messages. They synchronize to one
another using the timestamps of submission and reception
events [4]. The receiver-to-receiver approach exploits the prop-
erty of the physical broadcast medium. A common reference
is used for broadcasting synchronization messages, and then
receivers within the reference’s vicinity exchange the time at
which they receive the same message to get synchronized.
Fig. 1 illustrates the construction of one sample in the two
approaches. In the sender-to-receiver approach, the transmitter
(node n1) timestamps the first packet as t1, the reception of
this packet at n2 is timestamped by the latter, t2, and then
the transmission/reception of the reply packet are respectively
timestamped t3, t4. The tuple (t1, t2, t3, t4) is used as a
sample for estimation. The process is repeated for k rounds to
construct k samples, then the parameters are estimated. In the
receiver-to-receiver approach, a reference is used to broadcast
messages, and only reception timestamps are used to construct
samples (t′1, t

′
2). As show in Fig 1, the receiver-to-receiver

approach has the advantage of reducing the time-critical path,

Fig. 1: Receiver-to-receiver vs. Sender-to-receiver

and therefore improving synchronization accuracy compared
to the sender-to-receiver approach [4]. The time-critical path
is the latency that contributes to non-deterministic errors when
exchanging synchronization signals. The time-critical path of
the first approach is the result of the following four factors
that can vary non-deterministically [3]: i) Send time; spent
by the sender for message construction and transmission to
the network interface, ii) medium access time (at the MAC
layer), iii) propagation time, and iv) receive time at the receiver
to process the message. The receiver-to-receiver approach
removes the send time and the access time from the critical
path [4].

II. RELATED WORK

Several survey papers on time synchronization in WSN have
been published in the last few years. In [3] by Sivrikaya and
Yener, three categories of synchronization have been reported,
i) event ordering, as the simplest form of synchronization,
ii) synchronization to a reference, and iii) relative clocks. In
the latter, each node runs its local clock independently but
maintains information about relative skew and offset to other
nodes for possible conversion. Most of the synchronization so-
lutions proposed for WSN belong to this category. Meanwhile,
synchronization to a reference model also called the ”always
on” model, or global synchronization, is the most complex,
as it requires all nodes maintain their clocks synchronized to
a single reference in the network. The goal of this type of
synchronization is to preserve a global timescale throughout
the network.

Sundararaman et al. [4] give a detailed survey with more
taxonomy on existing solutions, up to 2005. Several classifi-
cations have been proposed. The first classification considers
what the authors called the synchronization issues. Protocols

3

are divided into i) master-slave vs. peer-to-peer, ii) clock cor-
rection vs. clock untethered, iii) internal vs. external, iv) prob-
abilistic vs. deterministic, and v) sender-to-receiver vs. rec-to-
rec. In the master slave model, all nodes (slaves) synchronize
to a single master, while nodes are pair-wise synchronized in
the peer-to-peer model without using a single reference. This
eliminates the single point of failure. The clock untethered
model (relative synchronization) allows nodes to run their
clocks independently without the need for continuous update
of the clock variable, contrary to the clock correction model.
External synchronization refers to an external source from the
network for a standard source of time (such as universal time).
The deterministic and probabilistic aspects are with respect to
the offset bound guarantee on the synchronization. The second
classification considers application dependent issues. Protocols
are split up into, i) single-hop vs. multi-hop, ii) stationary vs.
mobile networks, iii) MAC layer based vs. standard approach.
In the MAC layer approach, the MAC protocol is used to
encapsulate synchronization messages.

Another interesting recent survey paper is by Wu et al.
[1]. The authors focus on signal processing and theoretical
issues of the synchronization, where the solutions are pre-
sented from the perspective of the mathematical methods
for estimation of synchronization parameters and theoretical
analysis. Solutions and estimators are analyzed with respect to
Gaussian, exponential, and arbitrary distributions for message
exchange delays. The authors show that the optimal estimators
are relatively easy to derive for Gausian delays, where the
minimum variance unbiased estimator(MVUE), best linear
unbiased estimator (BLUE), maximum likelihood estimator
(MLE), and least square (LS) estimator all coincide. For
Exponential delays, the authors analyze estimators based on
MLE, best linear unbiased estimation using order statistics,
MVUE with Rao-Blackwell-Lehmann-Scheffe theorem. For
the sender-to-receiver approach, they analytically demonstrate
that MLE (the most largely used in the literature) is better than
the MVUE when the means of the up-link and down-link de-
lays are very close to each other, and that the MVUE becomes
better when the up-link and down-link delays are dispersing.
The lack of estimators for the receiver-to-receiver protocols
in environments with exponential delays is reported, which
represent an open research trend. For arbitrary delays, some
estimators based on linear programming (LP), boot strap bias
correction, composite particle filtering are presented. These es-
timators are robust when delay distributions are unknown, and
they can adapt to different delay distributions. It is reported
that the MSE performance of bootstrap bias corrected estimate
is better than the exponential MLE when applied to non-
exponential delays. To illustrate this, the authors analytically
compare the performance of the MLE of clock offset derived
under exponential delay and its corresponding boot strap
bias corrected estimator, when applied to Gamma distributed
delays with two degrees of freedom. As a perspective, the
authors discuss the application of distributed signal processing
techniques (e.g.,distributed estimation and detection), which
should be helpful to derive distributed clock synchronization
algorithms with optimal ways for information passing. This
will save unnecessary communication overhead. Finally, the

potential benefit from jointly solving the localization and syn-
chronization problems (that are strongly related) is mentioned
[5], where estimators such as M-estimator becomes relevant.

A survey similar to [1] from the empirical and practical
perspective is missing in the current literature. This represents
the aim of the paper, where the real implementations of
synchronization protocols are analyzed, relevant issues are
presented and discussed.

