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ABSTRACT 

 

In this paper, we have used a Genetic Algorithm (GA) approach for providing a solution 

to the Job Scheduling Problem (JSP) of placing 5000 jobs on 806 machines. The GA starts off 

with a randomly generated population of 100 chromosomes, each of which represents a random 

placement of jobs on machines. The population then goes through the process of reproduction, 

crossover and mutation to create a new population for the next generation until a predefined 

number of generations are reached. Since the performance of a GA depends on the parameters 

like population size, crossover rate and mutation rate, a series of experiments were conducted in 

order to identify the best parameter combination to achieve good solutions to the JSP by 

balancing makespan with the running time. We found that a crossover rate of 0.3, a mutation rate 

of 0.15 and a population size of 100 yield the best results.  
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1. INTRODUCTION 

 

Optimization problems help us to find the optimum solution among a set of solutions for 

example the highest yield or the lowest cost, etc. There are different types of Optimization 

problems and different problems have different solutions to them. In this paper we look into one 

such optimization problem: Job Scheduling.  

1.1. Optimization 

Before the optimization process can be started, all problems to be optimized should be 

formulated as a system with its status controlled by a few input variables and its performance 

specified by a well-defined objective function or the fitness function, which can be denoted as f.  

The goal of optimization is to find the best value for each variable in order to achieve 

satisfactory performance. The variables required by the fitness function are referred to as the 

input or the decision variables. A particular setting of the input variables, position, denoted by x, 

x ∈   D
, where D is the total number of input variables can also be referred to as setting or 

decision vector. The variables could have simple constraints or could have complex ones. The set 

of all feasible results is called the search space or the function space. Subsets of the search space 

form neighborhoods. The result evaluated by the objective function to give a certain position is 

called the objective value or the fitness value.  

The maximum value reached by an objective function is called the maxima, similarly the 

lowest value arrived at by the objective function is the minima. Both maxima and minima could 

be referred to as the optimum for that objective function. The optimum within a neighborhood is 

called local optimum while the global optimum is the optimum among all local optima.  
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Figure 1.1 shows the unimodal objective function f(x) = x
2
 + 0.5 with a minimum 0.5 at x 

= 0. Both a maximum and a minimum can be called an optimum. A local optimum is an 

optimum within its neighborhood. Figure 1.2 shows the multimodal objective function f(x) = 10 

sin(x) + x and three of its local minima. The global optimum is the optimum of all local optima; 

i.e., it is the optimum in the complete search space. Figure 1.2 shows a global minimum of 

roughly −18 located close to x = −8 in the search space [−10, 10]. 

 

 

Figure 1.1: Unimodal Objective Function 

A maximization problem is an optimization problem for which the position (i.e. input 

variables) with the highest objective value is to be found. A minimization problem is an 

optimization problem for which the position with the lowest objective value is to be found. A 

maximization problem can be converted into a minimization problem by negating the objective 

function.  



3 
 

 

Figure 1.2: Multi-Modal Objective Function 

1.2. Examples of Optimization Problems 

Objective functions often attempt to model real entities. Creating an objective function that 

behaves like the real entity can be a challenging task on its own. Simplified descriptions of real 

world optimization problems include: 

 minimize the output of certain chemical species by finding an optimal reaction 

temperature and pressure given a certain catalyst [1, 2] 

 minimize the building cost of a car, ship, engine, or notebook without violating quality 

constraints [3, 4] 

 minimize the air resistance of a car body [5] 

 maximize the efficiency of a fuel cell [6] 

 minimize the difference between a simulation and experimental measurements [7] 

 maximize the volume of a structure given a certain amount of building material [8] 
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 minimize the length of a route that visits certain points at least once [9] 

 maximize the potential yield or minimize the risk of a portfolio [10] 

 minimize the operating cost of a fresh water system without violating constraints such as 

 minimal amount of stored water [11] 

 minimize the difference between power generation and demand for scheduling a 

hydroelectric power station [12, 13,14] 

1.3. Job Scheduling Problem 

One of the most famous global optimization problems is that of scheduling and among 

them one of the most famous is the Job Scheduling Problem (JSP) or Job Shop Scheduling 

Problem (JSSP), which is to schedule a set of n jobs on a set of m machines such that we can 

minimize the total time taken from the first job being scheduled to the execution of the last job. 

