

JOB SCHEDULING WITH GENETIC ALGORITHM

A Paper

Submitted to the Graduate Faculty

Of the

North Dakota State University

Of Agriculture and Applied Science

By

Debarshi Barat

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

January 2013

 Fargo, North Dakota

 North Dakota State University

Graduate School

Title

Job Scheduling using Genetic Algortihm

By

Debarshi Barat

The Supervisory Committee certifies that this disquisition compiles with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

 Dr. Simone Ludwig

 Advisor

 Dr. Kendall Nygard

 Dr. Saeed Salim

 Dr. Sanku Mallik

Approved by Department Chair:

 04/ 02/2013 Dr. Brian Slator

 Date Signature

iii

ABSTRACT

In this paper, we have used a Genetic Algorithm (GA) approach for providing a solution

to the Job Scheduling Problem (JSP) of placing 5000 jobs on 806 machines. The GA starts off

with a randomly generated population of 100 chromosomes, each of which represents a random

placement of jobs on machines. The population then goes through the process of reproduction,

crossover and mutation to create a new population for the next generation until a predefined

number of generations are reached. Since the performance of a GA depends on the parameters

like population size, crossover rate and mutation rate, a series of experiments were conducted in

order to identify the best parameter combination to achieve good solutions to the JSP by

balancing makespan with the running time. We found that a crossover rate of 0.3, a mutation rate

of 0.15 and a population size of 100 yield the best results.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Simone Ludwig for her continuous support throughout my

research work. Without her guidance it would not have been possible for me to come this far. I

would also like to thank Dr. Kendall Nygard, Dr. Saeed Salem and Dr. Sanku Mallik for

agreeing to serve on my graduate supervisory committee. Special thanks to Dr. Kendall Nygard

and the Department of Computer Science for giving me the opportunity to pursue my higher

studies at North Dakota State University. I would take this opportunity of thanking Mr. Anubrata

Dutta without whose support and help it would have been difficult for me to complete my

research work.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

1.1. Optimization ... 1

1.2. Examples of Optimization Problems.. 3

1.3. Job Scheduling Problem ... 4

2. RELATED WORK ... 6

2.1. Chromosome Representation of JSSP .. 7

2.2. Types of Feasible Schedules in JSSP ... 8

2.3. The Giffler and Thompson Based Algorithms ... 8

2.4. Hybrid Methods and Local Search ... 9

3. APPROACH ... 10

3.1. Genetic Algorithm .. 10

3.2. Creation of First Generation ... 10

3.3. Selection of Parents for Crossover ... 11

3.4. Crossover .. 11

3.4.1. One-Point Crossover.. 12

vi

3.4.2. Two-Point Crossover ... 12

3.4.3. Uniform ... 13

3.5. Mutation ... 15

4. IMPLEMENTATION DETAILS ... 18

4.1. RunGA Class .. 18

4.2. Machine, Job, Cluster and DataLoader Classes ... 19

4.3. Selector Class ... 19

4.4. Chromosome Class ... 19

4.5. GeneticAlgorithm Class ... 20

5. EXPERIMENTS AND RESULTS ... 21

5.1. Experiment 1: Varying the Crossover Rate.. 21

5.2. Experiment 2: Varying the Mutation Rate ... 22

5.3. Experiment 3: Varying the Population Size ... 23

6. CONCLUSION AND FUTURE WORK ... 28

REFERENCES ... 29

vii

LIST OF TABLES

Table Page

4.1: Variable initialization of RunGA class……………………………………………………..18

viii

LIST OF FIGURES

Figure Page

1.1: Unimodal Objective Function .. 2

1.2: Multi-Modal Objective Function ... 3

1.3: Example of A Chromosome Representation ... 4

3.1: Chromosome 1 ... 11

3.2: Chromosome 2 ... 11

3.3: Chromosome Encoding before Crossover ... 14

3.4: Chromosome Encoding after Crossover .. 14

3.5: Both Chromosomes after Removal of Duplicates ... 14

3.6: Chromosome Encoding before Mutation ... 16

3.7: Chromosome Encoding after Mutation.. 16

3.8: Both Chromosomes after Removal of Duplicates ... 17

5.1: Makespan versus Crossover Rate .. 21

5.2: Running Time versus Crossover Rate ... 22

5.3: Makespan versus Mutation Rate .. 23

5.4: Running Time versus Mutation Rate ... 24

5.5: Makespan versus Population Size.. 24

5.6: Running Time versus Population Size ... 25

5.7: Makespan versus Gridlet size .. 26

ix

5.8: Makespan versus Number of Generations ... 27

1

1. INTRODUCTION

Optimization problems help us to find the optimum solution among a set of solutions for

example the highest yield or the lowest cost, etc. There are different types of Optimization

problems and different problems have different solutions to them. In this paper we look into one

such optimization problem: Job Scheduling.