III. IMPLEMENTATION CHALLENGES

In this section, the different challenges that one faces when
designing, implementing and testing a synchronization proto-
col are presented. First and foremost, the fast drifting of clocks
used by motes, added to mote limitations are inevitable con-
sequences that result from reducing the sensor mote cost and
size for economic reasons. Such reduction comes at the use
of memory and computation limited micro-controllers, cheap
but fast drifting clocks. Delay variation is a feature inherited
from the wireless environment, to which add long jitters (delay
variation) for in-node message processing at sensor nodes that
is caused by the mote limitation and instability. The faulty-
nature of motes and lossy channels are other challenges that
faces an implementation of a synchronization protocol, which
make fault-tolerance a must before real deployment. Finally,
accuracy measurement needs some hardware manipulation and
complicates large scale experimentation. All these challenges
and the possible alternatives are presented in more details
hereafter.

A. Fast Drifting

One of the most influencing features of clocks used in
today’s sensor motes is the fast drifting. This is due to the cir-
cuitry cost reduction that inevitable requires the use of cheap,
but less reliable components. Most motes include two clocks:
The first is the internal clock that allows for microsecond level
granularity, but also with relatively a high drifting, as it will
be illustrated later. The second type is the external crystal
clock, which is more stable but usually has low frequency
and thus provides a weak granularity. For instance, crystals
used in MICAz and TelosB have 32.768KHz frequency, i.e.
their granularity bound is 30.5µsec. The external clock has
the advantage of running when the node turns to the sleep
mode, contrary to the internal clock. This justifies the low
frequency use for the sake of power saving. To investigate
the clock drift, we performed an extensive experimental study
with MICAz motes, one of the largely used platforms. First,
relative drift between two motes has been investigated. We
have wired two motes through the available pins with an
Arduino that periodically and simultaneously submits a signal
to the motes, to capture the instantaneous clock values (Fig.
2). We have then used log files to calculate the instantaneous
clock differences and the cumulative ones, for both the internal
clock, Fig. 3, and the external one, Fig. 4. Results show few
tens of instantaneous tick drift for the internal clocks, Fig. 3
(bottom).This is with 50 ticks as a base-line and continuous
successive rise and drop of the order of few ticks, with some
exceptions of picks at the order of more than 90 ticks rise

4

followed by a decrease at less than 10 ticks. Several executions
with different nodes showed similar forms as the one reported
here, with possible minor differences in the base-lines and
pick values. This results in almost a linear cumulative increase.
Linear cumulative increase is also noted for the external clock,
Fig. 4. However, the latter shows more stability where the
instantaneous drift alternates between 0 and 1 tick.

The clock drifting makes estimated offset out-of-date over
time, notably if a high precision synchronization is required.
Re-synchronizing the nodes frequently– if needed– may be
very costly. The alternative for ensuring long-term synchro-
nization is to capture the rate of drifting (skew) in the
estimation model (Eq. 4). The results reported here con-
firm suitability of the linear model for the skew estimation.
To quantitatively investigate the impact of skew estimation
on long term synchronization, we conducted an experiment
where synchronization error between two MICAz motes has
been measured in both models (offset-only and skew-offset)
and protocol approaches (send-to-receiver and receiver-to-
receiver). This is using the internal high precision clocks.

For each model and synchronization paradigm, synchro-
nization messages have only been exchanged for few rounds
to permit nodes estimate the offset (and skew in the joint
model). The synchronization process has then been stopped
and the synchronization error has been measured, i.e. t = 0
is the time at which we stopped the synchronization message
exchange. As the synchronization messages were not queued
(no queuing delays), the standard MLE of the Gaussian
distribution delay has- been used in both models [1]. We
used an Arduino to generate simultaneous signals at both
nodes, similarly to the previous experiment. The results for
the sender-to-receiver synchronization are illustrated in Fig. 5.
Similar results have been obtained for the receiver-to-receiver
synchronization, and thus the figure of the latter is omitted
for space limitation. Fig. 5 shows a large difference between
the offset-only and the skew-offset. The skew-offset estimation
keeps the error below 10µsec for several tens of seconds, and
at the microsecond level (below 300µsec during the whole
15min experimentation). However, in the offset-only model,
the error reaches the millisecond level after few seconds.

Fig. 2: Experimentation Setup

B. Mote Limitations

Most simulations and mathematical analyses use tools such
as Matlab or C-based simulators at a high level of ab-
straction. They consist in coding for a standard computer,
running and collecting the results for analysis of thorough,

 0
 2

5
 5

0
 7

5
 1

00

 0 200 400 600 800 1000 1200 1400 1600

time (sec)

 0

 2
00

00

 4
00

00

 6
00

00

 8
00

00

C
lo

c
k
 d

if
fe

re
n

c
e
 (

ti
c
k
s
)

Instantaneous

Cumulative

Fig. 3: Clock Difference of Internal Clocks

 0

 0
.5

 1

 1
.5

 0 2000 4000 6000 8000 10000

time (sec)

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

C
lo

c
k
 d

if
fe

re
n

c
e
 (

ti
c
k
s
)

Instantaneous

Cumulative

Fig. 4: Clock Difference of External Clock

but computation-costly estimators. However, they completely
ignore that this code for calculating estimators is to be run by
sensor motes, which are limited in memory and computation
capacity. For example, the floating- point computation is not
supported by most platforms (MICAz, TelosB, etc.); but it may
be implemented as a library at the kernel of operating systems,
e.g, TinyOS2 1. Our experience with TinyOS revealed several
problems with this library when handling large numbers (clock
values), and re-implementation of floating-point division cal-
culation has been necessary. Estimators evolving sequences of
clock values multiplications are to be avoided, as they cause
fast arithmetic overflow due to the large size of the clock
values and the limited size of their respective variables. Such
estimators should be simplified and/or rewritten to fit motes
limitations. Most estimators rely on the collection of large
samples to get statistical meaningful estimates. This would
have an important memory footprint on the sensor motes. The
use of limited window with possible moving average can help
reducing the memory footprint. However, the results would
be different from the nice theoretical performance; an issue
that needs to be addressed by testbed evaluations. Existing
solutions such as TinyECC 2 of TinyOS, and its NN library
can be used to implement estimators while overcoming the