Operations of the same job cannot be processed concurrently and each job must be processed on 

any machine exactly once.  A pictorial representation of 9 jobs being placed on 3 machines has 

been provided in Figure 1.3; where M1, M2 and M3 represent machines and J1-J9 represent the 

nine different jobs. 

M1 M2 M3             

J5 J7 J4 J1 J9 J2 J3 J6 J8 

Figure 1.3: Example of A Chromosome Representation 

Besides being an NP-hard problem, this has been one of the most difficult combinatorial 

problems to compute, so it has drawn a lot of research attention because of its theoretical, 

computational and empirical significance since it was introduced. JSP being such a complex 

problem, exact techniques such as branch and bound and dynamic programming only apply to 

small scale problems. However, for large scale problems, the results from these techniques 

sometimes become really unpredictable and require a lot of time to compute. Heuristic methods 
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such as dispatching priority rules, shifting bottleneck [36] approach and Lagrangian relaxation 

[38] are alternatives to large scale problems. With the emergence of new techniques from the 

field of artificial intelligence, much attention has been devoted to meta-heuristics. One main 

class of meta-heuristics is the construction and improvement heuristic, such as tabu search [15-

17] and simulated annealing [18, 19]. Another main class of meta-heuristic is the population 

based heuristic. Successful examples of population based algorithms include genetic algorithm 

(GA) [20-22], particle swarm optimization (PSO) [23, 24], artificial immune system and their 

hybrids [25-27], and so on. The problem depends on the size, so schedulers are usually satisfied 

with an acceptance result that is not far from the actual optimum result. One of the search 

techniques that have been in use in the industry is the Genetic Algorithm (GA). 

GA starts with a set of solutions (represented by chromosomes) called population. 

Chromosomes from the population are taken and used to form a new population. This is 

motivated by the desire, that the new population will be better than the old one in terms of a 

fitness criterion. Solutions which a GA starts with a set of solutions (represented by 

chromosomes) called population.re selected to form new solutions (offsprings) are selected 

according to their fitness - the more suitable they are the more chances they have to reproduce. 
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2. RELATED WORK 

 

The most common method used to solve Job Shop Scheduling problem (JSSP) is by 

material requirement planning (MRP). However, MRP is mostly used as a planning tool and is 

hardly used for detailed level scheduling [28]. Scheduling is done in many companies by 

personnel with the help of Gantt charts and databases [29, 30, 28], often resorting to simple 

dispatching methods to solve immediate problems. This can result in chaos making the 

prediction of completion dates difficult and the work in progress (WIP) inventory increase. 

Many dispatching rules have been implemented based on processing times, criticality of 

operations and due-dates and resource utilization [31]. The “critical ratio”, which calculates the 

ratio of the remaining processing-time over the time to the due date, is very popular in job 

scheduling [29]. Some more complicated approaches take into account some combination of the 

above factors, like the Viviers algorithm [32] incorporates three priorities in the Shortest 

Processing Time (SPT) rule. Here, each job has a priority and an index equal to the processing 

time. Jobs having high priority have low index and are processed first. There are also many 

approaches which use dispatching rules or heuristics for scheduling [33, 34, 35]. It is generally 

very difficult to evaluate the performance of these methods because of the problem size. 

Moreover, these methods are not good at accommodating minor changes in jobs/resource 

availability as the whole schedule has to be redone. 

As JSP is such a complex problem, techniques like Branch and Bound [12] and Dynamic 

Programming [19], which provide exact results, do not help when the problem set is large since 

these algorithms do not scale. Carlier and Pinson [37] provided ‘for the first time’ a solution 

involving 10 jobs and 10 machines. Though it is not a big problem according to industry 
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standards, the optimal solution required 17982s of CPU time on a PRIME 2655 computer. 

Moreover the solution might not be optimal once a new job arrives to get scheduled. 

