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We investigate the problem of resource allocation in a cognitive long-term evolution (LTE) network, where the available bandwidth
resources are shared among the primary (licensed) users (PUs) and secondary (unlicensed) users (SUs). Under such spectrum
sharing conditions, the transmission of the SUs should have minimal impact on quality of service (QoS) and operating conditions
of the PUs. To achieve this goal, we propose to assign the network resources based on the buffer sizes of the PUs and SUs in the
uplink (UL) and downlink (DL) directions. To ensure that the QoS requirements of the PUs are satisfied, we enforce some upper
bound on the size of their buffers considering two network usage scenarios. In the first scenario, PUs pay full price for accessing
the spectrum and get full QoS protection; the SUs access the network for free and are served on a best-effort basis. In the second
scenario, PUs pay less in exchange for sharing the bandwidth and get the reduced QoS guarantees; SUs pay some price for their
access without any QoS guarantees. Performance of the algorithms proposed in the paper is evaluated using simulations in OPNET
environment. The algorithms show superior performance when compared with other relevant techniques.

1. Introduction

The traditional fixed spectrum allocation policy has been
characterized by a very ineffective spectrum utilization
resulting in an artificial scarcity of the network resources
[1], which stimulated a surge of interest to an alternative
spectrumusage concept known as cognitive radio (CR) [2]. In
a CR network (CRN), the available bandwidth resources can
be shared among the PUs (paying some price for accessing
spectrum) and the SUs (who can get the wireless access
for free). Needless to say under such spectrum sharing
conditions the transmission of the SUs should have minimal
impact on QoS and operating conditions of the PUs [2].

Among existingwireless standards considered for deploy-
ment in CRNs, LTE is considered to be the most favourable
due to such appealing features as spectrum flexibility, fast
adaptation to time-varying channel conditions, high spectral
efficiency, and robustness against interference [3]. A detailed
description of the LTE radio interface can be found, for
instance, in [4]. In short, LTE is based on the universal

terrestrial radio access (UTRA) and a high-speed downlink
packet access (HSDPA). In the DL, LTE uses an orthogonal
frequency division multiple access (OFDMA), which has
high spectral efficiency and robustness against the interfer-
ence. A single carrier frequency divisionmultiple access (SC-
FDMA) is applied in the UL direction, due to its lower
(compared to OFDM) peak-to-average power ratio (PAPR)
[5]. The numerology of LTE includes a subcarrier spacing
of 15 kHz, support for scalable bandwidth of up to 20MHz,
and a resource allocation granularity of 180 kHz × 1ms
(called a resource block). Available transmission resources
are distributed among the users by the medium access
control (MAC) schedulers located in enhanced NodeBs
(eNBs). Depending on the implementation, the scheduling
can be done based on queuing delay, instantaneous channel
conditions, fairness, and so forth [6, 7].

Due to existence of two types of users (primary and
secondary) with different QoS requirements, the problems of
dynamic spectrum access (DSA) and resource allocation for
CRNs are more complex than those considered in traditional
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wireless networks. The majority of the works on resource
allocation in LTE-based CRNs focus on various lower layer
techniques for spectrum sensing and spectrummobility (see,
e.g., [8–10]).These techniques are very effective in identifying
and reducing the interference in the physical channels but
do not improve the overall user-perceived QoS, which is
mainly expressed in terms of the packet end-to-end delay and
loss for the network users. Consequently, the results of these
works are applicable only in combination with the techniques
designed for MAC and higher layers [11].

The QoS protection for the PUs and the admissibility of
the SUs have been studied using the theoretical analysis of
user behaviour. For instance, in [12] the authors propose a
statistical traffic control for the LTE-based CRNs. To satisfy
the timing constraints of all packets belonging to different
streams (with diverse QoS characteristics and requirements)
and achieve the statistical QoS guarantees, the authors
deploy admission control and coordinated transmissions of
the constant-bit-rate (CBR) and the variable-bit-rate (VBR)
streams. Dynamic channel selection for autonomous wireless
users transmitting delay-sensitive multimedia applications
over a CRN has been studied in [13]. Unlike prior works
where the application-layer requirements of the users have
not been considered, here the rate and delay requirements of
heterogeneous multimedia users are taken into account. The
authors propose a novel priority based virtual queue interface
to efficiently manage the available spectrum resources. This
interface is used to (i) determine the required information
exchanges, (ii) evaluate the expected delays experienced
by various priority traffics, (iii) design a dynamic strategy
learning (DSL) algorithm deployed at each user that exploits
the expected delay, and (iv) adapt to the channel selection
strategies to maximize the user’s utility function.

The authors of [5] present a delay-power control (DPC)
exploiting the trade-off between the transmission delay
and transmission power in wireless networks. In a pro-
posed resource allocation procedure, each wireless link
autonomously updates its power based on the interference
observed at its receiver (without any crosslink communi-
cation). The DPC scheme has been proved to converge
to a unique equilibrium point and contrasted to the well-
known Foschini-Miljanic (FM) formulation. Some theoreti-
cal underpinnings of DPC and their practical implications for
efficient protocol design have also been established. In [14],
the problem of allocating the network resources (channels
and transmission power) in a multihop CRN is modeled
as a multicommodity flow problem with the dynamic link
capacity resulting from dynamic resource allocation. Based
on such queue-balancing, the authors propose a distributed
scheme for optimal resource allocation without exchanging
the spectrum dynamics between remote nodes. Considering
the power masks, each node makes resource allocation
decisions based on current or past local information from
neighboring nodes to satisfy the throughput requirement of
each flow and maintain the network stability.

In this paper, we suggest an alternative strategy for
resource allocation in a LTE-based CRN and propose to
assign the network resources (bandwidth and transmission
power) to the UL and DL of LTE system, based on buffer

size of user equipment (UE) pieces. Note that, in many
previously proposed algorithms (e.g., [8–13]), the bandwidth
and transmission power are assigned without considering the
buffer occupancy of UE pieces, which may lead to a rather
unfair resource allocation (when users with lower demands
are allocated larger bandwidth than the users with higher
demands).

To ensure that the QoS requirements of the PUs are
satisfied, we put the constraints on the sizes of their buffers.
Two network usage scenarios are considered. In the first
scenario, the PUs pay full price for accessing the spectrum
and get the full QoS protection, whereas the SUs access the
network for free and are served on a best-effort basis. In the
second scenario, the PUs pay less in exchange for sharing
the bandwidth and get the reduced QoS guarantees; SUs pay
some price for their usage without any QoS guarantees. The
proposed resource allocation algorithm is derived based on a
discrete spectrum assumption, with the spectrum resources
counted in terms of LTE resource blocks (RBs). Note that
a continuous spectrum assumption (used in all past works)
is not applicable for a practical LTE realization, since the
number of RBs comprising the bandwidth is relatively small
(6, 10, 20, 50, and 100 RBs corresponding to 1.4, 3, 5, 10,
and 100MHzwidebands, resp., [15]). Unlike existing research
contributions, the transmission rates of SUs and DUs are
calculated using the modified Shannon expression which
accounts for the adaptive modulation and coding (AMC)
used in LTE.

The rest of the paper is organized as follows. In Section 2
we describe the network model and formulate the resource
allocation problems in two network usage scenarios. In
Section 3 we provide the solution methodology and dis-
cuss the implementation of a presented resource allocation
approach in a real LTE system. In Section 4 we outline a
simulation model and evaluate performance of the proposed
resource allocation algorithms in two network usage scenar-
ios. The paper is finalized in Conclusion.

2. Problem Statement

2.1. NetworkModel, Assumptions, and Notation. In this work,
the problem of joint power and bandwidth allocation for
the LTE-based CRN is investigated for both the UL and the
DL directions. Similarly, the discussion through the rest of
the paper is applicable (if not stated otherwise) to either
direction.

Consider a basic LTE-based CRN architecture which
consists of one eNB providing wireless access to 𝑛 PUs num-
bered PU

1
, . . . ,PU

𝑛
, and 𝑚 SUs numbered SU

1
, . . . , SU

𝑚
.

Two spectrum usage scenarios are considered in this paper.
In the first scenario, PUs are the licensed network users who
pay some price for accessing the spectrum and thereforemust
be provided with the certain guaranteed QoS levels; SUs are
the unlicensed network users, who can access the spectrum
for free, and therefore they are served on a best-effort basis. In
the second scenario, the PUs pay less in exchange for sharing
the spectrum; the SUs have to pay some price for the shared
spectrum to compensate for the income losses of a service
provider.
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The considered network operates on a slotted-time basis
with the time axis partitioned into mutually disjoint time
intervals (slots) {𝑇

𝑠
, (𝑡+1)𝑇

𝑠
}, 𝑡 = 0, 1, 2, . . ., with 𝑇

𝑠
denoting

the slot length and 𝑡 being the slot index.Thenumber of active
PUs and SUs can be tracked using an LTE random access
channel (RACH) procedure [15], which is used for initial
access to the network (i.e., for originating, terminating, or
registration calls).

