1,624 research outputs found

    Job shop scheduling with makespan objective: A heuristic approach

    Get PDF
    Job shop has been considered as one of the most challenging scheduling problems and there are literally tremendous efforts on reducing the complexity of solution procedure for solving job shop problem. This paper presents a heuristic method to minimize makespan for different jobs in a job shop scheduling. The proposed model is based on a constructive procedure to obtain good quality schedules, very quickly. The performance of the proposed model of this paper is examined on standard benchmarks from the literature in order to evaluate its performance. Computational results show that, despite its simplicity, the proposed heuristic is computationally efficient and practical approach for the problem

    Akış tipi çizelgeleme problemlerinin yapay bağışıklık sistemleri ile çözümünde yeni bir yaklaşım

    Get PDF
    The n-job, m-machine flow shop scheduling problem is one of the most general job scheduling problems. This study deals with the criteria of makespan minimization for the flow shop scheduling problem. Artificial Immune Systems (AIS) are new intelligent problem solving techniques that are being used in scheduling problems. AIS can be defined as computational systems inspired by theoretical immunology, observed immune functions, principles and mechanisms in order to solve problems. In this research, a computational method based on clonal selection principle and affinity maturation mechanisms of the immune response is used. The operation parameters of meta-heuristics have an important role on the quality of the solution. Thus, a generic systematic procedure which bases on a multi-step experimental design approach for determining the efficient system parameters for AIS is presented. Experimental results show that, the artificial immune system algorithm is more efficient than both the classical heuristic flow shop scheduling algorithms and simulated annealing.n iş m makina akış tipi iş çizelgeleme problemi en genel iş çizelgeleme problemlerinden biridir. Bu çalışma akış tipi çizelgeleme problemi için toplam tamamlanma zamanı minimizasyonu ile ilgilenmektedir. Yapay Bağışıklık Sistemleri (YBS), çizelgeleme problemlerinde son dönemlerde kullanılan yeni bir problem çözme tekniğidir. YBS, doğal bağışıklık sisteminin prensiplerini ve mekanizmalarını kullanarak problemlere çözüm üreten bir hesaplama sistemidir. Bu çalışmada, bağışıklık tepkisinin iki ayrı mekanizması olan klonel seçim prensibi ve benzerlik mekanizması üzerine kurulmuş bir metod kullanılmıştır. Meta sezgisel yöntemlerde seçilen operatörler, çözüm kalitesi üzerinde önemli bir role sahiptir. Bu nedenle, yapay bağışıklık sisteminin etkin parametrelerinin belirlenmesinde çok aşamalı bir deney tasarımı prosedürü uygulanmıştır. Deney sonuçları, yapay bağışıklık sistemlerinin klasik çizelgeleme ve tavlama benzetimi algoritmalarından daha iyi sonuçlar verdiğini göstermiştir

    A New Approach to Solve Flowshop Scheduling Problems By Artificial Immune Systems

    Get PDF
    n iş m makina akış tipi iş çizelgeleme problemi en genel iş çizelgeleme problemlerinden biridir. Bu çalışma akış tipi çizelgeleme problemi için toplam tamamlanma zamanı minimizasyonu ile ilgilenmektedir. Yapay Bağışıklık Sistemleri (YBS), çizelgeleme problemlerinde son dönemlerde kullanılan yeni bir problem çözme tekniğidir. YBS, doğal bağışıklık sisteminin prensiplerini ve mekanizmalarını kullanarak problemlere çözüm üreten bir hesaplama sistemidir. Bu çalışmada, bağışıklık tepkisinin iki ayrı mekanizması olan klonel seçim prensibi ve benzerlik mekanizması üzerine kurulmuş bir metod kullanılmıştır. Meta sezgisel yöntemlerde seçilen operatörler, çözüm kalitesi üzerinde önemli bir role sahiptir. Bu nedenle, yapay bağışıklık sisteminin etkin parametrelerinin belirlenmesinde çok aşamalı bir deney tasarımı prosedürü uygulanmıştır. Deney sonuçları, yapay bağışıklık sistemlerinin klasik çizelgeleme ve tavlama benzetimi algoritmalarından daha iyi sonuçlar verdiğini göstermiştir.The n-job, m-machine flow shop scheduling problem is one of the most general job scheduling problems. This study deals with the criteria of makespan minimization for the flow shop scheduling problem. Artificial Immune Systems (AIS) are new intelligent problem solving techniques that are being used in scheduling problems. AIS can be defined as computational systems inspired by theoretical immunology, observed immune functions, principles and mechanisms in order to solve problems. In this research, a computational method based on clonal selection principle and affinity maturation mechanisms of the immune response is used. The operation parameters of meta-heuristics have an important role on the quality of the solution. Thus, a generic systematic procedure which bases on a multi-step experimental design approach for determining the efficient system parameters for AIS is presented. Experimental results show that, the artificial immune system algorithm is more efficient than both the classical heuristic flow shop scheduling algorithms and simulated annealing