In an attempt to bridge the gap between heuristic and optimization approaches, Adams et al. [36] 

developed a heuristic based on the optimally solving single machine sequencing problems. A 

criterion for business of the machine was made up and the job sequence for the busiest machine 

was devised. The next busiest job sequence was then developed and then fed into the previously 

solved machine problem by “local re-optimization”. However, schedule evaluation could only be 

achieved through selective enumeration. 

The Lagrangian relaxation technique has recently been in use for scheduling problems. 

The method decomposes a problem into a number of smaller parts which makes it easier to 

solve. Fisher et al. [38] used a fixed lower bound for Lagrangian relaxation to get a more 

efficient enumeration method for job shop scheduling.  

2.1. Chromosome Representation of JSSP 

A schedule could be represented in two ways: indirect and direct. The chromosome 

contains an encoded schedule in indirect representations. It is transformed into a feasible 

schedule using a schedule builder. Indirect representations range from traditional binary 

representation [40] to domain specific knowledge representation. 

In direct representation, the production schedule is directly represented by the 

chromosome. Nakano and Yamada [41] describe many ways for dealing with direct 

representation. They proposed a conventional genetic algorithm for solving the job shop 

scheduling problem. They represented the individuals using binary and job-based representation, 

and applied two-point crossover and bit-flip mutation. The phenotype of the individuals is the 

job sequence for each machine. Their systems, although good for small scale problems, loose 
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their utility when the problem size increases. Crafti [42] proposed a genetic tree based approach 

to solving the JSP problem. This includes crossover between donor tree and a receiver tree. 

Varying the mutation and crossover operators he reported good average solutions. Cardon et al. 

[43] proposed an integrated multi-agent and genetic algorithm approach to this problem and later 

implemented that idea.  

2.2. Types of Feasible Schedules in JSSP 

There are four classes of feasible schedules: inadmissible, semi-active, active and non-

delay. Inadmissible schedule contains too much idle time. Operations could be shifted forward 

until no idle time exists to better the scheduling quality. 

Semi Active schedules have no excess idle time; however they could also be improved by 

moving forward some operations without delaying others. 

Active schedules have no idle time and none of the operations can be finished without delaying 

other operations. The active schedule guarantees optimal scheduling.  

Non-delay schedules are active schedules which minimize the machine idle time. If a 

machine can be processed then it is not kept idle.  

Two methods are applied to generate feasible schedules. The Giffler and Thompson 

method based on active scheduling and the Non-Delay (ND) algorithm which produces non-

delay schedules. 

2.3. The Giffler and Thompson Based Algorithms 

The Giffler and Thompson method has been used in many JSSP implementations. Lin 

Goodman and Pinch [44,45], described the representation and the crossover operators used in 

previous Giffler-Thompson (GT) based GA approaches for JSSP. The offsprings are converted 

to active schedules to guarantee feasibility with the help of GT based algorithms. 
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Lin Goodman and Pinch developed two operators: the THX crossover and THX 

mutation. The temporal relations present in the schedule are transmitted by these operators. Hart 

and Ross had their own “Heuristic Combination Method” (HCM) [46] which uses an implicit 

representation where each gene in the chromosome contains a heuristic that performs the 

decision choice at each step of the schedule generation process.  

2.4. Hybrid Methods and Local Search 

JSSP being a difficult problem cannot be efficiently solved by a single process so there 

are many hybrid processes. Jain and Meeran [47] reviewed in detail Tabu Search, Genetic 

Algorithm and Simulated Annealing techniques and they produce hybrid solutions. Jain, 

Rangaswamy and Meeran [48] described and compared in detail in JSSP neighborhood models 

and move evaluation strategies.  
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3. APPROACH 

3.1. Genetic Algorithm 

GA uses earlier information to exploit the best solutions from the previous results, called 

generations, along with some random crossover and mutation to explore new regions in the 

solution space. In general GA uses three steps- selection, crossover and mutation. Selection 

based on the fitness (makespan in our case) is the source of exploitation, and crossover and 

mutation helps us to promote exploration. A generation of a GA contains a population of 

individuals, each of which corresponds to a possible solution in the search space. Each individual 

in the population is evaluated with a fitness function to produce a value which indicates the 

goodness of a solution. Selection helps in bringing forward certain members from the population 

to apply crossover and mutation on. Crossover takes pairs of individuals and uses parts of each to 

produce new individuals. Random mutations swap parts of an individual to prevent the GA from 

getting caught in a local minimum.  