1http://www.tinyos.net/
2http://discovery.csc.ncsu.edu/software/TinyECC

5

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

S
y
n

c
h

ro
n

iz
a
ti

o
n

 E
rr

o
r

(t
ic

k
s
)

time (sec)

Offset-only

Skew-offset

Fig. 5: Synchronization Error of the Skew-offset vs Offset-
only Model

problem of arithmetic overflow, as they enable customizing the
variable size according to the user need. However, the memory
space should be carefully managed since the memory footprint
may increase dramatically.

C. Delay Variation

All synchronization protocols rely on some sort of mes-
sage exchange between nodes. As explained in Sec. I-B,
the receiver-to-receiver approach removes the send time and
the access time from the critical path, which represents the
two largest sources of non-determinism. This reduces the
effect of delay variation. Most estimation methods assume
delays to follow certain distributions, then estimators are
derived accordingly. Other practical approaches consider low
layer timestamping (MAC layer), as well as mechanisms like
timestamping several bytes to normalize the jitter for coding
and decoding [6]. This considerably reduces the amplitude of
the variation, which allows to achieve relatively high degree
of precision. However, it makes the implementation dependent
on the specific platform and reduces the portability compared
to high layer timestamping. The big challenge caused by delay
variation is when using timestamping at the higher layers,
where the delays would be at the order of several tens and
even hundreds of microseconds, but this has the advantage of
large portability [4].

D. Fault Tolerance and Security

Most theoretical and simulation-based evaluation suppose
ideal scenarios and neglect aspects such as packet loss, and
node temporary or permanent failure. Real implementation
provides more accurate vision on the performance in real
scenarios. But first, one should ensure the correct behavior
of the implemented protocol in the presence of faulty nodes.
For example, protocols using consensus for time update (such
as averaging offsets [7]) are affected by erroneous reports.
More importantly, those based on round-robin operation (e.g.
[8], [9]) may fail and stop working when a single node is
down. Many solutions make abstraction of this aspect in the
protocol design. Indications like the absence of messages or

responses from a node during a threshold time may be used
as an indicator of faulty nodes[10], but the threshold should
be carefully selected to avoid possible false positives due to
the lossy channels. In addition to faulty nodes, considering
Byzantine behavior is challenging [11], where compromised
nodes may report falsified timestamp values for attacking the
synchronizing protocol.

E. Accuracy Measurement

To measure the accuracy of a synchronization protocol (the
synchronization error), instantaneous local times (or estimates)
at the synchronized nodes involved in the measurement is
needed to be captured red at the same physical time. This
is similar to the fundamental atomic snapshot in distributed
systems. However, existing distributed solutions are not useful
in this case due to the high variability of message exchange.
The trend in most measurements is to use an external hardware
setting that has a latency at a lower order. This complicates
scalability investigation, as well as the use of testbeds installed
in labs. Developing testbeds facilitating external hardware
connection and allowing for low level and interrupt handling
programming will be useful.

IV. IMPACT OF EMPIRICAL PARAMETERS

Empirical parameters have a significant impact on the pro-
tocol performance, which has been ignored in the theoretical
studies. This important issue is investigated in this section.
The elementary sender-to-receiver approach for single-hop
synchronization and the joint skew-offset model is considered
(Sec. I-B). Similar experimentation set-up and estimators as in
Sec. III-A have been used, i.e. two MICAz motes with Arduino
for instantaneous clock value capturing (Fig. 2), and MLE for
offset/skew estimation in Gaussian model [1]. Remember that
nodes exchange two-way messages to construct a quadruple of
timestamps that forms a sample. The process is then repeated
for a certain rounds to acquire a set of samples for estimation.
The skew-offset model captures the clock drifting, such that
once the synchronization parameters are estimated, they are
used for a certain period before re-synchronizing the nodes.

We varied two important parameters of the implementation,
the sample size, say k, i.e. the number of rounds before
estimation, and the period separating two rounds, say T .
Synchronization error has been measured for each variant
of the implementation, where t = 0 is the time when the
estimation is completed and the protocol execution is stopped
for every variant (similarly to III-A). Three values for k have
been used (10, 15, 20), and two for T (50msec, 100msec).
The results presented in Fig 6 confirm that the increase of k
improvers the stability of the estimator over time as reported
in all theoretical approaches. But more importantly, the results
show that the parameter T has also a significant impact. For all
values of k, the precision of every variant with T = 50 (dashed
lines) has better performance than the respective one with
T = 100 (solid lines), e.g., the variant (20, 50) outperforms
(20, 100), etc. ML estimators rely on the assumption that
the transmission/reception delays follow a normal distribution
with the same parameters, i.e., N (µ, σ2). Theoretical analyses