In the UL direction, the user-generated traffic (in bits per
slot or bps) is enqueued in the buffers of UE pieces and then
transmitted to the eNB using a standard packet scheduling
procedure [15]. In this procedure, the information about the
amount of data (in bps) enqueued in the buffers of UE pieces
is constantly transmitted to the eNB, so that the eNB “knows”
the exact amount of data generated by the users at any slot 𝑡.
This information is then used by the eNB to allocate the UL
transmission resources to UE pieces. In the DL direction, the
transmission resources are allocated based on the amount of
data transmitted by eNB to the users.

In LTE system, the transmission resources are allocated
to the users in terms of RBs. Each user can be allocated
only the integer number of RBs, and these RBs should not
be adjacent to each other [7, 15]. Another important feature
of both the SC-FDMA (applied in the UL direction) and
OFDMA (applied in the DL direction) is the orthogonal-
ity of resource allocation, which allows achieving minimal
level of cochannel interference between different transmitter-
receiver pairs located within one cell (i.e., when no frequency
reuse is considered).

It is assumed that the bandwidth of the eNB is fixed and
equal to 𝐵 RBs. For any 𝑖 in I = {1, . . . , 𝑛} and any 𝑗 in J =
{1, . . . , 𝑚}, consider the following:

(i) The channel between the eNB and PU
𝑖
is character-

ized by the noise and interference coefficient 0 <

ℎ
𝑃𝑖

≤ 1, which is known to the eNB and PU
𝑖
. The

channel between the eNB and SU
𝑗
is characterized by

the noise and interference coefficient 0 < ℎ
𝑆𝑗
≤ 1,

which is known to the eNB and SU
𝑗
. The values of ℎ

𝑃𝑖

and ℎ
𝑆𝑗
in the UL and DL directions can be obtained

from the channel state information (CSI) through the
use of the LTE reference signals (RSs) [16, 17].

(ii) The size of the buffers and the arrival rates (in bits) of
PU
𝑖
and SU

𝑗
can be observed at any slot 𝑡 in the UL

and DL directions.

The following notations are used throughout the paper:

(i) 𝑏
𝑃𝑖
(𝑡) and 𝑏

𝑆𝑗
(𝑡) denote the number of RBs allocated

at slot 𝑡 to PU
𝑖
and SU

𝑗
, respectively;

(ii) 𝑝
𝑃𝑖
(𝑡) and 𝑝

𝑆𝑗
(𝑡) denote the transmission power

allocated at slot 𝑡 to PU
𝑖
and SU

𝑗
, respectively;

(iii) 𝑎
𝑃𝑖
(𝑡) and 𝑎

𝑆𝑗
(𝑡) denote the arrival rate (in bps) at slot

𝑡 in PU
𝑖
and SU

𝑗
, respectively;

(iv) 𝑞
𝑃𝑖
(𝑡) and 𝑞

𝑆𝑗
(𝑡) denote the buffer size (in bits) at slot

𝑡 of PU
𝑖
and SU

𝑗
, respectively;

(v) 𝑟
𝑃𝑖
(𝑡) and 𝑟

𝑆𝑗
(𝑡) denote the transmission rate (in bps)

at slot t in the channels of PU
𝑖
and SU

𝑗
, respectively;

(vi) 𝑃eNB, 𝑃𝑃𝑖, and 𝑃
𝑆𝑗
denote the maximal transmission

power of the eNB, PU
𝑖
, and SU

𝑗
, respectively.

2.2. Scenario 1. The objective of this paper is to devise a
sustainable algorithm for joint bandwidth and transmission
power allocation, based on two goals:

(1) QoS Protection for the PUs. PUs should maintain their
target QoS, irrespective of how many SUs enter the
network and how much load they are generating.

(2) Admissibility of the SUs. SUs should be able to utilize
the spare capacity of the eNB (if left) to maximize
their QoS.

These goals, however, cannot be achieved without pro-
viding the quantified measures for the user-perceived QoS.
Note that because of the orthogonality of the RB allocation,
the need for interference mitigation in a considered CRN
is eliminated. In this case, the use of such physical layer
characteristics as signal-to-noise ratio (SNR) is not well-
reasoned. More practical QoS measures can be obtained
from the higher layers network information. For instance,
such metrics as round-trip latency and loss are traditionally
used for performance evaluation in wireless networks [5].
Unfortunately, in LTE system the direct estimation of delay
and loss is rather complex. For instance, the end-to-end
latency consists of various delay components, including
transmission and queuing delays, propagation andprocessing
delays, the UL delay due to scheduling, and delay due to
hybrid automatic repeat request (HARQ) [18]. The accurate
analysis of these delay components requires knowledge of
many system parameters, which may be not available during
resource allocation.

Consequently, in this paper we argue in favour of using
the buffer size of UE pieces as a QoS measure. The buffer
size of PUs and SUs can be easily estimated from the known
parameters 𝑞

𝑃𝑖
(𝑡), 𝑎
𝑃𝑖
(𝑡) and 𝑞

𝑆𝑗
(𝑡), 𝑎
𝑆𝑗
(𝑡) using well-known

Lindley’s equation [19]:

𝑞
𝑃𝑖
(𝑡 + 1) = ⌈𝑞

𝑃𝑖
(𝑡) + 𝑎

𝑃𝑖
(𝑡) − 𝑟

𝑃𝑖
(𝑡)⌉
+

, ∀𝑖 ∈ I; (1a)

𝑞
𝑆𝑗
(𝑡 + 1) = ⌈𝑞

𝑆𝑗
(𝑡) + 𝑎

𝑆𝑗
(𝑡) − 𝑟

𝑆𝑗
(𝑡)⌉

+

, ∀𝑗 ∈ J, (1b)

where ⌈𝑥⌉+ = max{0, 𝑥}, whereas the transmission rates
𝑟
𝑃𝑖
(𝑡), 𝑟
𝑆𝑗
(𝑡) depend on the unknown bandwidth and trans-

mission power allocation vectors given by (relationship
between the transmission rate, transmission power, and the
bandwidth will be established in the next section)

p
𝑃
= [𝑝
𝑃1
(𝑡) , . . . , 𝑝

𝑃𝑛
(𝑡)]
𝑇

,

b
𝑃
= [𝑏
𝑃1
(𝑡) , . . . , 𝑏

𝑃𝑛
(𝑡)]
𝑇

;

(2a)

p
𝑆
= [𝑝
𝑆1
(𝑡) , . . . , 𝑝

𝑆𝑚
(𝑡)]
𝑇

,

b
𝑆
= [𝑏
𝑆1
(𝑡) , . . . , 𝑏

𝑆𝑚
(𝑡)]
𝑇

.

(2b)

Note that the average round-trip latency of any primary
UE can be retained below some upper bound level by
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restricting its buffer size to be less than a certain target buffer
size. The only information which is necessary in this case is
the desired upper bound on delay and the average arrival rate
in PUs during some interval 𝑇 > 0. Then, we can find the
target buffer size by deploying Little’s formula [20]

𝐷
𝑖
⋅ 𝑎
𝑃𝑖
(𝑡) = 𝐿

𝑖
, ∀𝑖 ∈ I, (3a)

where𝐷
𝑖
is the upper bound on delay for PU

𝑖
; 𝐿
𝑖
is the target

buffer size for PU
𝑖
; 𝑎
𝑃𝑖
(𝑡) is the average arrival in PU

𝑖
during

time interval [𝑡 − 𝑇 + 1, 𝑡] given by

𝑎
𝑃𝑖
(𝑡) =

𝑡

∑

𝜏=𝑡−𝑇+1

𝑎
𝑃𝑖
(𝑡) , ∀𝑖 ∈ I. (3b)

To maintain the desired upper bound on the end-to-end
delay, the buffer size of PUs should be constrained as follows:

𝑞
𝑃𝑖
(𝑡 + 1) ≤ 𝐿

𝑖
, ∀𝑖 ∈ I, (4)

or equivalently using (1a)

𝑞
𝑃𝑖
(𝑡) + 𝑎

𝑃𝑖
(𝑡) − 𝐿

𝑖
≤ 𝑟
𝑃𝑖
(𝑡) ≤ 𝑞

𝑃𝑖
(𝑡) + 𝑎

𝑃𝑖
(𝑡) ,

∀𝑖 ∈ I.
(5)

If added to an optimization problem, constraint (5) can
guarantee the QoS protection for PUs. Except some (very
rare) cases when constraint (5) is not feasible, the buffer
size will always stay below the target level irrespective of
how many SUs are in the network and how much load they
are generating. The setting of the parameters 𝐿

𝑖
, as well as

the cases when constraint (5) is unfeasible, is discussed in
Section 3.

