2,484 research outputs found

    Join-Idle-Queue with Service Elasticity: Large-Scale Asymptotics of a Non-monotone System

    Get PDF
    We consider the model of a token-based joint auto-scaling and load balancing strategy, proposed in a recent paper by Mukherjee, Dhara, Borst, and van Leeuwaarden (SIGMETRICS '17, arXiv:1703.08373), which offers an efficient scalable implementation and yet achieves asymptotically optimal steady-state delay performance and energy consumption as the number of servers NN\to\infty. In the above work, the asymptotic results are obtained under the assumption that the queues have fixed-size finite buffers, and therefore the fundamental question of stability of the proposed scheme with infinite buffers was left open. In this paper, we address this fundamental stability question. The system stability under the usual subcritical load assumption is not automatic. Moreover, the stability may not even hold for all NN. The key challenge stems from the fact that the process lacks monotonicity, which has been the powerful primary tool for establishing stability in load balancing models. We develop a novel method to prove that the subcritically loaded system is stable for large enough NN, and establish convergence of steady-state distributions to the optimal one, as NN \to \infty. The method goes beyond the state of the art techniques -- it uses an induction-based idea and a "weak monotonicity" property of the model; this technique is of independent interest and may have broader applicability.Comment: 30 page

    Simple models of network access, with applications to the design of joint rate and admission control

    Get PDF
    At the access to networks, in contrast to the core, distances and feedback delays, as well as link capacities are small, which has network engineering implications that are investigated in this paper. We consider a single point in the access network which multiplexes several bursty users. The users adapt their sending rates based on feedback from the access multiplexer. Important parameters are the user's peak transmission rate p, which is the access line speed, the user's guaranteed minimum rate r, and the bound ε on the fraction of lost data. Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if the system is relatively lightly loaded, at rate r during periods of congestion, and at a rate between r and p, in an intermediate region. For both feedback schemes we present an exact analysis, under the assumption that the users' job sizes and think times have exponential distributions. We use our techniques to design the schemes jointly with admission control, i.e., the selection of the number of admissible users, to maximize throughput for given p, r, and ε. Next we consider the case in which the number of users is large. Under a specific scaling, we derive explicit large deviations asymptotics for both models. We discuss the extension to general distributions of user data and think times

    Continuous feedback fluid queues

    Get PDF
    We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with generator Q(y)Q(y) at times when the buffer level is yy, where the entries of Q(y)Q(y) are continuous functions of yy. Moreover, the flow rates for the buffer may also depend continuously on the current buffer level. Such models are interesting in the context of closed-loop telecommunication networks, in which sources interact with network buffers, but may also be deployed in the study of certain production systems. \u

    Asymptotic analysis by the saddle point method of the Anick-Mitra-Sondhi model

    Full text link
    We consider a fluid queue where the input process consists of N identical sources that turn on and off at exponential waiting times. The server works at the constant rate c and an on source generates fluid at unit rate. This model was first formulated and analyzed by Anick, Mitra and Sondhi. We obtain an alternate representation of the joint steady state distribution of the buffer content and the number of on sources. This is given as a contour integral that we then analyze for large N. We give detailed asymptotic results for the joint distribution, as well as the associated marginal and conditional distributions. In particular, simple conditional limits laws are obtained. These shows how the buffer content behaves conditioned on the number of active sources and vice versa. Numerical comparisons show that our asymptotic results are very accurate even for N=20

    On a generic class of two-node queueing systems

    Get PDF
    This paper analyzes a generic class of two-node queueing systems. A first queue is fed by an on–off Markov fluid source; the input of a second queue is a function of the state of the Markov fluid source as well, but now also of the first queue being empty or not. This model covers the classical two-node tandem queue and the two-class priority queue as special cases. Relying predominantly on probabilistic argumentation, the steady-state buffer content of both queues is determined (in terms of its Laplace transform). Interpreting the buffer content of the second queue in terms of busy periods of the first queue, the (exact) tail asymptotics of the distribution of the second queue are found. Two regimes can be distinguished: a first in which the state of the first queue (that is, being empty or not) hardly plays a role, and a second in which it explicitly does. This dichotomy can be understood by using large-deviations heuristics

    Distribution-valued heavy-traffic limits for the G/GI/G/\mathit{GI}/\infty queue

    Full text link
    We study the G/GI/G/\mathit{GI}/\infty queue in heavy-traffic using tempered distribution-valued processes which track the age and residual service time of each customer in the system. In both cases, we use the continuous mapping theorem together with functional central limit theorem results in order to obtain fluid and diffusion limits for these processes in the space of tempered distribution-valued processes. We find that our diffusion limits are tempered distribution-valued Ornstein-Uhlenbeck processes.Comment: Published at http://dx.doi.org/10.1214/14-AAP1027 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Supermarket Model on Graphs

    Get PDF
    We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson processes with rate λ\lambda, and each task is irrevocably assigned to the shortest queue among the one it first appears and its d1d-1 randomly selected neighbors. This model has been extensively studied when the underlying graph is a clique in which case it reduces to the well known power-of-dd scheme. In particular, results of Mitzenmacher (1996) and Vvedenskaya et al. (1996) show that as the size of the clique gets large, the occupancy process associated with the queue-lengths at the various servers converges to a deterministic limit described by an infinite system of ordinary differential equations (ODE). In this work, we consider settings where the underlying graph need not be a clique and is allowed to be suitably sparse. We show that if the minimum degree approaches infinity (however slowly) as the number of servers NN approaches infinity, and the ratio between the maximum degree and the minimum degree in each connected component approaches 1 uniformly, the occupancy process converges to the same system of ODE as the classical supermarket model. In particular, the asymptotic behavior of the occupancy process is insensitive to the precise network topology. We also study the case where the graph sequence is random, with the NN-th graph given as an Erd\H{o}s-R\'enyi random graph on NN vertices with average degree c(N)c(N). Annealed convergence of the occupancy process to the same deterministic limit is established under the condition c(N)c(N)\to\infty, and under a stronger condition c(N)/lnNc(N)/\ln N\to\infty, convergence (in probability) is shown for almost every realization of the random graph.Comment: 32 page

    Fluid flow models in performance analysis

    Get PDF
    We review several developments in fluid flow models: feedback fluid models, linear stochastic fluid networks and bandwidth sharing networks. We also mention some promising new research directions
    corecore