3.2. Creation of First Generation 

In our problem, we are using the datasets that have been taken from the MetaCentrum 

workload log provided by the Czech National Grid Infrastructure [50]. This dataset has 5000 

jobs which need to be executed by 806 machines. The term makespan refers to the cumulative 

time to complete all the operations on all machines. It is the time taken from scheduling the first 

job submitted until the completion of the last job. The objective of the problem is to find a valid 

schedule that yields the minimum makespan. 

Each machine has 6-7 jobs placed on them. The total running time for each machine is 

then calculated. Since all the machines are running in parallel, the time taken by the machine 

which runs the longest signifies the total makespan for the entire chromosome. Similar 
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chromosomes are then created and the makespan for each chromosome is calculated. Once the 

makespans for all the chromosomes are calculated the least makespan among the chromosome 

returns the best makespan for the generation while the average of all the chromosome makespan 

returns the average for that particular generation. Figures 3.1 and 3.2 represent two chromosomes 

which have three machines and nine jobs placed on the three machines. 

M1 M2 M3 

J6 J4 J2 J1 J7 J8 J9 J3 J5 

Figure 3.1: Chromosome 1 

M1 M2 M3 

J8 J5 J3 J2 J9 J4 J6 J1 J7 

Figure 3.2: Chromosome 2 

3.3. Selection of Parents for Crossover 

Once the makespan is calculated for the different chromosomes, tournament selection is 

done to filter out those chromosomes which have better makespan values (in this case lesser 

makespan value) and these chromosomes are then selected to undergo Crossover and Mutation. 

In this problem the tournament size has been taken to be two. Two chromosomes are randomly 

chosen from the population and their makespan values are compared, whichever chromosome 

has a lesser makespan value is deemed the winner. After the parents have been chosen, crossover 

is applied on them. 

3.4. Crossover 

Crossover is a genetic operator that combines two parent chromosomes to produce new 

offspring chromosomes. The idea behind crossover is that the new chromosomes may be better 

than both of the parents if it takes the best characteristics from each of the parents. 

Crossovers can be performed in multiple ways which are briefly discussed below: 
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3.4.1. One-Point Crossover 

The crossover operator randomly selects a crossover point within a chromosome and 

interchanges the two parent chromosomes at this point to produce two new offspring. 

Consider the following 2 parents which have been selected for crossover. The “|” symbol 

indicates the randomly chosen crossover point. 

Parent1: 11001|010 

Parent2: 00100|111 

After interchanging the parent chromosomes at the crossover point, the following 

offspring are produced: 

Offspring1: 11001|111 

Offspring2: 00100|010 

3.4.2. Two-Point Crossover 

A crossover operator that randomly selects two crossover points within a chromosome 

then interchanges the two parent chromosomes between these points to produce two new 

offspring. 

Consider the following 2 parents, which have been selected for crossover. The “|” 

symbols indicate the randomly chosen crossover points. 

Parent 1: 110|010|10 

Parent 2: 001|001|11 

After interchanging the parent chromosomes between the crossover points, the following 

offspring are produced: 

Offspring1: 110|001|10 

Offspring2: 001|010|11 
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3.4.3. Uniform 

A crossover operator that decides (with some probability – know as the mixing ratio) 

which parent will contribute each of the gene values in the offspring chromosomes. This allows 

the parent chromosomes to be mixed at the gene level rather than the segment level (as with one 

and two point crossover). For some problems, this additional flexibility outweighs the 

disadvantage of destroying building blocks. 

Consider the following 2 parents, which have been selected for crossover: 

Parent 1: 11001010 

Parent 2: 00100111 

If the mixing ratio is 0.5, approximately half of the genes in the offspring will come from 

Parent 1 and the other half will come from Parent 2. Below is a possible set of offspring after 

uniform crossover:   

Offspring 1: 1102120102011112 

Offspring 2: 0211010211121201 

In our problem we have decided to use one-point crossover where after constructing the 

parent pool, two chromosomes are selected at random from there and crossover is applied. The 

crossover point is selected randomly as indicated by the arrow below. The two parent 

chromosomes are interchanged at this point to give rise to two new off-springs. A scaled-down 

example of the crossover process is described below in Figure 3.3. 