Note that, at any slot 𝑡, the number of RBs allocated
for data transmissions of PUs and SUs in the UL and DL
directions should not exceed 𝐵 RBs. That is,

∑

𝑖∈I
𝑏
𝑃𝑖
(𝑡) + ∑

𝑗∈J
𝑏
𝑆𝑗
(𝑡) ≤ 𝐵, (6a)

where

𝑏
𝑃𝑖
(𝑡) ∈ Z+,

𝑏
𝑆𝑗
(𝑡) ∈ Z+,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(6b)

where Z+ represents the set of all nonnegative integers.
Additionally, the transmission power allocated to the

users at any slot 𝑡 should be nonnegative and cannot exceed
the maximal transmission power levels. Hence,

𝑝
𝑃𝑖
(𝑡) ≤ 𝑃

𝑃𝑖
,

𝑝
𝑆𝑗
(𝑡) ≤ 𝑃

𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(7a)

for the UL direction, and

∑

𝑖∈I
𝑝
𝑃𝑖
(𝑡) + ∑

𝑗∈J
𝑝
𝑆𝑗
(𝑡) ≤ 𝑃eNB, (7b)

for the DL direction, where
𝑝
𝑃𝑖
(𝑡) ≥ 0,

𝑝
𝑆𝑗
(𝑡) ≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J.

(7c)

We are now ready to show how to attain the second goal
of resource allocation. As in case with QoS protection of PUs,
we use the buffer sizes of SUs as ameasure of the SUs’QoS.We
say that the admissibility of SUs in the network is preserved if
they are allocated the bandwidth that is not used by the PUs.
This can be done, for instance, byminimizing the sum (or the
logarithmic sum) of the buffer sizes of SUs or minimizing the
maximal buffer size of SUs subject to the constraints listed
above.

For the UL direction, this gives us the following problem
(to simplify notation, we skip the index t below):

minimize max
𝑗∈J

⌈𝑞
𝑆𝑗
+ 𝑎
𝑆𝑗
− 𝑟
𝑆𝑗
⌉

+

(8a)

subject to: 𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝐿
𝑖
≤ 𝑟
𝑃𝑖
≤ 𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
, ∀𝑖 ∈ I (8b)

∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (8c)

𝑏
𝑃𝑖
∈ Z+,

𝑏
𝑆𝑗
∈ Z+,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(8d)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(8e)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J.

(8f)

For the DL direction, constraint (8e) should be replaced by

∑

𝑖∈I
𝑝
𝑃𝑖
+∑

𝑗∈J
𝑝
𝑆𝑗
≤ 𝑃eNB. (8g)

In above formulation, each PU is guaranteed a certain
target QoS level, and the optimal allocations for PUs are such
that

𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝑟
𝑃𝑖
= 𝐿
𝑖
, ∀𝑖 ∈ I. (9)

The spare bandwidth (if left) is distributed among the SUs
to minimize the size of their buffer, which means that the
two goals of resource allocation are achieved. However, this
formulation works well only if the aggregated traffic demand
of the SUs is greater than that of the PUs. Otherwise, there
might be a situationwhen the optimal solution for SUs is such
that

max
𝑗∈J

⌈𝑞
𝑆𝑗
+ 𝑎
𝑆𝑗
− 𝑟
𝑆𝑗
⌉

+

≤ 𝐿
𝑖
, ∀𝑖 ∈ I, (10)
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which is apparently not fair, since the PUs have larger buffer
sizes than the SUs, and therefore they will experience longer
delays than the SUs.

To avoid such situation, we propose to modify problem
(8a)–(8g) by replacing its objective (8a) with

minimize max
𝑖∈I

⌈𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝑟
𝑃𝑖
⌉
+

+max
𝑗∈J

⌈𝑞
𝑆𝑗
+ 𝑎
𝑆𝑗
− 𝑟
𝑆𝑗
⌉

+

.

(11)

Objective (11) guarantees that PUs are served with max-
imal QoS, even if the aggregated traffic demand of SUs is
greater than that of the PUs.

2.3. Scenario 2. We now consider a different scenario in
which the PUs will benefit (by paying less in exchange) from
sharing their bandwidth with the SUs. Let us assume that, in
the network without price benefits (i.e., in Scenario 1), the
price for accessing the licensed spectrum of the PUs equals
1. In this case, all the PUs get the full QoS protection (i.e.,
guaranteed target buffer size 𝐿

𝑖
and the average end-to-end

latency 𝐷
𝑖
). Suppose that each PU can define the portion of

allocated spectrum that it is willing to share with the SUs.The
delay in turn is related to ⌈𝑞

𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝑟
𝑃𝑖
⌉
+.

Let us denote by 𝛼
𝑖
, 0 ≤ 𝛼

𝑖
< 1 the price for the portion

of spectrum that PU
𝑖
is willing to share with the SUs. So,

𝛼
𝑖
represents the willingness of PU

𝑖
to trade off its QoS for

money. Subsequently, the guaranteed QoS level of PU
𝑖
will

reduce, and instead of the QoS protection constraint (8b) we
will have

𝑟
𝑃𝑖
≥ 𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− (1 + 𝛼

𝑖
) 𝐿
𝑖
, ∀𝑖 ∈ I. (12)

Now, to compensate for the income losses of a service
provider, the SUs will have to pay the price for the shared
spectrum. Let 𝛽 denote the price that each SU will pay for
accessing the shared spectrum. The amount that SU

𝑗
pays in

this case is 𝛽𝑟
𝑆𝑗
, whereas the revenue of the service provider

is

∑

𝑗∈J
𝛽𝑟
𝑆𝑗
−∑

𝑖∈I
𝛼
𝑖
⌈𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝑟
𝑃𝑖
⌉
+

. (13)

Assuming that a service provider does not incur loss by
allowing the secondary users to use the spectrum, we have to
incorporate the constraint

∑

𝑗∈J
𝛽𝑟
𝑆𝑗
−∑

𝑖∈I
𝛼
𝑖
⌈𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝑟
𝑃𝑖
⌉
+

≥ V, (14)

where V is the profit that a service provider would like tomake
by allowing the SUs into the network.

Note that, in such formulation, the SUs get no QoS
guarantee, and therefore we have to minimize the price that

the SUs pay for their usage. Thus, the optimization problem
is

minimize 𝛽 (15a)

subject to: 𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− (1 + 𝛼

𝑖
) 𝐿
𝑖
≤ 𝑟
𝑃𝑖

≤ 𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
,

∀𝑖 ∈ I,

(15b)

∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (15c)

𝑏
𝑃𝑖
∈ Z+,

𝑏
𝑆𝑗
∈ Z+,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(15d)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(15e)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(15f)

∑

𝑗∈J
𝛽𝑟
𝑆𝑗
−∑

𝑖∈I
𝛼
𝑖
⌈𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝑟
𝑃𝑖
⌉
+

≥ V, (15g)

for the UL direction. For the DL direction constraint (15e) is
replaced by constraint (8g).The value of𝛽 obtained by solving
(15a)–(15g) is then broadcasted by a service provider to the
SUs that will have to pay a determined price.

We note, in passing, that there are many other ways in
which the pricing problem could be addressed. For instance,
the numbers 𝛼

𝑖
may be negotiated between the PUs and a

service provider. One can also think of a scenario where
different SUs may be able to express their willingness to pay
via bidding the prices 𝛽

𝑗
. The options are numerous, but they

are beyond the scope of this paper.