    A New Approach to Solve Flowshop Scheduling Problems By Artificial Immune Systems

    Get PDF
    n iş m makina akış tipi iş çizelgeleme problemi en genel iş çizelgeleme problemlerinden biridir. Bu çalışma akış tipi çizelgeleme problemi için toplam tamamlanma zamanı minimizasyonu ile ilgilenmektedir. Yapay Bağışıklık Sistemleri (YBS), çizelgeleme problemlerinde son dönemlerde kullanılan yeni bir problem çözme tekniğidir. YBS, doğal bağışıklık sisteminin prensiplerini ve mekanizmalarını kullanarak problemlere çözüm üreten bir hesaplama sistemidir. Bu çalışmada, bağışıklık tepkisinin iki ayrı mekanizması olan klonel seçim prensibi ve benzerlik mekanizması üzerine kurulmuş bir metod kullanılmıştır. Meta sezgisel yöntemlerde seçilen operatörler, çözüm kalitesi üzerinde önemli bir role sahiptir. Bu nedenle, yapay bağışıklık sisteminin etkin parametrelerinin belirlenmesinde çok aşamalı bir deney tasarımı prosedürü uygulanmıştır. Deney sonuçları, yapay bağışıklık sistemlerinin klasik çizelgeleme ve tavlama benzetimi algoritmalarından daha iyi sonuçlar verdiğini göstermiştir.The n-job, m-machine flow shop scheduling problem is one of the most general job scheduling problems. This study deals with the criteria of makespan minimization for the flow shop scheduling problem. Artificial Immune Systems (AIS) are new intelligent problem solving techniques that are being used in scheduling problems. AIS can be defined as computational systems inspired by theoretical immunology, observed immune functions, principles and mechanisms in order to solve problems. In this research, a computational method based on clonal selection principle and affinity maturation mechanisms of the immune response is used. The operation parameters of meta-heuristics have an important role on the quality of the solution. Thus, a generic systematic procedure which bases on a multi-step experimental design approach for determining the efficient system parameters for AIS is presented. Experimental results show that, the artificial immune system algorithm is more efficient than both the classical heuristic flow shop scheduling algorithms and simulated annealing

    Job Scheduling with Genetic Algorithm

    Get PDF
    In this paper, we have used a Genetic Algorithm (GA) approach for providing a solution to the Job Scheduling Problem (JSP) of placing 5000 jobs on 806 machines. The GA starts off with a randomly generated population of 100 chromosomes, each of which represents a random placement of jobs on machines. The population then goes through the process of reproduction, crossover and mutation to create a new population for the next generation until a predefined number of generations are reached. Since the performance of a GA depends on the parameters like population size, crossover rate and mutation rate, a series of experiments were conducted in order to identify the best parameter combination to achieve good solutions to the JSP by balancing makespan with the running time. We found that a crossover rate of 0.3, a mutation rate of 0.15 and a population size of 100 yield the best results

    A SURVEY ON MACHINE SCHEDULING TECHNIQUES

    Get PDF
    ABSTRACT In this paper the study about the different methodologies and techniques implemented for different types of scheduling problems in single machine, job shop and flow shop scheduling. Every author tells about the different scenario and approach to minimize the Make span, Tardiness and different parameters in scheduling. Every author implements their own algorithms and the strategies to find out the result, it may be positive or negative. This paper gives the clear idea for the future research work

    Multi-Objective Flexible Job Shop Scheduling Using Genetic Algorithms

    Get PDF
    Flexible Job Shop Scheduling is an important problem in the fields of combinatorial optimization and production management. This research addresses multi-objective flexible job shop scheduling problem with the objective of simultaneous minimization of: (1) makespan, (2) workload of the most loaded machine, and (3) total workload. A general-purpose, domain independent genetic algorithm implemented in a spreadsheet environment is proposed for the flexible job shop. Spreadsheet functions are used to develop the shop model. Performance of the proposed algorithm is compared with heuristic algorithms already reported in the literature. Simulation experiments demonstrated that the proposed methodology can achieve solutions that are comparable to previous approaches in terms of solution quality and computational time. Flexible job shop models presented herein are easily customizable to cater for different objective functions without changing the basic genetic algorithm routine or the spreadsheet model. Experimental analysis demonstrates the robustness, simplicity, and general-purpose nature of the proposed approach

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis
    corecore