In Figure 3.4, the asterisks show duplicate jobs being placed due to crossover. Since this 

is not possible in real life, the duplicates have been randomly replaced by unplaced jobs resulting 

in the following chromosomes as shown in Figure 3.5. 
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M1 M2 M3 

J1 J3 J4 J6 J7 J2 J5 J9 J8 

 

M1 M2 M3 

J5 J7 J4 J6 J2 J8 J9 J3 J1 

 

 

Figure 3.3: Chromosome Encoding before Crossover 

After Crossover: 

M1 M2 M3 

J1 J3 J4 J6 J2 J8 J9 J3 J1 

                *             * 

M1 M2 M3 

J5 J7 J4 J6 J7 J2 J5 J9 J8 

*                  * 

Figure 3.4: Chromosome Encoding after Crossover 

M1 M2 M3 

J1 J3 J4 J6 J2 J8 J9 J5 J7 

 

M1 M2 M3 

J5 J7 J4 J6 J1 J2 J3 J9 J8 

Figure 3.5: Both Chromosomes after Removal of Duplicates 

Once the duplicates have been removed after crossover, two offspring are produced for 

the new generation and the makespan for each machine and hence for each chromosome is again 

calculated. 

Crossover rate: The crossover rate controls the capability of GAs in exploiting a located 

hill to reach the local optima. The higher the crossover rate, the quicker the exploitation 

proceeds. A crossover rate that is too large would disrupt individuals faster than they could be 

exploited. Typically, the crossover rate has values between 0.3-0.7 
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3.5. Mutation 

Mutation is a genetic operator that alters one or more gene values in a chromosome from 

its initial state. This can result in entirely new gene values being added to the gene pool. With 

these new gene values, the genetic algorithm may be able to arrive at better solution than was 

previously possible. Mutation is an important part of the genetic search as help helps to prevent 

the population from stagnating at any local optima. Mutation occurs during evolution according 

to a user-definable mutation probability. This probability should usually be set fairly low (0.01 is 

a good first choice). If it is set to high, the search will turn into a primitive random search. 

Mutation can be performed in various ways some of which are described briefly below: 

 Flip Bit: A mutation operator that simply inverts the value of the chosen gene (0 goes to 

1 and 1 goes to 0). This mutation operator can only be used for binary genes. 

 Boundary: A mutation operator that replaces the value of the chosen gene with either the 

upper or lower bound for that gene (chosen randomly). This mutation operator can only 

be used for integer and float genes. 

 Non-Uniform: A mutation operator that increases the probability that the amount of the 

mutation will be close to 0 as the generation number increases. This mutation operator 

keeps the population from stagnating in the early stages of the evolution then allows the 

genetic algorithm to fine tune the solution in the later stages of evolution. This mutation 

operator can only be used for integer and float genes. 

 Uniform: A mutation operator that replaces the value of the chosen gene with a uniform 

random value selected between the user-specified upper and lower bounds for that gene. 

This mutation operator can only be used for integer and float genes. 
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 Gaussian: A mutation operator that adds a unit Gaussian distributed random value to the 

chosen gene. The new gene value is clipped if it falls outside of the user-specified lower 

or upper bounds for that gene. This mutation operator can only be used for integer and 

float genes. 

In our method we have randomly chosen a gene (job) from each chromosome and flipped 

the job placement among the chromosome. For example in Figure 3.6, we have randomly chosen 

job J9 in Chromosome 1 and job J6 in Chromosome 2 and flipped their positions among the 

chromosomes. 