6

confirm that the precision of the estimators and their lower-
bound, CRLB, inversely depends on σ2 (the variance), but no
study investigated the issues that may affect σ2. We remarked
in the experiment that the variance of the measured delays
for executions with T = 50 were lower than those with
T = 100 in all scenarios, e.g. it was 1.30µsec2 for (20, 50)
vs. 4.14µsec2 for (20, 100). This may be justified by the
fact that channel conditions vary over time, and that picking
up samples in shorter periods is likely to encounter more
similar conditions than picking them up over longer periods.
This fulfills the assumption with a lower variance (σ2) and
consequently permits to achieve better estimators. It is thus
strongly recommended to perform sample acquisition in one
cycle (round) when using models relying on assumptions about
the delay distribution (such as MLE), and the skew/offset
model, notably in low duty-cycled applications. The duty-
cycle may be established using a cycle with a synchronization
phase(s) that should be long enough to fit operations needed
to get the sample size, k, followed by a set of cycles without
a synchronization phase, rather than using a synchronization
phases at the beginning of every cycle. The synchronization
phase can be at the beginning of the cycle (which is the most
common), or even split throughout the cycle. This is to avoid
long latencies for data packets. The sample size should be
fixed according to the required precision. For instance, if we
consider the simple scenario used in the experiment reported
in this section (just for illustration), a 1msec precision can be
satisfied with k = 10, T = 50msec, and re-synchronization
period of 1500sec, or with k = 20, T = 50msec, and re-
synchronization period of 3000sec, etc.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

S
y
n

c
h

ro
n

iz
a
ti

o
n

 E
rr

o
r

(m
ic

ro
-s

e
c
)

time (sec)

10,100

10,50

15,100

15,50

20,100

20,50

Fig. 6: Impact of Empirical Parameters

V. PROTOCOL IMPLEMENTATIONS

A. Overview

The most relevant implementations of synchronization pro-
tocols from the literature are discussed in this section. A
taxonomy of these protocols is presented in Fig. 7. Protocols
framed in rectangles implements the joint skew/offset model,
while those framed in diamonds are limited to the offset-only
model. Normal lines for the frames represent implementation
at the micro-second level, while those with dashed lines
represent low-precision implementations that generally use

low-granularity clocks. Some protocols use higher-layer times-
tamping and have the advantage of large portability, while
those using low-layer timestamping reduce the impact of the
delay variation at the cost of reducing the portability. All the
protocols implement multi-hop synchronization, except RRTE
and RATS. Multi-hop synchronization are divided into two
categories: i) tree-based synchronization, where all the nodes
are periodically synchronized to a single reference (usually
the sink node), and ii) flat synchronization, where nodes are
synchronized in peer-to-peer way. The second class is more
suitable for distributed networks and event-based applications,
where periodic maintenance of the tree maybe inappropriate.
Protocols of the first class are centralized and use a single
node as a reference that launches the synchronization protocol,
and to which nodes synchronize. They can be appropriate for
periodic applications, but maintaining such a tree and global
synchronization is not justified in event-based applications.
Many solutions build multi-hop synchronization as an exten-
sion to the single-hop synchronization. Some protocols have
what is known as the gradient property, where high precision
is targeted for local (single-hop) synchronization, and less
importance is attached to the precision between remote nodes.
TinyOS is the most popular software platform (operating
system), followed by Contiki, where Mica motes family is
the most popular hardware platform.

B. Offset-only Solutions

The offset-only model has the advantage of simplifying
estimator calculation. However, frequent re-synchronization
is required to keep high precision. Note that the precisions
reported in what follows reflect measurements obtained im-
mediately after synchronization before clocks start drifting,
i.e., one shot synchronization. The offset-only solutions are
not useful for long-term synchronization. They can be used in
applications that need sporadic delay-tolerant synchronization,
where the synchronization can be performed instantly before
the timestamping of the reported event. The offset-only model
can also be useful for applications that may be satisfied with
a weak synchronization. Descriptions and discussions in this
paper are focusing on implementation issues. For detailed
presentation of each protocol, the reader can refer to other
surveys, e.g. [4], or to the original paper introducing the
protocol.

1) Timing-Sync Protocol for Sensor Networks (TPSN): For
TPSN [12] implementation, MICA motes have been used,
whose crystal has a maximum frequency of 4Mhz. This
permits to achieve a granularity of 0.25µsec. RBS [2] has
also been implemented by the authors for comparison. MAC-
layer timestamping has been used to reduce the impact of
the delay variation. Results show synchronization error of
few microseconds, not exceeding 45µsec in the worst case
for single-hop scenarios, and 74µsec for 5-hop scenarios.
The results show that in most cases, the error has almost
been halved compared to RBS. However, the authors used
MAC-layer timestamping for TPSN, and application layer
timestamping for RBS. This leads to an unfair comparison and
questionable conclusions. RBS concept is independent from

7

Fig. 7: Overview of the protocol implementations presented in the paper

the timestamping level, as it supports both high-layer and low-
layer timestamping. Further, RBS low-layer timestamping has
been implemented and tested, [2]. A fair comparison would
use an implementation with the same timestamping layer,
in which case RBS would be more accurate as it uses the
receiver-to-receiver approach (Sec. II).

2) Secure-TPSN: Chen et al. [11] propose a secure TPSN-
based synchronization protocol. The authors argument the use
of CC2420 (TelosB’s radio) by the supporting of hardware-
based 128− bit AES encryption for their security operations,
which aim at protecting synchronization signals from mali-
cious attacks. The authors deployed time synchronization as a
service at the application layer, but with timestamping at the
MAC layer. The low-resolution external clock has been used,
with a tick frequency set to 512Hz (instead of the maximum
32.768KHz enabled by the crystal), i.e. permitting a resolu-
tion of about 2msec per tick. Eleven nodes have been used in
the experiment, arranged in single-hop, as well as multi-hop
topologies. Results show that the synchronization error has
been at the same order for single-hop and multi-hop scenarios,
as well as for synchronization with and without security. It was
between one and three ticks, with an average below 1.5tick.
This is basically due to the MAC-layer timestamping that
completely eliminates the effect of the message variability in
this experiment, given the very weak accuracy of the used
clock.