1.1. Optimization

Before the optimization process can be started, all problems to be optimized should be

formulated as a system with its status controlled by a few input variables and its performance

specified by a well-defined objective function or the fitness function, which can be denoted as f.

The goal of optimization is to find the best value for each variable in order to achieve

satisfactory performance. The variables required by the fitness function are referred to as the

input or the decision variables. A particular setting of the input variables, position, denoted by x,

x ∈ D
, where D is the total number of input variables can also be referred to as setting or

decision vector. The variables could have simple constraints or could have complex ones. The set

of all feasible results is called the search space or the function space. Subsets of the search space

form neighborhoods. The result evaluated by the objective function to give a certain position is

called the objective value or the fitness value.

The maximum value reached by an objective function is called the maxima, similarly the

lowest value arrived at by the objective function is the minima. Both maxima and minima could

be referred to as the optimum for that objective function. The optimum within a neighborhood is

called local optimum while the global optimum is the optimum among all local optima.

2

Figure 1.1 shows the unimodal objective function f(x) = x
2
 + 0.5 with a minimum 0.5 at x

= 0. Both a maximum and a minimum can be called an optimum. A local optimum is an

optimum within its neighborhood. Figure 1.2 shows the multimodal objective function f(x) = 10

sin(x) + x and three of its local minima. The global optimum is the optimum of all local optima;

i.e., it is the optimum in the complete search space. Figure 1.2 shows a global minimum of

roughly −18 located close to x = −8 in the search space [−10, 10].

Figure 1.1: Unimodal Objective Function

A maximization problem is an optimization problem for which the position (i.e. input

variables) with the highest objective value is to be found. A minimization problem is an

optimization problem for which the position with the lowest objective value is to be found. A

maximization problem can be converted into a minimization problem by negating the objective

function.

3

Figure 1.2: Multi-Modal Objective Function

1.2. Examples of Optimization Problems

Objective functions often attempt to model real entities. Creating an objective function that

behaves like the real entity can be a challenging task on its own. Simplified descriptions of real

world optimization problems include:

 minimize the output of certain chemical species by finding an optimal reaction

temperature and pressure given a certain catalyst [1, 2]

 minimize the building cost of a car, ship, engine, or notebook without violating quality

constraints [3, 4]

 minimize the air resistance of a car body [5]

 maximize the efficiency of a fuel cell [6]

 minimize the difference between a simulation and experimental measurements [7]

 maximize the volume of a structure given a certain amount of building material [8]

4

 minimize the length of a route that visits certain points at least once [9]

 maximize the potential yield or minimize the risk of a portfolio [10]

 minimize the operating cost of a fresh water system without violating constraints such as

 minimal amount of stored water [11]

 minimize the difference between power generation and demand for scheduling a

hydroelectric power station [12, 13,14]

1.3. Job Scheduling Problem

One of the most famous global optimization problems is that of scheduling and among

them one of the most famous is the Job Scheduling Problem (JSP) or Job Shop Scheduling

Problem (JSSP), which is to schedule a set of n jobs on a set of m machines such that we can

minimize the total time taken from the first job being scheduled to the execution of the last job.

Operations of the same job cannot be processed concurrently and each job must be processed on

any machine exactly once. A pictorial representation of 9 jobs being placed on 3 machines has

been provided in Figure 1.3; where M1, M2 and M3 represent machines and J1-J9 represent the

nine different jobs.