3. Implementation Issues

3.1. Rate as a Function of Bandwidth and Power. Note that
the transmission rates in the UL and DL channels of a LTE
system can be found using the modified Shannon equation
[21], expressed as

𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
) = 𝜔𝜓

𝑃𝑖
𝑏
𝑃𝑖
log (1 + 𝜉

𝑃𝑖
SNR
𝑃𝑖
)

= 𝜔𝜓
𝑃𝑖
𝑏
𝑃𝑖
log (1 + 𝜉

𝑃𝑖
ℎ
𝑃𝑖
𝑝
𝑃𝑖
) ,

0 < 𝜓
𝑃𝑖
, 𝜉
𝑃𝑖
≤ 1, ∀𝑖 ∈ I;

(16a)
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𝑟
𝑆𝑗
(b
𝑆
, p
𝑆
) = 𝜔𝜓

𝑆𝑗
𝑏
𝑆𝑗
log (1 + 𝜉

𝑆𝑗
SNR
𝑆𝑗
)

= 𝜔𝜓
𝑆𝑗
𝑏
𝑆𝑗
log (1 + 𝜉

𝑆𝑗
ℎ
𝑆𝑗
𝑝
𝑆𝑗
) ,

0 < 𝜓
𝑆𝑗
, 𝜉
𝑆𝑗
≤ 1, ∀𝑗 ∈ J,

(16b)

where SNR
𝑃𝑖
and SNR

𝑆𝑗
are the SNRs in the channels of PU

𝑖

and SU
𝑗
, respectively; 𝜓

𝑃𝑖
and 𝜓

𝑆𝑗
are the system bandwidth

efficiencies for PU
𝑖
and SU

𝑗
, respectively; 𝜉

𝑃𝑖
and 𝜉

𝑆𝑗
are

the SNR efficiencies for PU
𝑖
and SU

𝑗
, respectively; 𝜔 is the

bandwidth of one RB (𝜔 = 180 kHz) [21].
In real LTE networks, the system bandwidth efficiency

is strictly less than 1 due to the overheads on the link and
system levels. The bandwidth efficiency is fully determined
by the design and internal settings of the system and does
not depend on the physical characteristics of the wireless
channels between the user and the eNB [21, 22]. Hence, it is
reasonable to assume that

𝜓
𝑃𝑖
= 𝜓
𝑆𝑗
= 𝜓, ∀𝑖 ∈ I, ∀𝑗 ∈ J. (17)

The SNR efficiency is mainly limited by the maximum
efficiency of the supported modulation and coding scheme
(MCS) [16]. In LTE, MCS is chosen using AMC to maximize
the data rate by adjusting the transmission parameters to the
current channel conditions. AMC is one of the realizations of
a dynamic link adaptation. In AMC algorithm, the appropri-
ate MCSs for packet transmissions are assigned periodically
(within short fixed time interval usually equal to one slot)
by the eNB based on the instantaneous channel conditions
reported by the users.The higherMCS values are allocated to
the high-quality channels to achieve higher transmission rate.
The lower MCS values are assigned to the channels of poor
quality to decrease the transmission rate and, consequently,
ensure the transmission quality [16, 17].

The method for choosing MCS can be expressed as
follows. Based on the instantaneous radio channel conditions,
the SNR is calculated for the DL wireless channels between
the eNB and the users. A supported MCS index is chosen
using expression [16, 17]

MCS =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

MCS
1
, SNR < 𝛾

1
,

MCS
2
, 𝛾
1
≤ SNR < 𝛾

2
,

.

.

.

.

.

.

MCS
𝑙
, 𝛾
𝑙−1

≤ SNR < 𝛾
𝑙
,

(18)

where 𝛾
1

< 𝛾
2

< ⋅ ⋅ ⋅ < 𝛾
𝑙
are the SNR thresholds

corresponding to −10 dB bit error ratio (BER) given by the
Additive White Gaussian Noise (AWGN) curves for each
MCS (the standard AWGN curves can be found in [17]). The
LTE standard allows 𝑙 = 15 MCS levels (description of MCS
levels, their code rate, and efficiency is shown in Table 1) [17].

Table 1: Allowed MCS values in LTE standard [17].

MCS index Modulation Code rate Efficiency
0 No transmission
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16 QAM 378 1.4766
8 16 QAM 490 1.9141
9 16 QAM 616 2.4063
10 64 QAM 466 2.7305
11 64 QAM 567 3.3223
12 64 QAM 666 3.9023
13 64 QAM 772 4.5234
14 64 QAM 873 5.1152
15 64 QAM 948 5.5547

Based on the above, the SNR efficiency depends on
the SNR of the DL wireless channel and therefore can be
represented by a function

𝑔 (SNR) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝜉
1
, SNR < 𝛾

1
,

𝜉
2
, 𝛾
1
≤ SNR < 𝛾

2
,

.

.

.

.

.

.

𝜉
𝑙
, 𝛾
𝑙−1

≤ SNR < 𝛾
𝑙
,

(19)

where 0 < 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑙
are the values of the SNR

efficiency corresponding to the supported MCS.
Using (17) and (19), the transmission rates of the users can

be expressed as

𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
) = 𝜔𝜓𝑏

𝑃𝑖
log (1 + 𝑔 (SNR

𝑃𝑖
) ⋅ SNR

𝑃𝑖
)

= 𝜔𝜓𝑏
𝑃𝑖
log (1 + 𝑔 (𝑝

𝑃𝑖
) ⋅ ℎ
𝑃𝑖
𝑝
𝑃𝑖
) ,

∀𝑖 ∈ I;

(20a)

𝑟
𝑆𝑗
(b
𝑆
, p
𝑆
) = 𝜔𝜓𝑏

𝑆𝑗
log (1 + 𝑔 (SNR

𝑆𝑗
) ⋅ SNR

𝑆𝑗
)

= 𝜔𝜓𝑏
𝑆𝑗
log (1 + 𝑔 (𝑝

𝑆𝑗
) ℎ
𝑆𝑗
𝑝
𝑆𝑗
) ,

∀𝑗 ∈ J.

(20b)

3.2. Solution Methodology. In this subsection, we describe a
solution methodology for the resource allocation problem
in Scenario 1 in the UL direction (with the objective given
by (11) and the constraints defined in (8b)–(8f)). A resource
allocation problem for the DL direction as well as problem
(15a)–(15g) for Scenario 2 can be solved analogously.
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Note that, in Scenario 1, a resource allocation problem in
the UL direction is equivalent to

minimize Ω + Φ (21a)

subject to: ∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (21b)

𝑏
𝑃𝑖
∈ Z+,

𝑏
𝑆𝑗
∈ Z+,

∀𝑖 ∈ I, ∀𝑗 ∈ J

(21c)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J

(21d)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J

(21e)

Ω ≥ 0,

Φ ≥ 0,

(21f)

𝑓
1

𝑖
(b
𝑃
, p
𝑃
) = 𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
) − (𝑞

𝑃𝑖
+ 𝑎
𝑃𝑖
)

≤ 0,

∀𝑖 ∈ I,

(21g)

𝑓
2

𝑖
(b
𝑃
, p
𝑃
)

= (𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝐿
𝑖
) − 𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
)

≤ 0,

∀𝑖 ∈ I,

(21h)

𝑓
3

𝑖
(b
𝑃
, p
𝑃
)

= (𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
) − 𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
) − Ω

≤ 0,

∀𝑖 ∈ I,

(21i)

𝑓
4

𝑗
(b
𝑆
, p
𝑆
)

= (𝑞
𝑆𝑗
+ 𝑎
𝑆𝑗
) − 𝑟
𝑆𝑗
(b
𝑆
, p
𝑆
) − Φ

≤ 0,

∀𝑗 ∈ J.

(21j)

In above problem, some of the optimization variables
(particularly the components of b

𝑃
and b

𝑆
) can take only

integer values, whereas the other variables (the components
of p
𝑃
and p

𝑆
) are real-valued ones. In addition, constraints

(21g)–(21j) are represented by the nonsmooth nonlinear

functions of (b
𝑃
, p
𝑃
) and (b

𝑃
, p
𝑃
). Hence, (21a)–(21j) is a

nonlinear mixed integer programming (MINLP) problem,
which is Nondeterministic Polynomial-time (NP) hard. For
immediate proof of NP-hardness, note that MINLP includes
mixed integer linear programming (MILP) problem, which is
NP-hard [23].

Before applying any MINLP method for solving (21a)–
(21j), the nonsmooth function 𝑔(⋅) in (19), included in the
expressions of 𝑟

𝑃𝑖
(b
𝑃
, p
𝑃
) and 𝑟

𝑆𝑗
(b
𝑃
, p
𝑃
), should be replaced

by its smooth approximation. To construct a smooth approx-
imation of 𝑔(𝑥), note that this function is equivalent to the
sum of the shifted and scaled versions of a Heaviside step
function𝐻(𝑥) [24]. That is,

𝑔 (𝑥) =

15

∑

𝑙=1

(𝜁
𝑙
− 𝜁
𝑙−1
)𝐻 (𝑥 − 𝛾

𝑙
) ,

𝐻 (𝑥) =

{

{

{

1, if 𝑥 ≥ 0,

0, otherwise,

(22)

where 𝜁
0
= 0.

