9 research outputs found

    Exploring multimodal data fusion through joint decompositions with flexible couplings

    Full text link
    A Bayesian framework is proposed to define flexible coupling models for joint tensor decompositions of multiple data sets. Under this framework, a natural formulation of the data fusion problem is to cast it in terms of a joint maximum a posteriori (MAP) estimator. Data driven scenarios of joint posterior distributions are provided, including general Gaussian priors and non Gaussian coupling priors. We present and discuss implementation issues of algorithms used to obtain the joint MAP estimator. We also show how this framework can be adapted to tackle the problem of joint decompositions of large datasets. In the case of a conditional Gaussian coupling with a linear transformation, we give theoretical bounds on the data fusion performance using the Bayesian Cramer-Rao bound. Simulations are reported for hybrid coupling models ranging from simple additive Gaussian models, to Gamma-type models with positive variables and to the coupling of data sets which are inherently of different size due to different resolution of the measurement devices.Comment: 15 pages, 7 figures, revised versio

    About Notations in Multiway Array Processing

    Full text link
    This paper gives an overview of notations used in multiway array processing. We redefine the vectorization and matricization operators to comply with some properties of the Kronecker product. The tensor product and Kronecker product are also represented with two different symbols, and it is shown how these notations lead to clearer expressions for multiway array operations. Finally, the paper recalls the useful yet widely unknown properties of the array normal law with suggested notations

    Joint Tensor Compression for Coupled Canonical Polyadic Decompositions

    No full text
    International audienceTo deal with large multimodal datasets, coupled canonical polyadic decompositions are used as an approximation model. In this paper, a joint compression scheme is introduced to reduce the dimensions of the dataset. Joint compression allows to solve the approximation problem in a compressed domain using standard coupled decomposition algorithms. Computational complexity required to obtain the coupled decomposition is therefore reduced. Also, we propose to approximate the update of the coupled factor by a simple weighted average of the independent updates of the coupled factors. The proposed approach and its simplified version are tested with synthetic data and we show that both do not incur substantial loss in approximation performance

    Performance bounds for coupled models

    No full text
    Two models are called "coupled" when a non empty set of the underlying parameters are related through a differentiable implicit function. The goal is to estimate the parameters of both models by merging all datasets, that is, by processing them jointly. In this context, we show that the parameter estimation accuracy under a general class of dataset distributions always improves when compared to an equivalent uncoupled model. We eventually illustrate our results with the fusion of multiple tensor data

    Dictionary-based Tensor Canonical Polyadic Decomposition

    Full text link
    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images

    A Tour of Constrained Tensor Canonical Polyadic Decomposition

    No full text
    This paper surveys the use of constraints in tensor decomposition models. Constrained tensor decompositions have been extensively applied to chemometrics and array processing, but there is a growing interest in understanding these methods independently of the application of interest. We suggest a formalism that unifies various instances of constrained tensor decomposition, while shedding light on some possible extensions of existing methods

    Unraveling Diagnostic Biomarkers of Schizophrenia Through Structure-Revealing Fusion of Multi-Modal Neuroimaging Data