M1 M2 M3

J5 J7 J4 J1 J9 J2 J3 J6 J8

Figure 1.3: Example of A Chromosome Representation

Besides being an NP-hard problem, this has been one of the most difficult combinatorial

problems to compute, so it has drawn a lot of research attention because of its theoretical,

computational and empirical significance since it was introduced. JSP being such a complex

problem, exact techniques such as branch and bound and dynamic programming only apply to

small scale problems. However, for large scale problems, the results from these techniques

sometimes become really unpredictable and require a lot of time to compute. Heuristic methods

5

such as dispatching priority rules, shifting bottleneck [36] approach and Lagrangian relaxation

[38] are alternatives to large scale problems. With the emergence of new techniques from the

field of artificial intelligence, much attention has been devoted to meta-heuristics. One main

class of meta-heuristics is the construction and improvement heuristic, such as tabu search [15-

17] and simulated annealing [18, 19]. Another main class of meta-heuristic is the population

based heuristic. Successful examples of population based algorithms include genetic algorithm

(GA) [20-22], particle swarm optimization (PSO) [23, 24], artificial immune system and their

hybrids [25-27], and so on. The problem depends on the size, so schedulers are usually satisfied

with an acceptance result that is not far from the actual optimum result. One of the search

techniques that have been in use in the industry is the Genetic Algorithm (GA).

GA starts with a set of solutions (represented by chromosomes) called population.

Chromosomes from the population are taken and used to form a new population. This is

motivated by the desire, that the new population will be better than the old one in terms of a

fitness criterion. Solutions which a GA starts with a set of solutions (represented by

chromosomes) called population.re selected to form new solutions (offsprings) are selected

according to their fitness - the more suitable they are the more chances they have to reproduce.

6

2. RELATED WORK

The most common method used to solve Job Shop Scheduling problem (JSSP) is by

material requirement planning (MRP). However, MRP is mostly used as a planning tool and is

hardly used for detailed level scheduling [28]. Scheduling is done in many companies by

personnel with the help of Gantt charts and databases [29, 30, 28], often resorting to simple

dispatching methods to solve immediate problems. This can result in chaos making the

prediction of completion dates difficult and the work in progress (WIP) inventory increase.

Many dispatching rules have been implemented based on processing times, criticality of

operations and due-dates and resource utilization [31]. The “critical ratio”, which calculates the

ratio of the remaining processing-time over the time to the due date, is very popular in job

scheduling [29]. Some more complicated approaches take into account some combination of the

above factors, like the Viviers algorithm [32] incorporates three priorities in the Shortest

Processing Time (SPT) rule. Here, each job has a priority and an index equal to the processing

time. Jobs having high priority have low index and are processed first. There are also many

approaches which use dispatching rules or heuristics for scheduling [33, 34, 35]. It is generally

very difficult to evaluate the performance of these methods because of the problem size.

Moreover, these methods are not good at accommodating minor changes in jobs/resource

availability as the whole schedule has to be redone.

As JSP is such a complex problem, techniques like Branch and Bound [12] and Dynamic

Programming [19], which provide exact results, do not help when the problem set is large since

these algorithms do not scale. Carlier and Pinson [37] provided ‘for the first time’ a solution

involving 10 jobs and 10 machines. Though it is not a big problem according to industry

7

standards, the optimal solution required 17982s of CPU time on a PRIME 2655 computer.

Moreover the solution might not be optimal once a new job arrives to get scheduled.

In an attempt to bridge the gap between heuristic and optimization approaches, Adams et al. [36]

developed a heuristic based on the optimally solving single machine sequencing problems. A

criterion for business of the machine was made up and the job sequence for the busiest machine

was devised. The next busiest job sequence was then developed and then fed into the previously

solved machine problem by “local re-optimization”. However, schedule evaluation could only be

achieved through selective enumeration.

The Lagrangian relaxation technique has recently been in use for scheduling problems.

The method decomposes a problem into a number of smaller parts which makes it easier to

solve. Fisher et al. [38] used a fixed lower bound for Lagrangian relaxation to get a more

efficient enumeration method for job shop scheduling.

2.1. Chromosome Representation of JSSP

A schedule could be represented in two ways: indirect and direct. The chromosome

contains an encoded schedule in indirect representations. It is transformed into a feasible

schedule using a schedule builder. Indirect representations range from traditional binary

representation [40] to domain specific knowledge representation.