3) HARMONIA: HARMONIA [13] is a simple synchro-
nization protocol proposed for a wastewater monitoring and
actuation application (CSOnet). In this application, nodes are
supposed to wake up 6sec each 5min for collecting data and
synchronizing to the sink (2% duty cycle). At every cycle,
synchronization is used to coordinate the next cycle and assure
nodes will wake up at the same time (to a certain degree of
precision). Two different clocks are used; an external clock
(RCC) that has low drift but also low resolution (1sec gran-
ularity), and the microcontroller clock (MCC) that provides
high resolution (0.125µsec) but suffers from high drifting and
does not operate in the sleep mode. To tackle the high drifting
of the MCC, the idea behind HARMONIA is to use the latter
to accurately synchronize RCC, which will be used for duty-

cycling the nodes. The MCC is synchronized within one active
slot, and then it is used to set the RCC at all nodes along the
tree to that of the sink. This use of a stable clock justifies the
the offset-only model. A commercialized hardware (Chasqui
node) is used. It is a modified version of MICA2 with a
closed-source MAC protocol, which justifies the application
layer timestamping.

In the experiment, five nodes plus a sink node have been
used in different topologies including some multi-hop ones.
In addition to the synchronization precision, the synchroniza-
tion time has been measured, which is defined as the time
to synchronizing all nodes to the sink. This represents the
most important metric for the proposed protocol given the
targeted objective of fast synchronization. HARMONIA has
been compared with FTSP, and the results show that the
former demonstrates superiority in terms of synchronization
time, where the latter provides higher precision.

4) Glossy: Glossy [14] combines network message flood-
ing and synchronization in a single protocol. It exploits
constructive interference of IEEE 802.15.4 packets and targets
network wide synchronization. Similarly to HARMONIA, two
clocks have been used; the high-frequency DCO and the low-
frequency external crystal. The virtual high-resolution time
(VHT) technique has been employed to translate the high-
resolution estimate of the reference time to a low-resolution
value with a high-precision at the external crystal clock. This is
to implement duty-cycle and coordinate flooding. Influenced
by FTSP (that will be presented later), Glossy compensates
software jitter by measuring the gap between interrupt re-
ception and interrupt service, then accordingly inserting a
certain number of non-operations (NOP) instructions at the
beginning of the interrupt handler. Synchronization error has
been evaluated in a controlled setting using a couple of nodes,
while message flooding of Glossy has been evaluated in an ex-
tensive experiment on testbeds. Results show an average error
below 1µsec, even for multi-hop synchronization. The higher
precision of Glossy compared to HARMONIA is basically due
to the jitter compensation at the interrupt level.

5) Syntonistor: Rowe et al. [15] present a hardware module
for global clock synchronization called Syntonistor. It operates

8

at 60Hz and allows nodes to be tuned to the magnetic field
radiating from existing AC power lines. This hardware has
been attached to Firefly motes in the experiment. The AC
power forms a signal that can be used as a global clock source
for battery operated sensor nodes. It permits reducing drift
between nodes, compared to the use of internal clocks. Still,
there is typically a phase-offset between nodes. A protocol is
used to compensate for this phase-offset, where a master node
(sink) broadcasts a message at its rising pulse. It timestamps
the message at low-layer immediately before transmission. The
message is flooded across the network using the CC2420
radio. Every sensor node maintains a timer to count for
time since its last rising edge pulse. The evaluation of the
solution demonstrated only millisecond level precision. The
major advantage of this hardware is its power-efficiency. The
authors claim that it consumes less than 58µW , which is more
than twenty times lower than the energy consumed by most
MAC protocols when in idle mode. Taking advantage of high
stability of the magnetic field phase resulting from the AC
power line eliminates the need of frequent re-synchronization.
However, this hardware solution has some drawbacks. In
addition to low resolution, the authors reported none oper-
ation with mobile networks. This is due to the abundance
of the magnetic field sources in all directions that prevents
the hardware receiver from working properly. Another major
limitation is the need of active power line near the device,
which is unsuitable for some applications in remote and hostile
locations, or during a power outage. Table I summarizes the
protocols presented in this subsection with respect to the
influencing features presented in Sec III. For abbreviation,
MTS stands for MAC-layer timestamping.

TABLE I

Protocol Fast drifting Delay variation Fault-tolerance Security
TPSN No MTS No No

Sec-TPSN No MTS No Yes
Harmonia 2 clocks No No No

Glossy 2 clock NOP insertion No No
Syntonistor AC power MTS No No

C. Joint Skew/Offset Solutions

Implementations that involve skew estimation are presented
in this section. The skew estimation allows for long-term
synchronization and reduces the impact of the clock drifting,
but it has higher memory footprint and computation cost
compared to the offset-only solutions.

1) Reference Broadcast Synchronization (RBS): RBS [2]
is the first protocol that introduced the receiver-to-receiver
concept to WSN. The authors measured reception delays via
extensive experiments, where resulted samples fitted Gaussian
distribution. This result has been used to derive estimators, and
it conducted estimator calculation methods for most protocols
proposed ahead of RBS. Both offset-only and joint skew-offset
estimation models have been considered, where simple linear
regression has been used to estimate the skew from the offset
(motivated by the confirmed zero mean Gaussian distribution
of the delay differences). Further, the protocol supports both

high layer timestamping and low-layer timestamping. RBS has
also been implemented and tested with Berkeley mote, as well
as commodity hardware platform running UNIX daemon with
UDP datagrams. This implementation has been carried out
for testing low-layer timestamping that was not possible with
TinyOS and the Berkely mote of that period [2]. Results for
high-layer timestamping show error at the order of few micro
seconds. Those with low-layer timestamping demonstrated
errors at the order of 1µsec to 6µsec, with an average
below 2µsec. Offset conversion in multi-hop environment
has also been proposed and tested in a linear topology with
five nodes and five references, where results demonstrated
smooth increase of the error that did not exceed 11µsec
for four hops (with low-layer timestamping). These results
clearly demonstrate the effectiveness of the receiver-receiver
approach. A notable feature of RBS implementation is that
both timestamping schemes have been evaluated. This con-
firms that the high level of abstraction in the conception with
regard to timestamping does not eliminate the possibility of
low-layer timestamping. This aspect has been ignored by many
protocols proposed ahead of RBS, which wrongly assume RBS
only supports high-layer timestamping, e.g. TPSN [12].