Recall that a smooth approximation for a step function
𝐻(𝑥) is given by a logistic sigmoid function [25]:

�̂�
𝑞
(𝑥) =

1

1 + 𝑒
−2𝑞𝑥

, (23)

where 𝑞 > 0; 𝑥 is in range of real numbers from −∞ to +∞.
If we take 𝐻(0) = 1/2, then larger 𝑞 corresponds to a closer
transition to𝐻(𝑥); that is,

lim
𝑞→∞

�̂�
𝑞
(𝑥) = 𝐻 (𝑥) . (24)

The above holds, because, for 𝑥 < 0, we have

𝑒
−2𝑞𝑥

→ +∞,

�̂�
𝑞
(𝑥) ≈ 𝐻 (𝑥) = 1;

(25)

for 𝑥 > 0,

𝑒
−2𝑞𝑥

→ 0,

�̂�
𝑞
(𝑥) ≈ 𝐻 (𝑥) = 1;

(26)

for 𝑥 = 0,

𝑒
−2𝑞𝑥

= 1,

�̂�
𝑞
(𝑥) = 𝐻 (𝑥) =

1

2

.

(27)

Consequently, an approximation for a shifted Heaviside
function is represented by a shifted logistic function

�̂�
𝑞
(𝑥 − 𝛾

𝑙
) =

1

1 + 𝑒
−2𝑞(𝑥−𝛾𝑙)

, (28)

defined for 𝑞 > 0, with real 𝑥 in range from −∞ to +∞.
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Based on (28), we can construct a smooth approximation
for 𝑔(𝑥) as

�̂�
𝑞
(𝑥) =

15

∑

𝑙=1

(𝜁
𝑙
− 𝜁
𝑙−1
) �̂�
𝑞
(𝑥 − 𝛾

𝑙
) =

15

∑

𝑙=1

𝜁
𝑙
− 𝜁
𝑙−1

1 + 𝑒
2𝑞(𝑥−𝛾𝑙)

. (29)

Then, it is rather straightforward to verify that

lim
𝑞→∞

�̂�
𝑞
(𝑥) = 𝑔 (𝑥) , (30)

and the approximations for 𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
) and 𝑟

𝑆𝑗
(b
𝑃
, p
𝑃
) will

take the form

�̂�
𝑃𝑖
(b
𝑃
, p
𝑃
) = 𝜔𝜓𝑏

𝑃𝑖
log (1 + �̂� (𝑝

𝑃𝑖
) ⋅ ℎ
𝑃𝑖
𝑝
𝑃𝑖
) ,

∀𝑖 ∈ I;
(31a)

�̂�
𝑆𝑗
(b
𝑆
, p
𝑆
) = 𝜔𝜓𝑏

𝑆𝑗
log (1 + �̂� (𝑝

𝑆𝑗
) ℎ
𝑆𝑗
𝑝
𝑆𝑗
) ,

∀𝑗 ∈ J.
(31b)

With the approximations given by (31a) and (31b), prob-
lem (21a)–(21j) can be solved using a sequential optimization
approach as

(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
) = argmin (Ω + Φ) (32a)

subject to: ∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (32b)

𝑏
𝑃𝑖
∈ Z+,

𝑏
𝑆𝑗
∈ Z+,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(32c)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(32d)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(32e)

Ω ≥ 0,

Φ ≥ 0,

(32f)

̂
𝑓

1

𝑖
(b
𝑃
, p
𝑃
)

= �̂�
𝑃𝑖
(b
𝑃
, p
𝑃
)

− (𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
) ≤ 0,

∀𝑖 ∈ I,

(32g)

̂
𝑓

2

𝑖
(b
𝑃
, p
𝑃
)

= (𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝐿
𝑖
)

− �̂�
𝑃𝑖
(b
𝑃
, p
𝑃
) ≤ 0,

∀𝑖 ∈ I,

(32h)

̂
𝑓

3

𝑖
(b
𝑃
, p
𝑃
)

= (𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
)

− �̂�
𝑃𝑖
(b
𝑃
, p
𝑃
) − Ω

≤ 0,

∀𝑖 ∈ I,

(32i)

̂
𝑓

4

𝑗
(b
𝑆
, p
𝑆
)

= (𝑞
𝑆𝑗
+ 𝑎
𝑆𝑗
)

− �̂�
𝑆𝑗
(b
𝑆
, p
𝑆
) − Φ

≤ 0,

∀𝑗 ∈ J.

(32j)

The above problem is smooth MINLP, which can be
solved using some fast and effective MINLP method. Note
that most of the MINLP techniques involve construction
of the following relaxations to the considered problem: the
nonlinear programming (NLP) relaxation (original problem
without integer restrictions) and the MILP relaxation (origi-
nal problem where nonlinearities are replaced by supporting
hyperplanes). In our case, a smooth MILP relaxation to
(32a)–(32j) in a given point (b0

𝑃
, p0
𝑃
, b0
𝑆
, p0
𝑆
) is given by

(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
) = argmin (Ω + Φ) (33a)

subject to: ∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (33b)

𝑏
𝑃𝑖
∈ Z+,

𝑏
𝑆𝑗
∈ Z+,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(33c)
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𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(33d)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(33e)

Ω ≥ 0,

Φ ≥ 0,

(33f)

̂
𝑓

1

𝑖
(b0
𝑃
, p0
𝑃
) + ∇

̂
𝑓

1

𝑖
(b0
𝑃
, p0
𝑃
)

𝑇

[

b
𝑃
− b0
𝑃

p
𝑃
− p0
𝑃

] ≤ 0,

∀𝑖 ∈ I,

(33g)

̂
𝑓

2

𝑖
(b0
𝑃
, p0
𝑃
) + ∇

̂
𝑓

2

𝑖
(b0
𝑃
, p0
𝑃
)

𝑇

[

b
𝑃
− b0
𝑃

p
𝑃
− p0
𝑃

] ≤ 0,

∀𝑖 ∈ I,

(33h)

̂
𝑓

3

𝑖
(b0
𝑃
, p0
𝑃
) + ∇

̂
𝑓

3

𝑖
(b0
𝑃
, p0
𝑃
)

𝑇

[

b
𝑃
− b0
𝑃

p
𝑃
− p0
𝑃

] ≤ 0,

∀𝑖 ∈ I,

(33i)

̂
𝑓

4

𝑗
(b0
𝑆
, p0
𝑆
) + ∇

̂
𝑓

4

𝑗
(b0
𝑆
, p0
𝑆
)

𝑇

[

b
𝑆
− b0
𝑆

p
𝑆
− p0
𝑆

]

≤ 0,

∀𝑗 ∈ J.

(33j)

The NLP relaxation to (32a)–(32j) is

(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
) = argmin (Ω + Φ) (34a)

subject to: ∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (34b)

𝑏
𝑃𝑖
≥ 0,

𝑏
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(34c)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(34d)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(34e)

Ω ≥ 0,

Φ ≥ 0,

(34f)

̂
𝑓

1

𝑖
(b
𝑃
, p
𝑃
) ≤ 0,

∀𝑖 ∈ I,
(34g)

̂
𝑓

2

𝑖
(b
𝑃
, p
𝑃
) ≤ 0,

∀𝑖 ∈ I,
(34h)

̂
𝑓

3

𝑖
(b
𝑃
, p
𝑃
) ≤ 0,

∀𝑖 ∈ I,
(34i)

̂
𝑓

4

𝑗
(b
𝑆
, p
𝑆
) ≤ 0,

∀𝑗 ∈ J.
(34j)

Note that theMINLP problems can be solved using either
deterministic technique or an approximation. A typical exact



10 Mobile Information Systems

method for solving MINLPs is a well-known branch-and-
bound algorithmand its variousmodifications [26]; examples
of heuristic approaches include local branching [27], large
neighborhood search [28], and feasibility pump [29], to name
a few. Since we are interested in a reasonably simple and fast
algorithm, it is more convenient to use heuristics for solving
the problem. In this paper, a Feasibility Pump (FP) heuristic
[29, 30] is applied to solve (32a)–(32j). FP is perhaps the most
simple and most effective method for producing more and
better solutions in a shorter average running time. For the
problems with nonbinary integer variables, the complexity of
FP is exponential in size of a problem [31].

A fundamental idea of FP algorithm is to decompose
the problem into two parts: integer feasibility and constraint

feasibility. The former is achieved by rounding (solving
a NLP relaxation to the original problem) and the latter
by projection (solving a MILP relaxation). Consequently,
two sequences of points are generated. The first sequence
{(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
}
𝐾

𝑘=1
, 𝐾 = 1, 2, . . ., contains the integral

points that may violate the nonlinear constraints.The second
sequence {(b

𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
}
𝐾

𝑘=1
contains the points which are

feasible for a continuous relaxation to the original problem
but might not be integral.