In direct representation, the production schedule is directly represented by the

chromosome. Nakano and Yamada [41] describe many ways for dealing with direct

representation. They proposed a conventional genetic algorithm for solving the job shop

scheduling problem. They represented the individuals using binary and job-based representation,

and applied two-point crossover and bit-flip mutation. The phenotype of the individuals is the

job sequence for each machine. Their systems, although good for small scale problems, loose

8

their utility when the problem size increases. Crafti [42] proposed a genetic tree based approach

to solving the JSP problem. This includes crossover between donor tree and a receiver tree.

Varying the mutation and crossover operators he reported good average solutions. Cardon et al.

[43] proposed an integrated multi-agent and genetic algorithm approach to this problem and later

implemented that idea.

2.2. Types of Feasible Schedules in JSSP

There are four classes of feasible schedules: inadmissible, semi-active, active and non-

delay. Inadmissible schedule contains too much idle time. Operations could be shifted forward

until no idle time exists to better the scheduling quality.

Semi Active schedules have no excess idle time; however they could also be improved by

moving forward some operations without delaying others.

Active schedules have no idle time and none of the operations can be finished without delaying

other operations. The active schedule guarantees optimal scheduling.

Non-delay schedules are active schedules which minimize the machine idle time. If a

machine can be processed then it is not kept idle.

Two methods are applied to generate feasible schedules. The Giffler and Thompson

method based on active scheduling and the Non-Delay (ND) algorithm which produces non-

delay schedules.

2.3. The Giffler and Thompson Based Algorithms

The Giffler and Thompson method has been used in many JSSP implementations. Lin

Goodman and Pinch [44,45], described the representation and the crossover operators used in

previous Giffler-Thompson (GT) based GA approaches for JSSP. The offsprings are converted

to active schedules to guarantee feasibility with the help of GT based algorithms.

9

Lin Goodman and Pinch developed two operators: the THX crossover and THX

mutation. The temporal relations present in the schedule are transmitted by these operators. Hart

and Ross had their own “Heuristic Combination Method” (HCM) [46] which uses an implicit

representation where each gene in the chromosome contains a heuristic that performs the

decision choice at each step of the schedule generation process.

2.4. Hybrid Methods and Local Search

JSSP being a difficult problem cannot be efficiently solved by a single process so there

are many hybrid processes. Jain and Meeran [47] reviewed in detail Tabu Search, Genetic

Algorithm and Simulated Annealing techniques and they produce hybrid solutions. Jain,

Rangaswamy and Meeran [48] described and compared in detail in JSSP neighborhood models

and move evaluation strategies.

10

3. APPROACH

3.1. Genetic Algorithm

GA uses earlier information to exploit the best solutions from the previous results, called

generations, along with some random crossover and mutation to explore new regions in the

solution space. In general GA uses three steps- selection, crossover and mutation. Selection

based on the fitness (makespan in our case) is the source of exploitation, and crossover and

mutation helps us to promote exploration. A generation of a GA contains a population of

individuals, each of which corresponds to a possible solution in the search space. Each individual

in the population is evaluated with a fitness function to produce a value which indicates the

goodness of a solution. Selection helps in bringing forward certain members from the population

to apply crossover and mutation on. Crossover takes pairs of individuals and uses parts of each to

produce new individuals. Random mutations swap parts of an individual to prevent the GA from

getting caught in a local minimum.

3.2. Creation of First Generation

In our problem, we are using the datasets that have been taken from the MetaCentrum

workload log provided by the Czech National Grid Infrastructure [50]. This dataset has 5000

jobs which need to be executed by 806 machines. The term makespan refers to the cumulative

time to complete all the operations on all machines. It is the time taken from scheduling the first

job submitted until the completion of the last job. The objective of the problem is to find a valid

schedule that yields the minimum makespan.

Each machine has 6-7 jobs placed on them. The total running time for each machine is

then calculated. Since all the machines are running in parallel, the time taken by the machine

which runs the longest signifies the total makespan for the entire chromosome. Similar

11

chromosomes are then created and the makespan for each chromosome is calculated. Once the

makespans for all the chromosomes are calculated the least makespan among the chromosome

returns the best makespan for the generation while the average of all the chromosome makespan

returns the average for that particular generation. Figures 3.1 and 3.2 represent two chromosomes

which have three machines and nine jobs placed on the three machines.