    Get PDF
    Fusing complementary information from different modalities can lead to the discovery of more accurate diagnostic biomarkers for psychiatric disorders. However, biomarker discovery through data fusion is challenging since it requires extracting interpretable and reproducible patterns from data sets, consisting of shared/unshared patterns and of different orders. For example, multi-channel electroencephalography (EEG) signals from multiple subjects can be represented as a third-order tensor with modes: subject, time, and channel, while functional magnetic resonance imaging (fMRI) data may be in the form of subject by voxel matrices. Traditional data fusion methods rearrange higher-order tensors, such as EEG, as matrices to use matrix factorization-based approaches. In contrast, fusion methods based on coupled matrix and tensor factorizations (CMTF) exploit the potential multi-way structure of higher-order tensors. The CMTF approach has been shown to capture underlying patterns more accurately without imposing strong constraints on the latent neural patterns, i.e., biomarkers. In this paper, EEG, fMRI, and structural MRI (sMRI) data collected during an auditory oddball task (AOD) from a group of subjects consisting of patients with schizophrenia and healthy controls, are arranged as matrices and higher-order tensors coupled along the subject mode, and jointly analyzed using structure-revealing CMTF methods [also known as advanced CMTF (ACMTF)] focusing on unique identification of underlying patterns in the presence of shared/unshared patterns. We demonstrate that joint analysis of the EEG tensor and fMRI matrix using ACMTF reveals significant and biologically meaningful components in terms of differentiating between patients with schizophrenia and healthy controls while also providing spatial patterns with high resolution and improving the clustering performance compared to the analysis of only the EEG tensor. We also show that these patterns are reproducible, and study reproducibility for different model parameters. In comparison to the joint independent component analysis (jICA) data fusion approach, ACMTF provides easier interpretation of EEG data by revealing a single summary map of the topography for each component. Furthermore, fusion of sMRI data with EEG and fMRI through an ACMTF model provides structural patterns; however, we also show that when fusing data sets from multiple modalities, hence of very different nature, preprocessing plays a crucial role

    Advanced tensor based signal processing techniques for wireless communication systems and biomedical signal processing