More specifically, with input (b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
1
being a

solution to the NLP relaxation given by (34a)–(34j), the
algorithm generates two sequences by solving the following
problems for 𝑘 = 1, . . . , 𝐾:

(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
= argmin







(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
) − (b

𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘






1

(35a)

subject to: ∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (35b)

𝑏
𝑃𝑖
∈ Z+,

𝑏
𝑆𝑗
∈ Z+,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(35c)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(35d)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(35e)

Ω ≥ 0,

Φ ≥ 0,

(35f)

̂
𝑓

1

𝑖
(b0
𝑃
, p0
𝑃
) + ∇

̂
𝑓

1

𝑖
(b0
𝑃
, p0
𝑃
)

𝑇

[

b
𝑃
− b0
𝑃

p
𝑃
− p0
𝑃

] ≤ 0,

∀𝑖 ∈ I,

(35g)

̂
𝑓

2

𝑖
(b0
𝑃
, p0
𝑃
) + ∇

̂
𝑓

2

𝑖
(b0
𝑃
, p0
𝑃
)

𝑇

[

b
𝑃
− b0
𝑃

p
𝑃
− p0
𝑃

] ≤ 0,

∀𝑖 ∈ I,

(35h)

̂
𝑓

3

𝑖
(b0
𝑃
, p0
𝑃
) + ∇

̂
𝑓

3

𝑖
(b0
𝑃
, p0
𝑃
)

𝑇

[

b
𝑃
− b0
𝑃

p
𝑃
− p0
𝑃

] ≤ 0,

∀𝑖 ∈ I,

(35i)



Mobile Information Systems 11

̂
𝑓

4

𝑗
(b0
𝑆
, p0
𝑆
) + ∇

̂
𝑓

4

𝑗
(b0
𝑆
, p0
𝑆
)

𝑇

[

b
𝑆
− b0
𝑆

p
𝑆
− p0
𝑆

] ≤ 0,

∀𝑗 ∈ J;

(35j)

(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘+1

= argmin 




(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
) − (b

𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘





2

(36a)

subject to: ∑

𝑖∈I
𝑏
𝑃𝑖
+∑

𝑗∈J
𝑏
𝑆𝑗
≤ 𝐵 (36b)

𝑏
𝑃𝑖
≥ 0,

𝑏
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(36c)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
,

𝑝
𝑆𝑗
≤ 𝑃
𝑆𝑗
,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(36d)

𝑝
𝑃𝑖
≥ 0,

𝑝
𝑆𝑗
≥ 0,

∀𝑖 ∈ I, ∀𝑗 ∈ J,

(36e)

Ω ≥ 0,

Φ ≥ 0,

(36f)

̂
𝑓

1

𝑖
(b
𝑃
, p
𝑃
) ≤ 0,

∀𝑖 ∈ I,
(36g)

̂
𝑓

2

𝑖
(b
𝑃
, p
𝑃
) ≤ 0,

∀𝑖 ∈ I,
(36h)

̂
𝑓

3

𝑖
(b
𝑃
, p
𝑃
) ≤ 0,

∀𝑖 ∈ I,
(36i)

̂
𝑓

4

𝑗
(b
𝑆
, p
𝑆
) ≤ 0,

∀𝑗 ∈ J,
(36j)

where ‖⋅‖
1
and ‖⋅‖

2
are 𝑙
1
norm and 𝑙

2
norm, respectively.The

rounding step is carried out by solving (35a)–(35j), whereas
the projection is the solution to (36a)–(36j). A suggested FP
algorithm alternates between the rounding and projection
steps until (b

𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
= (b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
(which implies

feasibility) or the number of iterations 𝑘 has reached the
predefined limit 𝐾. The workflow of a corresponding FP
algorithm is illustrated in the following part.

FP Algorithm for Non-Convex MINLP
(0) INITIALIZATION: input𝐾; set 𝑘 := 1;

solve (34a)–(34j) to obtain (b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
;

(1) WHILE (𝑘 < 𝐾) do:

{

(2) ROUNDING: solve (35a)–(35j) to obtain
(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
;

(3) IF ((b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
= (b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
) THEN goto

step (6);
(4) PROJECTION: solve (36a)–(36j) to obtain

(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘+1

;
(5) Set 𝑘 := 𝑘 + 1;

}
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(6) OUTPUT: solution (b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
∗

:=

(b
𝑃
, p
𝑃
, b
𝑆
, p
𝑆
)
𝑘
.

Note that in order to retain the convergence of the
algorithm, both problems (35a)–(35j) and (36a)–(36j) need
to be solved exactly. Problem (36a)–(36j) (and consequently
problem (34a)–(34j)) can be solved using any standard NLP
method. In this paper, an interior point algorithm (described,
e.g., in [32]) with polynomial complexity is applied to solve
(36a)–(36j) and (34a)–(34j). MILP problem (35a)–(35j) is
relatively simple and therefore can be solved efficiently for
optimality by any technique from the family of the branch-
and-bound methods (e.g., [26]).

3.3. Target Buffer Size for PUs and Feasibility Issues. Recall
that 𝐿

𝑖
represents the target buffer size for PU

𝑖
, which

indicates that the QoS requirements of PU
𝑖
are satisfied. By

limiting the buffer size of PUs, we restrict the QoS of PUs
(measured in terms of their buffer size) to be higher (or at
least not smaller) than the required minimum. From this
point of view, constraints (5) and (12) guarantee the QoS
protection of PUs in Scenario 1 and Scenario 2, respectively.
Apparently, one can always restrict the target buffer size of
PUs to be equal to zero, so that after each subsequent data
arrival the buffer of each PU is fully cleared. This approach
represents a “greedy” policy which ensures that the PUs are
always served with the best possible QoS but does not guar-
antee that some spare capacity will be left to serve the SUs.

A “less greedy” strategy would be to establish some
lower bound on QoS for the PUs, which will provide an
“opportunity” for SUs to be served. To establish this lower
bound, recall that the growing delay and loss indicate that
a buffer of a corresponding node is congested, whereas in
an uncongested node the packet delay and loss are always
minimal [33]. On the other hand, it has been reported in
[33, 34] that in an uncongested node the buffer size 𝑞(𝑡) is
increasing very slowly, that is, 𝑞(𝑡 + 1)/𝑞(𝑡) ≈ 1, whereas in
a congested node the buffer size is growing very fast, so that
𝑞(𝑡+1)/𝑞(𝑡) ≫ 1. Hence, to serve the PUs withminimal delay
and loss, it is enough to prevent the growth of their buffers;
that is, for each PU set

𝐿
𝑖
= 𝑞
𝑃𝑖
(𝑡) + 𝜀, ∀𝑖 ∈ I, (37a)

where 𝜀 ≥ 0 is some small value, such that

𝜀 ≪ 𝑞
𝑃𝑖
(𝑡) , ∀𝑖 ∈ I. (37b)

More sophisticated approach to find the lowerQoS bound
can be deployed if information about the past buffer size is
available at any time slot 𝑡. In this case, one can set the target
buffer size based on past T observations 𝑞(𝑡), . . . , 𝑞(𝑡 − 𝑇 + 1)
as

𝐿
𝑖
= min
𝜏∈T

𝑞
𝑃𝑖
(𝑡 − 𝜏 + 1) + 𝜀, ∀𝑖 ∈ I, (38a)

or

𝐿
𝑖
=

1

𝑇

∑

𝜏∈T
𝑞
𝑃𝑖
(𝑡 − 𝜏 + 1) + 𝜀, ∀𝑖 ∈ I, (38b)

where T = {1, . . . , 𝑇}.
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Figure 1: Average number of iterations before convergence as a
function of number of SUs in simulations with 𝑛 = 100 PUs and
average SNR = 0 dB.
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In some (very rare) cases (when the service capacity of the
eNB is not enough to guarantee that the buffer sizes in all PUs
do not exceed the target buffer size), constraints (5) and (12)
in Scenarios 1 and 2 may be not feasible. In the following, we
show how to identify such situation and what should be the
optimal resource allocation strategy in this case.

Note that the service capacity of LTE system greatly
depends on physical characteristics (e.g., SINR and MCS) of
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Figure 3: Mean throughput, packet delay, and loss for PUs as a function of number of SUs in simulations with 𝑛 = 100 PUs and average SNR
= 0 dB.

the wireless channels between the eNB and the users. Hence,
at the moment preceding the bandwidth/power allocation, it
is rather difficult to estimate the service capacity of a system.
Nevertheless, it is possible to find the average service capacity
and to determine the upper and lower bounds on service
capacity of the eNB in the UL and DL directions, such that

𝑅min ≤ ∑
𝑖∈I
𝑟
𝑃𝑖
(𝑡) ≈ 𝑅ave ≤ 𝑅max, (39)

where𝑅min,𝑅ave, and𝑅max are the lower bound, upper bound,
and average service capacity of the eNB, respectively.

