2,710 research outputs found

    Data-driven network alignment

    Full text link
    Biological network alignment (NA) aims to find a node mapping between species' molecular networks that uncovers similar network regions, thus allowing for transfer of functional knowledge between the aligned nodes. However, current NA methods do not end up aligning functionally related nodes. A likely reason is that they assume it is topologically similar nodes that are functionally related. However, we show that this assumption does not hold well. So, a paradigm shift is needed with how the NA problem is approached. We redefine NA as a data-driven framework, TARA (daTA-dRiven network Alignment), which attempts to learn the relationship between topological relatedness and functional relatedness without assuming that topological relatedness corresponds to topological similarity, like traditional NA methods do. TARA trains a classifier to predict whether two nodes from different networks are functionally related based on their network topological patterns. We find that TARA is able to make accurate predictions. TARA then takes each pair of nodes that are predicted as related to be part of an alignment. Like traditional NA methods, TARA uses this alignment for the across-species transfer of functional knowledge. Clearly, TARA as currently implemented uses topological but not protein sequence information for this task. We find that TARA outperforms existing state-of-the-art NA methods that also use topological information, WAVE and SANA, and even outperforms or complements a state-of-the-art NA method that uses both topological and sequence information, PrimAlign. Hence, adding sequence information to TARA, which is our future work, is likely to further improve its performance

    Identification of direct residue contacts in protein-protein interaction by message passing

    Full text link
    Understanding the molecular determinants of specificity in protein-protein interaction is an outstanding challenge of postgenome biology. The availability of large protein databases generated from sequences of hundreds of bacterial genomes enables various statistical approaches to this problem. In this context covariance-based methods have been used to identify correlation between amino acid positions in interacting proteins. However, these methods have an important shortcoming, in that they cannot distinguish between directly and indirectly correlated residues. We developed a method that combines covariance analysis with global inference analysis, adopted from use in statistical physics. Applied to a set of >2,500 representatives of the bacterial two-component signal transduction system, the combination of covariance with global inference successfully and robustly identified residue pairs that are proximal in space without resorting to ad hoc tuning parameters, both for heterointeractions between sensor kinase (SK) and response regulator (RR) proteins and for homointeractions between RR proteins. The spectacular success of this approach illustrates the effectiveness of the global inference approach in identifying direct interaction based on sequence information alone. We expect this method to be applicable soon to interaction surfaces between proteins present in only 1 copy per genome as the number of sequenced genomes continues to expand. Use of this method could significantly increase the potential targets for therapeutic intervention, shed light on the mechanism of protein-protein interaction, and establish the foundation for the accurate prediction of interacting protein partners.Comment: Supplementary information available on http://www.pnas.org/content/106/1/67.abstrac
    • …
    corecore