M1 M2 M3

J6 J4 J2 J1 J7 J8 J9 J3 J5

Figure 3.1: Chromosome 1

M1 M2 M3

J8 J5 J3 J2 J9 J4 J6 J1 J7

Figure 3.2: Chromosome 2

3.3. Selection of Parents for Crossover

Once the makespan is calculated for the different chromosomes, tournament selection is

done to filter out those chromosomes which have better makespan values (in this case lesser

makespan value) and these chromosomes are then selected to undergo Crossover and Mutation.

In this problem the tournament size has been taken to be two. Two chromosomes are randomly

chosen from the population and their makespan values are compared, whichever chromosome

has a lesser makespan value is deemed the winner. After the parents have been chosen, crossover

is applied on them.

3.4. Crossover

Crossover is a genetic operator that combines two parent chromosomes to produce new

offspring chromosomes. The idea behind crossover is that the new chromosomes may be better

than both of the parents if it takes the best characteristics from each of the parents.

Crossovers can be performed in multiple ways which are briefly discussed below:

12

3.4.1. One-Point Crossover

The crossover operator randomly selects a crossover point within a chromosome and

interchanges the two parent chromosomes at this point to produce two new offspring.

Consider the following 2 parents which have been selected for crossover. The “|” symbol

indicates the randomly chosen crossover point.

Parent1: 11001|010

Parent2: 00100|111

After interchanging the parent chromosomes at the crossover point, the following

offspring are produced:

Offspring1: 11001|111

Offspring2: 00100|010

3.4.2. Two-Point Crossover

A crossover operator that randomly selects two crossover points within a chromosome

then interchanges the two parent chromosomes between these points to produce two new

offspring.

Consider the following 2 parents, which have been selected for crossover. The “|”

symbols indicate the randomly chosen crossover points.

Parent 1: 110|010|10

Parent 2: 001|001|11

After interchanging the parent chromosomes between the crossover points, the following

offspring are produced:

Offspring1: 110|001|10

Offspring2: 001|010|11

13

3.4.3. Uniform

A crossover operator that decides (with some probability – know as the mixing ratio)

which parent will contribute each of the gene values in the offspring chromosomes. This allows

the parent chromosomes to be mixed at the gene level rather than the segment level (as with one

and two point crossover). For some problems, this additional flexibility outweighs the

disadvantage of destroying building blocks.

Consider the following 2 parents, which have been selected for crossover:

Parent 1: 11001010

Parent 2: 00100111

If the mixing ratio is 0.5, approximately half of the genes in the offspring will come from

Parent 1 and the other half will come from Parent 2. Below is a possible set of offspring after

uniform crossover:

Offspring 1: 1102120102011112

Offspring 2: 0211010211121201

In our problem we have decided to use one-point crossover where after constructing the

parent pool, two chromosomes are selected at random from there and crossover is applied. The

crossover point is selected randomly as indicated by the arrow below. The two parent

chromosomes are interchanged at this point to give rise to two new off-springs. A scaled-down

example of the crossover process is described below in Figure 3.3.

In Figure 3.4, the asterisks show duplicate jobs being placed due to crossover. Since this

is not possible in real life, the duplicates have been randomly replaced by unplaced jobs resulting

in the following chromosomes as shown in Figure 3.5.

14

M1 M2 M3

J1 J3 J4 J6 J7 J2 J5 J9 J8

M1 M2 M3

J5 J7 J4 J6 J2 J8 J9 J3 J1

Figure 3.3: Chromosome Encoding before Crossover

After Crossover:

M1 M2 M3

J1 J3 J4 J6 J2 J8 J9 J3 J1

 * *

M1 M2 M3

J5 J7 J4 J6 J7 J2 J5 J9 J8

* *

Figure 3.4: Chromosome Encoding after Crossover

M1 M2 M3

J1 J3 J4 J6 J2 J8 J9 J5 J7

M1 M2 M3

J5 J7 J4 J6 J1 J2 J3 J9 J8

Figure 3.5: Both Chromosomes after Removal of Duplicates

Once the duplicates have been removed after crossover, two offspring are produced for

the new generation and the makespan for each machine and hence for each chromosome is again

calculated.