In our case, the upper bound on service capacity of the
eNB is given by

𝑅max = 𝜔𝜓𝐵 log (1 + 𝑔 (SNRmax) ⋅ SNRmax) , (40a)

where SNRmax is the maximal possible SNR value.

The lower bound on service capacity of eNB is

𝑅min = 𝜔𝜓𝐵 log (1 + 𝑔 (SNRmin) ⋅ SNRmin) , (40b)

where SNRmin is the minimal possible SNR value.
The average service capacity of the eNB equals

𝑅ave = 𝜔𝜓𝐵 log (1 + 𝑔 (SNRave) ⋅ SNRave) , (40c)

where SNRave is the average SNR value.
If SNR information is available, then the values SNRmax,

SNRmin, and SNRave can be set as

SNRmax = max
𝑖∈I

SNR
𝑖
; (41a)
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Figure 4: Mean throughput, packet delay, and loss for SUs as a function of number of SUs in simulations with 𝑛 = 100 PUs and average SNR
= 0 dB.

SNRmin = min
𝑖∈I

SNR
𝑖
; (41b)

SNRave =
1

𝑛

∑

𝑖∈I
SNR
𝑖
. (41c)

Otherwise (i.e., if SNR information is not available), the
values are set arbitrarily.

Now we can identify the situation when constraints (5)
and (12) cannot be satisfied. For this, we should perform the
following test. For Scenario 1, if

𝑅min ≥ ∑
𝑖∈I
(𝑞
𝑃𝑖
(𝑡) + 𝑎

𝑃𝑖
(𝑡) − 𝐿

𝑖
) , (42)

then constraint (5) is feasible. Otherwise, condition (5)
cannot be satisfied.Hence, all the SUs receive zero allocations,

andwe assign the bandwidth/power resources only to the PUs
by solving the following optimization problem:

minimize max
𝑖∈I

⌈𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
− 𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
)⌉
+

(43a)

subject to: 𝑟
𝑃𝑖
(b
𝑃
, p
𝑃
) ≤ 𝑞
𝑃𝑖
+ 𝑎
𝑃𝑖
, ∀𝑖 ∈ I (43b)

∑

𝑖∈I
𝑏
𝑃𝑖
≤ 𝐵 (43c)

𝑏
𝑃𝑖
∈ Z+, ∀𝑖 ∈ I (43d)

𝑝
𝑃𝑖
≤ 𝑃
𝑃𝑖
, ∀𝑖 ∈ I (43e)

𝑝
𝑃𝑖
≥ 0, ∀𝑖 ∈ I (43f)
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Figure 5: Mean throughput, packet delay, and loss for PUs as a function of SNR in simulations with 𝑛 = 100 PUs and average SNR = 0 dB.

for the UL direction. For the DL directions, constraint (43e)
should be replaced by

∑

𝑖∈I
𝑝
𝑃𝑖
≤ 𝑃eNB. (43g)

For Scenario 2, if

𝑅min ≥ ∑
𝑖∈I
(𝑞
𝑃𝑖
(𝑡) + 𝑎

𝑃𝑖
(𝑡) − (1 + 𝛼

𝑖
) 𝐿
𝑖
) , (44)

then constraint (12) is feasible. Otherwise, inequality (12)
cannot be satisfied, and the bandwidth/power resources are
assigned only to the PUs (according to (43a)–(43g)), whereas
the SUs receive zero allocations.

4. Performance Evaluation

4.1. Simulation Model. A simulation model of the network
consisting of one eNB, 𝑛 PUs, and 𝑚 SUs randomly located
in a service area with 3 km radius has been developed upon
a standard LTE platform using the OPNET package [35].The
bandwidth of the eNB equals 𝐵 = 50RBs (which is equivalent
to 10MHz). The slot duration in the algorithm equals 𝑇

𝑠
=

1ms.Themaximal number of iterations in FP algorithm is set
𝐾 = 200.Themaximal transmission power of the eNB equals
𝑃eNB = 46 dBm and the maximal transmission power of each
PU/SU equals 𝑃

𝑃1
= ⋅ ⋅ ⋅ = 𝑃

𝑃𝑛
= 𝑃
𝑆1
= ⋅ ⋅ ⋅ = 𝑃

𝑆𝑚
= 23 dBm.

Other simulation settings of the model are listed in Table 2
(all the parameters are based on LTE specifications [36]).
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Table 2: Simulation parameters of the model.

Parameter Value
Radio network model

Pass loss 𝐿 = 40log
10
𝑅 + 30log

10
𝑓 + 49, 𝑅: distance (km), 𝑓:

carrier frequency (Hz)

Shadow fading Log-normal shadow fading with a standard deviation of
10/12 dB for outdoor/indoor users

Penetration loss The average building penetration loss is 12 dB with a
standard deviation of 8 dB

Multipath fading Spatial Channel Model (SCM), Suburban macro
UE velocity 0 km/s
Transmitter/receiver antenna gain 10 dBi (pedestrian), 2 dBi (indoor)
Receiver antenna gain 10 dBi (pedestrian), 2 dBi (indoor)
Receiver noise figure 5 dB
Thermal noise density −174 dBm/Hz
Cable/connector/combiner losses 2 dB

Physical profile
Operation mode FDD
Cyclic prefix type Normal (7 symbols per slot)
Evolved packet core (EPC) bearer definitions 348 kbit/s (nonguaranteed bit rate)
Subcarrier spacing 15 kHz

Admission control parameters
Physical downlink control channel (PDCCH) symbols per subframe 3
UL loading factor 1
DL loading factor 1
Inactive bearer timeout 20 sec

Buffer status report parameters
Periodic timer 5 subframes
Retransmission timer 2560 subframes

L1/L2 control parameters
Reserved size 2 RBs
Cyclic shifts 6
Starting RB preserver for Format 1 messages 0
Allocation periodicity 5 subframes

Random access (RA) parameters
Number of preambles 64
Preamble format Format 0 (1-subframe long)
Number of RA resources per frame 4
Preamble retransmission limit 5 subframes
RA response timer 5 subframes
Contention resolution timer 40 subframes

HARQ parameters
Maximal number of retransmissions 3 (UL and DL)
HARQ retransmission timer 8 subframes (UL and DL)
Maximal number of HARQ processes 8 per UE (UL and DL)

A radio model of the network corresponds to the require-
ments of ITU-T Recommendation M.1225.

The algorithms proposed in the paper are denoted as
follows:

(i) GBC (greedy buffer Control), where the target buffer
size equals 0 for all the PUs;

(ii) NBC (nongreedy buffer control) with the target buffer
size calculated according to (37a) and (37b);

(iii) MBC (Minimal Buffer Control) with 𝑇 = 10 slots and
the target buffer size given by (38a);

(iv) ABC (Average Buffer Control) with 𝑇 = 10 slots and
the target buffer size equaling (38b).

Two previously proposed schemes used to benchmark the
performance of the algorithms proposed in this paper are

(i) UBA (Utility Based Allocation) presented in [11],
where the network resources (bandwidth and trans-
mission power) are allocated to the UL channels to
maximize the total transmission rate of the users
subject to the capacity and transmission power con-
straints,
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Figure 6: Mean throughput, packet delay, and loss for SUs as a function of SNR in simulations with 𝑛 = 100 PUs and average SNR = 0 dB.

(ii) DPC (Delay Power Control) derived in [5], which
is used to balance the transmission delay against
transmission power in wireless channels between the
eNB and the users.

We also gather simulation results for a proposed resource
allocation approach in Scenario 2, with different settings of
the parameters𝛼

𝑖
and V, and benchmark its performancewith

the performance of the algorithm in Scenario 1.
All algorithms are simulated using identical settings.

The data traffic in simulations is represented by voice over
Internet Protocol (VoIP), video, and Hypertext Transfer
Protocol (HTTP) applications mixed in proportion 2 : 3 : 5
using the models defined in [37].

4.2. Complexity and Fairness Issues. Let us first evaluate
the complexity and the fairness of resource allocation in
different algorithms. Figure 1 shows the average number
of iterations before convergence for UBA, DPC, and the
proposed algorithms in Scenario 1 (denoted as MBC) and
Scenario 2, gathered in simulations with 𝑛 = 100 PUs and
average SNR = 0 dB. Note that the target buffer size for the
PUs is calculated according to (38a) with T = 10 slots (in
Scenarios 1 and 2) and 𝛼

𝑖
= 1, V = 𝑚 ∗ 1Mbps (for

Scenario 2). Results demonstrate that the complexity of FP
method deployed for resource allocation in Scenarios 1 and
2 is exponential in size of the problem (which corresponds
to the findings reported in [31]) and is comparable to the
complexities of other techniques (UBA and DPC).
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Figure 7: Mean throughput, packet delay, and loss for the PUs as a function of the parameter 𝛼
𝑖
with 𝑛 = 100 PUs, 𝑚 = 50 SUs, and average

SNR = 0 dB.

