4 research outputs found

    Joint Bandwidth and Power Allocation for LTE-Based Cognitive Radio Network Based on Buffer Occupancy

    Get PDF

    Joint bandwidth and power allocation for LTE-based cognitive radio network based on buffer occupancy

    Full text link
    We investigate the problem of resource allocation in a cognitive long-term evolution (LTE) network, where the available bandwidth resources are shared among the primary (licensed) users (PUs) and secondary (unlicensed) users (SUs). Under such spectrum sharing conditions, the transmission of the SUs should have minimal impact on quality of service (QoS) and operating conditions of the PUs. To achieve this goal, we propose to assign the network resources based on the buffer sizes of the PUs and SUs in the uplink (UL) and downlink (DL) directions. To ensure that the QoS requirements of the PUs are satisfied, we enforce some upper bound on the size of their buffers considering two network usage scenarios. In the first scenario, PUs pay full price for accessing the spectrum and get full QoS protection; the SUs access the network for free and are served on a best-effort basis. In the second scenario, PUs pay less in exchange for sharing the bandwidth and get the reduced QoS guarantees; SUs pay some price for their access without any QoS guarantees. Performance of the algorithms proposed in the paper is evaluated using simulations in OPNET environment. The algorithms show superior performance when compared with other relevant techniques

    Joint Bandwidth and Power Allocation for LTE-Based Cognitive Radio Network Based on Buffer Occupancy

    Get PDF
    We investigate the problem of resource allocation in a cognitive long-term evolution (LTE) network, where the available bandwidth resources are shared among the primary (licensed) users (PUs) and secondary (unlicensed) users (SUs). Under such spectrum sharing conditions, the transmission of the SUs should have minimal impact on quality of service (QoS) and operating conditions of the PUs. To achieve this goal, we propose to assign the network resources based on the buffer sizes of the PUs and SUs in the uplink (UL) and downlink (DL) directions. To ensure that the QoS requirements of the PUs are satisfied, we enforce some upper bound on the size of their buffers considering two network usage scenarios. In the first scenario, PUs pay full price for accessing the spectrum and get full QoS protection; the SUs access the network for free and are served on a best-effort basis. In the second scenario, PUs pay less in exchange for sharing the bandwidth and get the reduced QoS guarantees; SUs pay some price for their access without any QoS guarantees. Performance of the algorithms proposed in the paper is evaluated using simulations in OPNET environment. The algorithms show superior performance when compared with other relevant techniques
    corecore