Crossover rate: The crossover rate controls the capability of GAs in exploiting a located

hill to reach the local optima. The higher the crossover rate, the quicker the exploitation

proceeds. A crossover rate that is too large would disrupt individuals faster than they could be

exploited. Typically, the crossover rate has values between 0.3-0.7

15

3.5. Mutation

Mutation is a genetic operator that alters one or more gene values in a chromosome from

its initial state. This can result in entirely new gene values being added to the gene pool. With

these new gene values, the genetic algorithm may be able to arrive at better solution than was

previously possible. Mutation is an important part of the genetic search as help helps to prevent

the population from stagnating at any local optima. Mutation occurs during evolution according

to a user-definable mutation probability. This probability should usually be set fairly low (0.01 is

a good first choice). If it is set to high, the search will turn into a primitive random search.

Mutation can be performed in various ways some of which are described briefly below:

 Flip Bit: A mutation operator that simply inverts the value of the chosen gene (0 goes to

1 and 1 goes to 0). This mutation operator can only be used for binary genes.

 Boundary: A mutation operator that replaces the value of the chosen gene with either the

upper or lower bound for that gene (chosen randomly). This mutation operator can only

be used for integer and float genes.

 Non-Uniform: A mutation operator that increases the probability that the amount of the

mutation will be close to 0 as the generation number increases. This mutation operator

keeps the population from stagnating in the early stages of the evolution then allows the

genetic algorithm to fine tune the solution in the later stages of evolution. This mutation

operator can only be used for integer and float genes.

 Uniform: A mutation operator that replaces the value of the chosen gene with a uniform

random value selected between the user-specified upper and lower bounds for that gene.

This mutation operator can only be used for integer and float genes.

16

 Gaussian: A mutation operator that adds a unit Gaussian distributed random value to the

chosen gene. The new gene value is clipped if it falls outside of the user-specified lower

or upper bounds for that gene. This mutation operator can only be used for integer and

float genes.

In our method we have randomly chosen a gene (job) from each chromosome and flipped

the job placement among the chromosome. For example in Figure 3.6, we have randomly chosen

job J9 in Chromosome 1 and job J6 in Chromosome 2 and flipped their positions among the

chromosomes.

M1 M2 M3

J1 J3 J4 J6 J2 J8 J9 J5 J7

M1 M2 M3

J5 J7 J4 J6 J1 J2 J3 J9 J8

Figure 3.6: Chromosome Encoding before Mutation

M1 M2 * M3

J1 J3 J4 J6 J2 J8 J6 J5 J7

M1 M2 M3 *

J5 J7 J4 J9 J1 J2 J3 J9 J8

Figure 3.7: Chromosome Encoding after Mutation

In Figure 3.7, the asterisks show that there are duplicate jobs being placed on two

machines. This duplication is removed by randomly choosing one of the duplicates and replacing

it by an unplaced job. Figure 3.8 represents the chromosomes after the duplicate jobs have been

removed.

Mutation Rate: Mutation occurs during evolution according to a user-definable mutation

probability. In this case the mutation rate has been taken in the range 0.025-0.15.

17

M1 M2 M3

J1 J3 J4 J9 J2 J8 J6 J5 J7

M1 M2 M3

J5 J7 J4 J9 J1 J2 J3 J6 J8

Figure 3.8: Both Chromosomes after Removal of Duplicates

18

4. IMPLEMENTATION DETAILS

The application developed as a part of this project is a java application consisting of

different classes. We will briefly discuss those classes later in this chapter. Inputs required for

this application are the number of iterations, tournament size, gridlet size (total number of jobs to

be placed), crossover rate and mutation rate. All these inputs are given as parameters at the

beginning of the algorithm run.

4.1. RunGA Class

The main class RunGA calls all the other classes in the application. The variables- the

number of iterations, tournament size, gridlet size, crossover rate and mutation rate all are

assigned values to run the algorithm. This class also helps in plotting the average makespan and

best makespan values over the number of iterations in a 2D graph. Table 4.1, shows the variables

initialized in this class.