Figure 2 shows the fairness of different methods calcu-
lated according to Jain’s equation [38] as

𝐹PU =

(∑
𝑖∈I 𝑟𝑃𝑖)

2

𝑛 ⋅ ∑
𝑖∈I 𝑟
2

𝑃𝑖

,

𝐹SU =

(∑
𝑗∈J 𝑟𝑆𝑗)

2

𝑚 ⋅ ∑
𝑗∈J 𝑟
2

𝑆𝑗

,

𝐹 =

(∑
𝑖∈I 𝑟𝑃𝑖 + ∑𝑗∈J 𝑟𝑆𝑗)

2

(𝑛 + 𝑚) ⋅ (∑
𝑖∈I 𝑟
2

𝑃𝑖
+ ∑
𝑗∈J 𝑟
2

𝑆𝑗
)

,

(45)

where 𝐹PU, 𝐹SU, and 𝐹 stand for Jain’s index of fairness for
the PUs, SUs, and all of the users, respectively; 𝑟

𝑃𝑖
, 𝑟
𝑆𝑗

are
the mean throughputs for PU

𝑖
and SU

𝑗
, respectively. Results

have been gathered for 𝑛 = 100 PUs, 𝑚 = 100 SUs, average
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Figure 8: Mean throughput, packet delay, and loss for the SUs as a function of the parameter 𝛼
𝑖
with 𝑛 = 100 PUs, 𝑚 = 50 SUs, and average

SNR = 0 dB.

SNR = 0 dB, and target buffer size for the PUs calculated
according to (38a) (Scenarios 1 and 2) with different settings
of 𝛼
𝑖
and V in Scenario 2.

It follows from these graphs that the fairness index among
all of the users (denoted as 𝐹) is higher in Scenario 2 with
𝛼
𝑖
= 1 and lower in Scenario 1 and Scenario 2 with 𝛼

𝑖
= 0.

Such results are rather expectable; in Scenario 1 and Scenario
2 with 𝛼

𝑖
= 0, the SUs are served for free on a best-effort

basis, whereas the PUs enjoy full QoS guarantees. Hence, the
network resources are shared nonequally between the PUs

and the SUs, with most of the RBs allocated to the PUs and
the rest of the bandwidth distributed among the SUs. On
the other hand, the fairness index for the PUs and SUs (i.e.,
𝐹PU and 𝐹SU) is rather high in both scenarios with different
settings of 𝛼

𝑖
and V, which indicates that the users of the same

type are treated equally during resource allocation.

4.3. Simulation Results in Scenario 1. Let us evaluate the
performance of a resource allocation algorithm in Scenario
1 in terms of mean throughput, packet end-to-end delay, and
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Figure 9: Mean throughput, packet delay, and loss for the PUs as a function of number of SUs with 𝑛 = 100 PUs, 𝑚 = 50 SUs, and average
SNR = 0 dB.

loss for different user types. Figures 3–6 show results obtained
in simulations with 𝑛 = 100 PUs and average SNR = 0 dB.
Results demonstrate that aUBA scheme has the largest packet
delay and loss and the lowest throughput for both the PUs and
the SUs. A poor performance of this scheme is explained as
follows:

(i) QoS protection of PUs is not considered in UBA.
Hence, the throughput, delay, and loss are the same
for PUs and SUs.

(ii) Buffer sizes of individual users are not considered
in resource allocation, and therefore the QoS for
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Figure 10: Mean throughput, packet delay, and loss for the SUs as a function of number of SUs with 𝑛 = 100 PUs, 𝑚 = 50 SUs, and average
SNR = 0 dB.

different users varies significantly (since different
users have different traffic demands).

(iii) Although widely used, the choice of transmission rate
as an individual user utility is not very rational: some
users may have very low demand and small buffer

size and therefore there is no need to maximize their
transmission rate and spend the network resources.

Performance of the DPC scheme is a little better than that
ofUBA.Note thatDPC takes into account transmission delay,
which is balanced against the transmission power in wireless
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channels, and therefore performance of DPC for PUs and SUs
is better than performance of UBA. However, the queuing
delay related to users’ buffer size and the QoS requirements
of PUs are not considered, and therefore the delay and loss
for PUs are much greater in UBA than those in GBC, NMC,
MBC, and ABC.

GBC, NBC, MBC, and ABC show very consistent perfor-
mance for the users. All of these techniques take into account
the users’ buffer size, whichmakes it possible tominimize the
average delay and loss in the network for both the PUs and
the SUs. Additionally, the QoS for the PUs is guaranteed by
restricting the buffer size of each PU to stay below the target
buffer size level, which ensures that the packet delays for PUs
do not exceed the average target delays.

The best performances for the PUs and the SUs are
achieved by GBC andNBC, respectively. Such results provide
good demonstration of trade-off between delay and loss for
the SUs and the target buffer size of the PUs. In particular,
a “greedy” strategy shows good throughput, delay, and loss
results for the PUs but poor performance for the SUs. On
the other hand, it is possible to achieve some compromise
between holding the QoS guarantees of the PUs and provid-
ing a reasonable performance for the SUs by using the less
strict target buffer size settings (e.g., NBC, ABC, and MBC).

4.4. Simulations Results in Scenario 2. We now present
simulation results in Scenario 2 with different settings of the
parameters 𝛼

𝑖
and V and the target buffer size of the PUs

calculated according to (38a) for 𝑇 = 10 and benchmark these
results with the performance of the MBC algorithm in Sce-
nario 1. Figures 7 and 8 show mean throughput, packet end-
to-end delay, and loss in simulations with 𝑛 = 100 PUs, 𝑚 =
50 SUs, and average SNR = 0 dB.

Results demonstrate that QoS of the PUs and the SUs
depends to a great extent on the settings of 𝛼

𝑖
and V. The

parameter 𝛼
𝑖
has negative impact on service performance for

the PUs andpositive impact on performance for the SUs.Note
that the target buffer size of the PUs increases with 𝛼

𝑖
, which

leads to decreased throughput, and increased delay, and loss
for these users.

We also observe that a service provider’s revenue V has
negative impact on QoS of the SUs and positive impact
on performance of the PUs. Such results are due to the
more strict constraints on the network usage for different
types of users. Consequently, the cases when the target
QoS of PUs cannot be satisfied (and problem (15a)–(15g)
is unfeasible) happen more frequently, and the QoS for
these users degrades. On the other hand, the SUs utilize
more bandwidth in response to the revenue constraints, and
therefore their QoS improves.

4.5. Comparison between Scenario 1 and Scenario 2. Results
below show performance of the algorithms in Scenario 1 and
Scenario 2 with the target buffer size for the PUs calculated
according to (38a) with 𝑇 = 10 slots (in Scenarios 1 and 2)
and different settings of the parameters 𝛼

𝑖
and V in Scenario 2.

Figures 9 and 10 show mean throughput, packet end-to-end
delay, and loss in simulations with 𝑛 = 100 PUs, 𝑚 = 50 SUs,
and average SNR = 0 dB.

Results demonstrate that theQoS of the PUs ismaximal in
Scenario 1 and Scenario 2 with 𝛼

𝑖
= 0, because in this case the

PUs are provided with full QoS guarantees, whereas the SUs
are served on a best-effort basis. On the other hand, the ser-
vice performance for the SUs is better in Scenario 2 with 𝛼

𝑖
=

1, since the target buffer size for the PUs increased, leading to
degraded throughput and increased delay and loss for these
users and improved performance for the SUs that pay for the
shared resources.

5. Conclusion

Theproblemconsidered in this paper relates to the problemof
transmission power and bandwidth allocation in a cognitive
LTE network where the bandwidth is shared among the
PUs and SUs. To guarantee that the QoS requirements
of the PUs are satisfied, we enforce some upper bound
on their buffer size. Unlike previously proposed resource
allocation techniques, our algorithm is derived based on
realistic assumptions, such as discrete spectrum resources
and consideration of AMC deployed in LTE systems. Per-
formance of the algorithm is evaluated using simulations
in OPNET environment. Results show that the proposed
resource allocation strategy performs significantly better than
other relevant resource allocation techniques.
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