2) Flooding Time Synchronization Protocol (FTSP): Maroti
et al. [6] propose FTSP, the first protocol that considers
interrupt jitter compensation. This is by recording several
timestamps per packet at the sender and receiver sides, then
averaging and normalizing the obtained timestamps to come
out with a final timestamp of the outgoing message. Linear
regression has been used for the skew compensation as in
RBS. A thorough investigation on the effectiveness of the skew
estimation (long-term synchronization) has been presented,
where synchronization have been stopped once nodes get
synchronized and then errors are measured, similarly to the
experiment presented in Sec. III-A. Results show microsecond
level precision for several minutes. Nonetheless, no compari-
son with the offset-only model has been provided. A similar
investigation on the latter would be useful to clarify the benefit
from the skew estimation.

The high precision of FTSP implementation is basically due
to the effective jitter compensation technique. FTSP imple-
mentation is available in the official distribution of TinyOS.
The first impressive feature of the implementation was its
portability with all platforms including those with packet-
oriented radios such as CC2420, which do not enable byte-
oriented interrupt triggering. However, after careful analysis
of the code, we realized that the external clock has been used
with millisecond level interfaces, and that only one times-
tamping per packet is used instead of the proposed multiple
timestamping. The current implementation is thus far from the
high precision reported in the original paper. It also deviates
from the central concept of FTSP that consists in using
multiple-stamping. For comparison at the microsecond level
with FTSP, a careful modification of FTSP implementation is
then required.

3) Gradient Time Synchronization Protocol (GTSP): Sum-
mer et al. [16] focus on the local synchronization (between
direct neighboring nodes) for which high precision is targeted.
Similarly to FTSP, GTSP uses several timestamping per packet

9

for jitter compensation. But contrary to FTSP, the protocol
does not require a tree topology and does not use the wall-
clock model, but the distributed logical clock concept. Nodes
periodically broadcast synchronization packets, then logical
skew and offset are calculated at each node using simple aver-
aging. A formal proof of convergence is provided. Timer3 of
ATmega128L has been used in the implementation. It operates
at 1/8 of the external oscillator frequency, i.e., at 921kHz. The
authors argue that packet-oriented radio chips, e.g., CC2420
(MICAz, TelosB), do not allow compensation of jitter in the
interrupt handling time since they trigger an interrupt after
the whole packet reception instead of doing it byte-by-byte.
This– added to the relatively high precision of its external
clock– justifies the use of MICA2. GTSP has been compared
with FTSP using 20 nodes in a ring logical topology. Results
show slightly better performance in favor of GTSP for local
synchronization (an average of 4µsec vs. 5.3µsec), but slightly
less performance for multi-hop synchronization (an average
of 14µsec vs. 7µsec). This gradient property is very useful
for applications where multi-hop synchronization is of less
importance, e.g. MAC scheduling.

4) Average Time Synchronization (ATS): Similarly to
GTSP, Schenato and Fiorenti [7] propose a referenceless dis-
tributed solution that uses the logical (virtual) clock principle,
where all nodes exchange their clock values and the averaged
values are considered as consensus. Formal convergence has
been proved by assuming the absence of communication delay,
which is unrealistic in WSN. In the implementation, the
low-resolution external clock of TmoteSky has been used at
32.768KHz, i.e., with a resolution of 30.5µsec per tick. The
implementation took advantage of the low-layer timestamping
enabled by the CC2420 radio. 35 motes ranged in a grid
topology have been used for the tests and comparison with
the official distribution of FTSP. Results show synchronization
error below 3 ticks for ATS, vs. errors up to 10 ticks for FTSP.
The results can be argued by the fact that the TinyOS distribu-
tion of FTSP does not implement software jitter compensation
technique (Sec. V-C2).

5) Rate Adaptive Time Synchronization (RATS): Ganeriwal
et al. [17] propose a single-hop synchronization scheme to
build a MAC protocol (UBMAC) that aims at minimizing
uncertainty for preamble management. Ordinary least square
regression has been used in the estimation to derive relative
parameters. For prediction of error estimation, an interesting
combination of analytical and empirical techniques has been
used. The ’optimum’ window size for estimation has been
fixed empirically using two MICA2 motes in different sce-
narios, then historical error prediction has been analytically
derived. An interesting feature of RATS is that it adapts the
sampling period to the user specification on the synchroniza-
tion bound. Experimental results demonstrate that the predic-
tive duty-cycling provided by RATS gives important energy
saving compared to the long-preamble of B-MAC (when fixing
the error’s higher-bound to the millisecond level). Further,
preliminary results on RATS demonstrated errors below 3µsec,
but this level of granularity has not been used in UBMAC.

6) PulseSynch: Lenzen et al. [18] probabilistically analyze
GTSP and FTSP, and the lower-bound of their respective

skews. This analysis motivated their contribution on proposing
a root square order bound algorithm. PulseSynch aims at
distributing information on clock values as fast as possible,
and focusing on multi-hop synchronization. Similarly to FTSP,
a root node periodically floods its clock value through the
network, but the delay jitter is added using the forwarder’s
estimate of the root advance instead of using local clock.
Linear regression is used for skew estimation to mitigate the
fast clock drifting. PulseSynch has been evaluated in a 20-node
testbed, and compared to FTSP.