Table 4.1: Variable initialization of RunGA class

VARIABLE TYPE PURPOSE

populationSize Int Defines the number of chromosomes in any particular

generation

tournamentsSize Int Defines the tournament size used to select the best

chromosomes for crossover. Here the size is 2.

gridLetSize Int Total number of jobs that need to be placed

crossoverProb Double The crossover rate.

mutationProb Double The mutation rate

maxNumOfGenerations Int The total number of iterations or generations for which

the Genetic Algorithm runs

19

4.2. Machine, Job, Cluster and DataLoader Classes

Machine.java and Job.java help in getting the description of the machines and the jobs

from the data set respectively. There are 806 machines which are further divided into clusters

using the cluster.java class. There are 5000 jobs in total. However, depending on the gridlet size

parameter as entered we get the description of the jobs accordingly. DataLoader.java class helps

in loading the jobs on the machine.

4.3. Selector Class

The Selector.java has a few important methods namely – selectMachine(),

selectJob(), createChormosome(),allocateJobs() and createJob().

selectMachine(): This method selects the machines randomly among the 800 machines.

selectJob(): This method selects the jobs randomly among the gridlet size mentioned.

createChormosome(): This method sets the machines and allocates the jobs on these machines to

create a chromosome.

allocateJobs(): This method allocates the jobs on the machines. A map between the machine

and the list of jobs to be placed on each machine is created. The jobs are equally distributed

among the machines.

4.4. Chromosome Class

Some of the more important methods in this class are crossover(),

calculateFitness(), clearDuplicates() and mutation().

 crossover(): This is the method responsible for execution of the crossover after the best

chromosomes have been selected using tournament selection. The one point crossover as

has been discussed earlier has been executed here.

 calculateFitness(): This method calculates the makespan values after crossover or

mutation has been applied.

20

 clearDuplicates(): This method removes all the duplicate jobs that might have been

placed on more than one machine as a result of crossover or mutation. After crossover or

mutation the duplicates among the jobs are randomly chosen and randomly replaced by

un-placed jobs.

 mutation(): This method helps in implementation of mutation as discussed earlier.

4.5. GeneticAlgorithm Class

Among the important methods in this class are createInitialPopulation(),

startGeneration() and tournamentSelection().

 createInitialPopulation(): This method helps in creating the first set of chromosomes

which would then be subjected to tournament selection and then crossover and mutation.

 startGeneration(): This method is always called to initiate the crossover and mutation

once the tournament selection for a particular generation has been done.

 tournamentSelection(): This method helps in randomly selecting 2 chromosomes from

the population and then choosing the best among them with respect to the one having a

lower makespan value.

21

5. EXPERIMENTS AND RESULTS

This section describes various experiments that are performed by changing the

parameters, i.e. crossover rate, the mutation rate and the population size. Each experiment has

been done 10 times each, and the average makespan, the best makespan and the running times of

each experiment are noted and compared to the results we got in the related experiments.

5.1. Experiment 1: Varying the Crossover Rate

As discussed earlier we have done a one-point crossover between the parents selected

from the tournament selection. The crossover rates have been varied between 0.3 to 0.7. The

mutation rate has been kept fixed at 0.025. The population size is 100, and the number of

generations is 250. A total of 5000 jobs were placed on 806 machines during each experiment.

Figure 5.1: Makespan versus Crossover Rate

2650

2700

2750

2800

2850

2900

2950

3000

0.3 0.4 0.5 0.6 0.7

M
ak

e
sp

an
 (

in
 s

e
co

n
d

s)

Crossover Rate

Best Makepan Average Makespan

22

Figure 5.1 displays the result distribution in a bar chart diagram together with standard

deviation bars. As can be seen from the figure, a crossover rate of 0.3 provides the best result of

best and average makespan values of 2777.02 seconds respectively.

A running time analysis has also been done for each data point. As is represented in

Figure 5.2, the average running time when the crossover rate is 0.3 is minimum, and the running

time for this value of crossover also has the second lowest standard deviation.

Figure 5.2: Running Time versus Crossover Rate

Since we see that a crossover rate of 0.3 provides the best results we maintain the

crossover rate to be 0.3 in our future experiments in a bid to obtain optimum results.

5.2. Experiment 2: Varying the Mutation Rate

Next we change the mutation rate within the range of 0.025 to 0.15, keeping the

crossover rate at 0.3, and the population size at 100.