M1 M2 M3 

J1 J3 J4 J6 J2 J8 J9 J5 J7 

 

M1 M2 M3 

J5 J7 J4 J6 J1 J2 J3 J9 J8 

Figure 3.6: Chromosome Encoding before Mutation 

 

M1 M2   * M3 

J1 J3 J4 J6 J2 J8 J6 J5 J7 

 

M1 M2 M3            * 

J5 J7 J4 J9 J1 J2 J3 J9 J8 

Figure 3.7: Chromosome Encoding after Mutation 

In Figure 3.7, the asterisks show that there are duplicate jobs being placed on two 

machines. This duplication is removed by randomly choosing one of the duplicates and replacing 

it by an unplaced job. Figure 3.8 represents the chromosomes after the duplicate jobs have been 

removed. 

Mutation Rate: Mutation occurs during evolution according to a user-definable mutation 

probability. In this case the mutation rate has been taken in the range 0.025-0.15. 
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M1 M2   M3 

J1 J3 J4 J9 J2 J8 J6 J5 J7 

 

M1 M2 M3             

J5 J7 J4 J9 J1 J2 J3 J6 J8 

Figure 3.8: Both Chromosomes after Removal of Duplicates 
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4. IMPLEMENTATION DETAILS 

The application developed as a part of this project is a java application consisting of 

different classes. We will briefly discuss those classes later in this chapter. Inputs required for 

this application are the number of iterations, tournament size, gridlet size (total number of jobs to 

be placed), crossover rate and mutation rate. All these inputs are given as parameters at the 

beginning of the algorithm run. 

4.1. RunGA Class 

The main class RunGA calls all the other classes in the application. The variables- the 

number of iterations, tournament size, gridlet size, crossover rate and mutation rate all are 

assigned values to run the algorithm. This class also helps in plotting the average makespan and 

best makespan values over the number of iterations in a 2D graph. Table 4.1, shows the variables 

initialized in this class. 

Table 4.1: Variable initialization of RunGA class 

VARIABLE TYPE PURPOSE 

populationSize Int Defines the number of chromosomes in any particular 

generation 

tournamentsSize Int Defines the tournament size used to select the best 

chromosomes for crossover. Here the size is 2. 

gridLetSize Int Total number of jobs that need to be placed 

crossoverProb Double The crossover rate.  

mutationProb Double The mutation rate 

maxNumOfGenerations Int The total number of iterations or generations for which 

the Genetic Algorithm runs 
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4.2. Machine, Job, Cluster and DataLoader Classes 

Machine.java and Job.java help in getting the description of the machines and the jobs 

from the data set respectively. There are 806 machines which are further divided into clusters 

using the cluster.java class. There are 5000 jobs in total. However, depending on the gridlet size 

parameter as entered we get the description of the jobs accordingly. DataLoader.java class helps 

in loading the jobs on the machine. 

4.3. Selector Class 

The Selector.java has a few important methods namely – selectMachine(), 

selectJob(),  createChormosome(),allocateJobs() and createJob(). 

selectMachine(): This method selects the machines randomly among the 800 machines. 

selectJob(): This method selects the jobs randomly among the gridlet size mentioned. 

createChormosome(): This method sets the machines and allocates the jobs on these machines to 

create a chromosome. 

allocateJobs(): This method allocates the jobs on the machines. A map between the machine 

and the list of jobs to be placed on each machine is created. The jobs are equally distributed 

among the machines. 

4.4. Chromosome Class 

Some of the more important methods in this class are crossover(), 

calculateFitness(), clearDuplicates() and mutation(). 

 crossover(): This is the method responsible for execution of the crossover after the best 

chromosomes have been selected using tournament selection. The one point crossover as 

has been discussed earlier has been executed here.  

 calculateFitness(): This method calculates the makespan values after crossover or 

mutation has been applied.  
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 clearDuplicates(): This method removes all the duplicate jobs that might have been 

placed on more than one machine as a result of crossover or mutation. After crossover or 

mutation the duplicates among the jobs are randomly chosen and randomly replaced by 

un-placed jobs. 

 mutation(): This method helps in implementation of mutation as discussed earlier. 