Acknowledgment of synchronization packets has been used
at the application layer to eliminate their loss that is not
tolerable by the protocol. Despite its cost in terms of com-
munication overhead, this ACK mechanism is more realistic
compared to the no-loss assumption. Timestamping of the first
six bytes has been used to overcome the jitter. Results show
fast convergence of pulseSynch and low errors at the order
of few micro-seconds, a bit lower than FTSP in the tested
scenarios.

7) Round-Robin Timing Exchange (RRTE): Huang and Wu
[8] propose RRTE as a hybrid solution between TPSN and
PBS [1]. In each cycle, one node is selected in a round-
robin way to act as a second reference and execute PBS,
while the other nodes overhear transmissions. This is to reduce
the power consumption and balance it among all the nodes,
instead of using a fixed second reference as in PBS. Recursive
second order regression is used for clock adjustment and skew
estimation, to compensate for the fast clock drifting. RRTE has
been implemented and tested in U-NET01 platform, which
features a U-NET01 8051 micro-controller with an embedded
processor, a UBEC’s UZ2400 wireless transceiver module that
is IEEE 802.15.4 compliant. Results show precision of the
order of several tens to several hundreds of microseconds.
Comparison with implementations of TPSN and PBS on the
same platform shows that RRTE balances between them,
where TPSN demonstrated the best precision.

8) CS-MNS: In [19], Kunz and MacNeil describe an im-
plementation of their previously proposed protocol called
CS-MNS. It is a multi-hop mutual synchronization protocol,
where nodes align their clock without turning to a reference.
Motivated by the halt of the micro-controller internal clock
in sleep mode, the external 32.768KHz clock has been used.
The hardware radio packet timestamping capabilities of the
underlying platform has been used. Clock adjustments were
implemented using fixed-point arithmetic on 64 bits, with
eight bits for the whole part and 56 bits to the right of the
radix point. This is to avoid the use of software floating-
point libraries that may yield a significant memory footprint.
Scenarios of up to 14 nodes have been investigated, and CS-
MNS has been compared with FTSP. Results show superiority
of CS-MNS, but with synchronization error of several tens
of microseconds, and up to few milliseconds. This looks
completely contradictory compared to the results reported
by FTSP. Still, this can be justified by the use of the low-
resolution clock in the TinyOS official distribution of FTSP
(Sec. V-C4).

9) R4Syn: R4Syn [9] is a distributed receiver-to-receiver
protocol, where all nodes cooperatively assure the traditional

10

role of the reference in a round-robin way. Beacons and
timestamp exchanges are integrated in the same steps to
accelerate sample acquisition and estimator calculation. Dje-
nouri et al. [10] provide a fault-tolerant implementation and a
testbed experimentation of R4Syn. Seven MICAz motes have
been used and a software topology for multi-hop scenarios.
Time has been implemented using the internal high-resolution
clock. Synchronizing motes have been connected via available
pins to an Arduino that periodically triggers measurement.
R4Syn allows both low-layer and high-layer timestamping,
but only low-layer timestamping has been evaluated. Both
skew-offset and offset-only models have been implemented.
MLE has been used for skew estimation along with MAC-
layer timestamping. Extensive tests show errors at the order
of few microseconds; below 3µsec on average for single hop,
and 20µsec for 6-hop scenarios. Original MLE estimators that
results in multiplications of very large temporary variables
before convergence have been analytically rewritten to avoid
such problem, and they have been successfully implemented.

An interesting result illustrated in the experiment is the
comparison between the offset-only and skew-offset models,
similarly to the experiment presented in Sec. III-A. This gives
a clear picture on the skew estimation impact. A major lack
in the experiment is with regard to high-layer timestamping,
which is an important feature of R4Syn. Table II summarizes
the protocols presented in this subsection. For abbreviation,
MTS stands for MAC-layer timestamping, ST for the several
timestamping per packet technique (Sec V-C2), ES for the use
of estimation methods, and R2R for the receiver-to-receiver
approach.

TABLE II

Protocol Fast drifting Delay variation Fault-tolerance Security
RBS ES MTS+R2R No No

FTSP ES MTS+ST No No
GTSP ES MTS+ST No No
ATS ES NO No No

RATS ES MTS No No
PulseSynch ES ES+ST No No

RRTE ES No No No
CS-MNS ES MTS No No
R4Syn ES MTS+R2R Yes No

VI. DISCUSSIONS

One of the most influencing features that impact a synchro-
nization protocol is the clock drifting. Skew estimation models
represent the vital solution to this problem, which have been
used in the solutions presented in Sec. V-C. Nonetheless, their
implementation comes at a higher complexity compared to
the offset-only model. Our experiments with MICAz motes
confirm suitability of linear models for skew estimation, both
for internal and external clocks as reported in the paper (Sec.
III). The internal clock does not run when in sleep mode,
and thus it cannot be used in applications such as coordinated
duty-cycling. The VHT technique used by HARMOIA and
Glossy enables the use of the high-granularity internal clocks
to accurately synchronize the external clocks, then to make a
precise rendezvous with the external clocks. This technique

is useful in applications that need precise rendezvous or
synchronized coordinated actions, such as coordinated duty-
cycling (e.g. TDMA-like scheduling), but not those needing
time measurement or conversion (timestamping), e.g., object
tracking. Offset-only implementations do not permit long-
term synchronization. They can only be used in applications
requiring sporadic delay-tolerant synchronization, where the
synchronization can be performed instantly before the times-
tamping of the reported event.