    Get PDF
    Many observed signals in signal processing applications including wireless communications, biomedical signal processing, image processing, and machine learning are multi-dimensional. Tensors preserve the multi-dimensional structure and provide a natural representation of these signals/data. Moreover, tensors provide often an improved identifiability. Therefore, we benefit from using tensor algebra in the above mentioned applications and many more. In this thesis, we present the benefits of utilizing tensor algebra in two signal processing areas. These include signal processing for MIMO (Multiple-Input Multiple-Output) wireless communication systems and biomedical signal processing. Moreover, we contribute to the theoretical aspects of tensor algebra by deriving new properties and ways of computing tensor decompositions. Often, we only have an element-wise or a slice-wise description of the signal model. This representation of the signal model does not reveal the explicit tensor structure. Therefore, the derivation of all tensor unfoldings is not always obvious. Consequently, exploiting the multi-dimensional structure of these models is not always straightforward. We propose an alternative representation of the element-wise multiplication or the slice-wise multiplication based on the generalized tensor contraction operator. Later in this thesis, we exploit this novel representation and the properties of the contraction operator such that we derive the final tensor models. There exist a number of different tensor decompositions that describe different signal models such as the HOSVD (Higher Order Singular Value Decomposition), the CP/PARAFAC (Canonical Polyadic / PARallel FACtors) decomposition, the BTD (Block Term Decomposition), the PARATUCK2 (PARAfac and TUCker2) decomposition, and the PARAFAC2 (PARAllel FACtors2) decomposition. Among these decompositions, the CP decomposition is most widely spread and used. Therefore, the development of algorithms for the efficient computation of the CP decomposition is important for many applications. The SECSI (Semi-Algebraic framework for approximate CP decomposition via SImultaneaous matrix diagonalization) framework is an efficient and robust tool for the calculation of the approximate low-rank CP decomposition via simultaneous matrix diagonalizations. In this thesis, we present five extensions of the SECSI framework that reduce the computational complexity of the original framework and/or introduce constraints to the factor matrices. Moreover, the PARAFAC2 decomposition and the PARATUCK2 decomposition are usually described using a slice-wise notation that can be expressed in terms of the generalized tensor contraction as proposed in this thesis. We exploit this novel representation to derive explicit tensor models for the PARAFAC2 decomposition and the PARATUCK2 decomposition. Furthermore, we use the PARAFAC2 model to derive an ALS (Alternating Least-Squares) algorithm for the computation of the PARAFAC2 decomposition. Moreover, we exploit the novel contraction properties for element wise and slice-wise multiplications to model MIMO multi-carrier wireless communication systems. We show that this very general model can be used to derive the tensor model of the received signal for MIMO-OFDM (Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao coded MIMO-OFDM, and randomly coded MIMO-OFDM systems. We propose the transmission techniques Khatri-Rao coding and random coding in order to impose an additional tensor structure of the transmit signal tensor that otherwise does not have a particular structure. Moreover, we show that this model can be extended to other multi-carrier techniques such as GFDM (Generalized Frequency Division Multiplexing). Utilizing these models at the receiver side, we design several types for receivers for these systems that outperform the traditional matrix based solutions in terms of the symbol error rate. In the last part of this thesis, we show the benefits of using tensor algebra in biomedical signal processing by jointly decomposing EEG (ElectroEncephaloGraphy) and MEG (MagnetoEncephaloGraphy) signals. EEG and MEG signals are usually acquired simultaneously, and they capture aspects of the same brain activity. Therefore, EEG and MEG signals can be decomposed using coupled tensor decompositions such as the coupled CP decomposition. We exploit the proposed coupled SECSI framework (one of the proposed extensions of the SECSI framework) for the computation of the coupled CP decomposition to first validate and analyze the photic driving effect. Moreover, we validate the effects of scull defects on the measurement EEG and MEG signals by means of a joint EEG-MEG decomposition using the coupled SECSI framework. Both applications show that we benefit from coupled tensor decompositions and the coupled SECSI framework is a very practical tool for the analysis of biomedical data.Zahlreiche messbare Signale in verschiedenen Bereichen der digitalen Signalverarbeitung, z.B. in der drahtlosen Kommunikation, im Mobilfunk, biomedizinischen Anwendungen, der Bild- oder akustischen Signalverarbeitung und dem maschinellen Lernen sind mehrdimensional. Tensoren erhalten die mehrdimensionale Struktur und stellen eine natürliche Darstellung dieser Signale/Daten dar. Darüber hinaus bieten Tensoren oft eine verbesserte Trennbarkeit von enthaltenen Signalkomponenten. Daher