4.5. GeneticAlgorithm Class 

Among the important methods in this class are createInitialPopulation(), 

startGeneration() and tournamentSelection(). 

 createInitialPopulation(): This method helps in creating the first set of chromosomes 

which would then be subjected to tournament selection and then crossover and mutation. 

 startGeneration(): This method is always called to initiate the crossover and mutation 

once the tournament selection for a particular generation has been done. 

 tournamentSelection(): This method helps in randomly selecting 2 chromosomes from 

the population and then choosing the best among them with respect to the one having a 

lower makespan value. 
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5. EXPERIMENTS AND RESULTS 

This section describes various experiments that are performed by changing the 

parameters, i.e. crossover rate, the mutation rate and the population size. Each experiment has 

been done 10 times each, and the average makespan, the best makespan and the running times of 

each experiment are noted and compared to the results we got in the related experiments. 

5.1. Experiment 1: Varying the Crossover Rate 

As discussed earlier we have done a one-point crossover between the parents selected 

from the tournament selection. The crossover rates have been varied between 0.3 to 0.7. The 

mutation rate has been kept fixed at 0.025. The population size is 100, and the number of 

generations is 250. A total of 5000 jobs were placed on 806 machines during each experiment.  

 

Figure 5.1: Makespan versus Crossover Rate 
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Figure 5.1 displays the result distribution in a bar chart diagram together with standard 

deviation bars. As can be seen from the figure, a crossover rate of 0.3 provides the best result of 

best and average makespan values of 2777.02 seconds respectively. 

A running time analysis has also been done for each data point. As is represented in 

Figure 5.2, the average running time when the crossover rate is 0.3 is minimum, and the running 

time for this value of crossover also has the second lowest standard deviation. 

  

Figure 5.2: Running Time versus Crossover Rate 
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Figure 5.3: Makespan versus Mutation Rate 

We observe from Figure 5.3, that having a mutation rate of 0.15, we obtain the lowest 

makespan / best makespan of 2800.5 seconds, and the average makespan of 2802.9 seconds. 

However, the running time analysis shows that the average running time for a mutation 

rate of 0.15 is the highest. In addition, the standard deviation of the running times for the 10 

experiments is the highest among the comparable values, as shown in Figure 5.4. 

Hence, in this situation we had to do a tradeoff between the makespan values and the 

running time of the algorithm. Since the makespan values that we have got for a mutation rate of 

0.15 are significantly lower than the other makespan values, we choose the mutation rate to be 

0.15 for the remaining experiments. 

5.3. Experiment 3: Varying the Population Size 

Finally, we change the population size i.e. the number of chromosomes in the population 

and observe the changes in the best makespan and the average makespan values, keeping the 

crossover rate at 0.3 and the mutation rate at 0.15. 
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Figure 5.4: Running Time versus Mutation Rate 

 

Figure 5.5: Makespan versus Population Size 
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Figure 5.6: Running Time versus Population Size 
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Figure 5.7: Makespan versus Gridlet size 
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Figure 5.8: Makespan versus Number of Generations 
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6. CONCLUSION AND FUTURE WORK 

In this paper, we used a Genetic Algorithm to minimize the makespan of placing 5000 

jobs on 806 machines. In order to achieve that, first we randomly placed the 5000 jobs on the 

machines in the form of a chromosome and generated 100 of these chromosomes. Then, we 

calculated the makespan for each chromosome and selected the best chromosomes using 

tournament selection. Afterwards, we performed crossover and mutation with specific 

parameters and replaced the newly generated chromosomes with the previous ones in the 

population. This process was repeated for a predefined number of generations.  

We conducted experiments by varying the different parameter values such as crossover 

rate, mutation rate, and population size in order to analyze the effect of the parameter values on 

the outcome of the optimization, and specifically on the makespan. Our results show that though 

the value of the resulting makespan may vary from one experiment to the other, over a series of 

10 experiments and taking the average values of the outcome each time, the best combination of 

the parameter values that we have arrived at when balancing the makespan with the running time 

is: crossover rate of 0.3, a mutation rate of 0.15, and a population size of 100. These values 

obtained the same average and best makespan value of 2850 seconds. 

However, the dataset chosen for our research work has constant execution times on all 

the machines and the capacity of each of the 806 machines has been assumed to be exactly the 

same. This might not always be true in real life scenarios since the capacity of each machine to 

run particular jobs may be different from each other. Also, different jobs might have different 

running times for different machines. This needs to be further investigated. 
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