Another big challenge is the delay for message exchange
and handling, which is prone to high variability. We showed
that parameters of the synchronization protocol such as the
delay between sample acquisition (beaconing) considerably
affect the delay variance, and thus the estimators’ precision
(Sec. IV). MAC-layer timestamping is a practical solution, but
comes at a reduced portability. One of the practical approaches
in real implementation is to trading-off the synchronization
precision for a reduced cost, as in RATS. The precision
should be bounded according to the application needs. Another
practical technique is the use of several timestampings for
every synchronization message and averaging the resulted
timestamps to compensate the jitter, e.g. FTSP, GTPS. But this
comes at a reduced portability and can only be implemented
with byte-level interrupt triggering radios, e.g. the one of
MICA2, and not the common packet oriented radios, e.g.
CC2420. Finally, we realized that many protocols have been
compared with the TinyOS distribution of FTSP that uses
millisecond interfaces. This does not implement the multiple
timestamping per packet, which is FTSP’s main contribution.
For acurate investigation, a more fair comparison would use
byte-level interrupt triggering platforms and a revisited imple-
mentation.

VII. CONCLUSION

Implementation of synchronization protocols in wireless
sensor networks (WSN) has been considered in this paper.
Practical aspects that have been neglected or ideally abstracted
in the theoretical solutions have been investigated in this paper.
After introducing some general concepts and backgrounds,
the challenges that any implementation of a synchronization
protocol in WSN faces have been listed. Clock drifting and
delay variation are the most influencing features. A Taxonomy
of the state-of-the-art implemented protocols have been given
before describing the protocols. Descriptions in this paper have
been implementation-centric, where the focus was on practical
aspects related to the implementation and experimentation.
Algorithmic description has been largely covered in the lit-
erature and is out of the scope of this paper. Solutions that
are limited to the offset-only model have been first presented,
followed by those using the joint skew-offset model for
drift compensation. While the former class has the advantage
of simplicity, the latter provides long-term synchronization.
Techniques to compensate for the jitter (delay variation) such
as low-layer timestamping, the use of normalized several
timestamps per packet, and the virtual-high resolution time
have been discussed. Some unfair comparisons with FTSP and
RBS protocols have reported. We hope this moderate work

11

will be useful for researchers interested into any issue relate
to implementation of synchronization protocols in WSN.

REFERENCES

[1] Y.-C. Wu, Q. M. Chaudhari, and E. Serpedin, “Clock synchronization
of wireless sensor networks,” IEEE Signal Process. Mag., vol. 28, no. 1,
pp. 124–138, 2011.

[2] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time syn-
chronization using reference broadcasts,” in 5th USENIX Symposium
on Operating System Design and Implementation (OSDI’02), December
2002.

[3] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks:
A survey,” IEEE Network Magazin, vol. 18, no. 4, pp. 45–50, 2004.

[4] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: a survey,” Ad hoc Networks, vol. 3,
no. 3, pp. 281–323, 2005.

[5] J. Zheng and Y.-C. Wu, “Joint time synchronization and localization
of an unknown node in wireless sensor networks,” Trans. Sig. Proc.,
vol. 58, no. 3, pp. 1309–1320, 2010.

[6] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in SenSys, 2004, pp. 39–49.

[7] L. Schenato and F. Fiorentin, “Average timesynch: A consensus-based
protocol for clock synchronization in wireless sensor networks,” Auto-
matica, vol. 47, no. 9, pp. 1878–1886, 2011.

[8] Y.-H. Huang and S.-H. Wu, “Time synchronization protocol for small-
scale wireless sensor networks,” in IEEE Wireless Communications and
Networking Conference (WCNC’10), 2010, pp. 1–5.

[9] D. Djenouri, “R4syn : Relative referenceless receiver/receiver time
synchronization in wireless sensor networks,” IEEE Signal Process.
Lett., vol. 19, no. 4, pp. 175–178, 2012.

[10] D. Djenouri, N. Merabtine, F. Z. Mekahlia, and M. Doudou, “Fast dis-
tributed multi-hop relative time synchronization protocol and estimators
for wireless sensor networks,” Ad Hoc Networks, vol. 11, no. 8, pp.
2329–2344, 2013.

[11] S. Chen, A. Dunkels, F. sterlind, T. Voigt, and M. Johansson, “Time
synchronization for predictable and secure data collection in wireless
sensor networks,” in The Sixth Annual Mediterranean Ad Hoc Network-
ing WorkShop, 2007, pp. 165–172.

[12] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of the 1st international conference
on Embedded networked sensor systems, ser. SenSys ’03, 2003, pp. 138–
149.

[13] J. Koo, R. K. Panta, S. Bagchi, and L. A. Montestruque, “A tale of
two synchronizing clocks,” in Proceedings of the 7th ACM Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys’09),
November 2009, pp. 239–252.

[14] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in IPSN, 2011, pp. 73–
84.

[15] A. Rowe, V. Gupta, and R. Rajkumar, “Low-power clock synchro-
nization using electromagnetic energy radiating from AC power lines,”
in Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems (SenSys’09), 2009, pp. 211–224.

[16] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in
wireless sensor networks,” in Proceedings of the 8th ACM International
Conference on Information Processing in Sensor Networks (IPSN’08),
2009, pp. 37–48.

[17] S. Ganeriwal, I. Tsigkogiannis, H. Shim, V. Tsiatsis, M. B. Srivastava,
and D. Ganesan, “Estimating clock uncertainty for efficient duty-cycling
in sensor networks,” IEEE/ACM Transations on Networking., vol. 17, pp.
843–856, June 2009.

[18] C. Lenzen, P. Sommer, and R. Wattenhofer, “Optimal clock synchroniza-
tion in networks,” in Proceedings of the 7th ACM International Confer-
ence on Embedded Networked Sensor Systems (SenSys’09), November
2009, pp. 225–238.

[19] T. Kunz and E. McKnight-MacNeil, “Implementing clock synchroniza-
tion in wsn: Cs-mns vs. ftsp,” in WiMob, 2011, pp. 157–164.