profitieren wir von der Verwendung der Tensor-Algebra in den oben genannten Anwendungen und vielen mehr. In dieser Arbeit stellen wir die Vorteile der Nutzung der Tensor-Algebra in zwei Bereichen der Signalverarbeitung vor: drahtlose MIMO (Multiple-Input Multiple-Output) Kommunikationssysteme und biomedizinische Signalverarbeitung. Darüber hinaus tragen wir zu theoretischen Aspekten der Tensor-Algebra bei, indem wir neue Eigenschaften und Berechnungsmethoden für die Tensor-Zerlegung ableiten. Oftmals verfügen wir lediglich über eine elementweise oder ebenenweise Beschreibung des Signalmodells, welche nicht die explizite Tensorstruktur zeigt. Daher ist die Ableitung aller Tensor-Unfoldings nicht offensichtlich, wodurch die multidimensionale Struktur dieser Modelle nicht trivial nutzbar ist. Wir schlagen eine alternative Darstellung der elementweisen Multiplikation oder der ebenenweisen Multiplikation auf der Grundlage des generalisierten Tensor-Kontraktionsoperators vor. Weiterhin nutzen wir diese neuartige Darstellung und deren Eigenschaften zur Ableitung der letztendlichen Tensor-Modelle. Es existieren eine Vielzahl von Tensor-Zerlegungen, die verschiedene Signalmodelle beschreiben, wie die HOSVD (Higher Order Singular Value Decomposition), CP/PARAFAC (Canonical Polyadic/ PARallel FACtors) Zerlegung, die BTD (Block Term Decomposition), die PARATUCK2-(PARAfac und TUCker2) und die PARAFAC2-Zerlegung (PARAllel FACtors2). Dabei ist die CP-Zerlegung am weitesten verbreitet und wird findet in zahlreichen Gebieten Anwendung. Daher ist die Entwicklung von Algorithmen zur effizienten Berechnung der CP-Zerlegung von besonderer Bedeutung. Das SECSI (Semi-Algebraic Framework for approximate CP decomposition via Simultaneaous matrix diagonalization) Framework ist ein effizientes und robustes Werkzeug zur Berechnung der approximierten Low-Rank CP-Zerlegung durch simultane Matrixdiagonalisierung. In dieser Arbeit stellen wir fünf Erweiterungen des SECSI-Frameworks vor, welche die Rechenkomplexität des ursprünglichen Frameworks reduzieren bzw. Einschränkungen für die Faktormatrizen einführen. Darüber hinaus werden die PARAFAC2- und die PARATUCK2-Zerlegung in der Regel mit einer ebenenweisen Notation beschrieben, die sich in Form der allgemeinen Tensor-Kontraktion, wie sie in dieser Arbeit vorgeschlagen wird, ausdrücken lässt. Wir nutzen diese neuartige Darstellung, um explizite Tensormodelle für diese beiden Zerlegungen abzuleiten. Darüber hinaus verwenden wir das PARAFAC2-Modell, um einen ALS-Algorithmus (Alternating Least-Squares) für die Berechnung der PARAFAC2-Zerlegungen abzuleiten. Weiterhin nutzen wir die neuartigen Kontraktionseigenschaften für elementweise und ebenenweise Multiplikationen, um MIMO Multi-Carrier-Mobilfunksysteme zu modellieren. Wir zeigen, dass dieses sehr allgemeine Modell verwendet werden kann, um das Tensor-Modell des empfangenen Signals für MIMO-OFDM- (Multiple- Input Multiple-Output - Orthogonal Frequency Division Multiplexing), Khatri-Rao codierte MIMO-OFDM- und zufällig codierte MIMO-OFDM-Systeme abzuleiten. Wir schlagen die Übertragungstechniken der Khatri-Rao-Kodierung und zufällige Kodierung vor, um eine zusätzliche Tensor-Struktur des Sendesignal-Tensors einzuführen, welcher gewöhnlich keine bestimmte Struktur aufweist. Darüber hinaus zeigen wir, dass dieses Modell auf andere Multi-Carrier-Techniken wie GFDM (Generalized Frequency Division Multiplexing) erweitert werden kann. Unter Verwendung dieser Modelle auf der Empfängerseite entwerfen wir verschiedene Typen von Empfängern für diese Systeme, die die traditionellen matrixbasierten Lösungen in Bezug auf die Symbolfehlerrate übertreffen. Im letzten Teil dieser Arbeit zeigen wir die Vorteile der Verwendung von Tensor-Algebra in der biomedizinischen Signalverarbeitung durch die gemeinsame Zerlegung von EEG-(ElectroEncephaloGraphy) und MEG- (MagnetoEncephaloGraphy) Signalen. Diese werden in der Regel gleichzeitig erfasst, wobei sie gemeinsame Aspekte derselben Gehirnaktivität beschreiben. Daher können EEG- und MEG-Signale mit gekoppelten Tensor-Zerlegungen wie der gekoppelten CP Zerlegung analysiert werden. Wir nutzen das vorgeschlagene gekoppelte SECSI-Framework (eine der vorgeschlagenen Erweiterungen des SECSI-Frameworks) für die Berechnung der gekoppelten CP Zerlegung, um zunächst den photic driving effect zu validieren und zu analysieren. Darüber hinaus validieren wir die Auswirkungen von Schädeldefekten auf die Messsignale von EEG und MEG durch eine gemeinsame EEG-MEG-Zerlegung mit dem gekoppelten SECSI-Framework. Beide Anwendungen zeigen, dass wir von gekoppelten Tensor-Zerlegungen profitieren, wobei die Methoden des gekoppelten SECSI-Frameworks erfolgreich zur Analyse biomedizinischer Daten genutzt werden können

    Joint decompositions with flexible couplings

    No full text
    International audienceA Bayesian framework is proposed to define flexible coupling models for joint decompositions of data sets. Under this framework, a solution to the joint decomposition can be cast in terms of a maximum a posteriori estimator. Examples of joint posterior distributions are provided , including general Gaussian priors and non Gaussian coupling priors. Then simulations are reported and show the effectiveness of this approach to fuse information from data sets, which are inherently of different size due to different time resolution of the measurement devices
    corecore