0

10

20

30

40

50

60

0.3 0.4 0.5 0.6 0.7

R
u

n
n

in
g

ti
m

e
 (

in
 s

e
co

n
d

s)

Crossover Rate

23

Figure 5.3: Makespan versus Mutation Rate

We observe from Figure 5.3, that having a mutation rate of 0.15, we obtain the lowest

makespan / best makespan of 2800.5 seconds, and the average makespan of 2802.9 seconds.

However, the running time analysis shows that the average running time for a mutation

rate of 0.15 is the highest. In addition, the standard deviation of the running times for the 10

experiments is the highest among the comparable values, as shown in Figure 5.4.

Hence, in this situation we had to do a tradeoff between the makespan values and the

running time of the algorithm. Since the makespan values that we have got for a mutation rate of

0.15 are significantly lower than the other makespan values, we choose the mutation rate to be

0.15 for the remaining experiments.

5.3. Experiment 3: Varying the Population Size

Finally, we change the population size i.e. the number of chromosomes in the population

and observe the changes in the best makespan and the average makespan values, keeping the

crossover rate at 0.3 and the mutation rate at 0.15.

2700

2750

2800

2850

2900

2950

0.025 0.05 0.075 0.1 0.125 0.15

M
ak

e
sp

an
 (

in
 s

e
co

n
d

s)

Mutation Rate

Best Makespan Average Makespan

24

Figure 5.4: Running Time versus Mutation Rate

Figure 5.5: Makespan versus Population Size

Figure 5.5 shows that for a population size of 250, we obtain the best makespan and

average makespan values.

0

5

10

15

20

25

30

35

40

0.025 0.05 0.075 0.1 0.125 0.15

R
u

n
n

in
g

Ti
m

e
 (

in
 s

e
co

n
d

s)

Mutation Rate

2600

2650

2700

2750

2800

2850

2900

2950

3000

3050

3100

50 100 150 200 250

M
ak

e
sp

an
 (

in
 s

e
co

n
d

s)

Population Size

Best Makespan Average Makespan

25

Figure 5.6: Running Time versus Population Size

The running time analysis is presented in Figure 5.6. In spite of getting much better

makespan values for a population size of 250, we choose the population size to be 100 as the

running time for a population size of 250 is almost double than that of a population size of 100.

Finally keeping the crossover rate, the mutation rate, and the population size fixed at

values that we decided upon above (crossover rate of 0.3, mutation rate of 0.15, and population

size of 100), we investigate the makespan and running time when the gridlet size i.e. the number

of jobs from 1000 to 5000, is varied.

0

10

20

30

40

50

60

70

80

50 100 150 200 250

R
u

n
n

n
in

g
Ti

m
e

 (
in

 s
e

co
n

d
s)

Population Size

26

Figure 5.7: Makespan versus Gridlet size

As expected, Figure 5.7 shows that in order to place 5000 jobs onto the different

machines, the makespan values are expectedly higher than those when the number of jobs is

smaller. The average makespan and the best makespan for placing 5000 jobs on 806 machines

with a crossover rate of 0.3, a mutation rate of 0.15, and a population size of 100 is 2850 seconds

for both.

Looking at the makespan in terms of increasing number of generations, as shown in

Figure 5.8, it is observed that the best makespan is found after 25 generations.

2500

2550

2600

2650

2700

2750

2800

2850

1000 2000 3000 4000 5000

Ti
m

e
 (

in
 s

e
co

n
d

s)

Gridlet Size

Best Makespan Average Makespan

27

Figure 5.8: Makespan versus Number of Generations

2000

2500

3000

3500

4000

4500

0 20 40 60 80

M
ak

e
sp

an
 (

in
 s

e
co

n
d

s)

Number of Generations

Average Makespan Best Makespan

28

6. CONCLUSION AND FUTURE WORK

In this paper, we used a Genetic Algorithm to minimize the makespan of placing 5000

jobs on 806 machines. In order to achieve that, first we randomly placed the 5000 jobs on the

machines in the form of a chromosome and generated 100 of these chromosomes. Then, we

calculated the makespan for each chromosome and selected the best chromosomes using

tournament selection. Afterwards, we performed crossover and mutation with specific

parameters and replaced the newly generated chromosomes with the previous ones in the

population. This process was repeated for a predefined number of generations.

We conducted experiments by varying the different parameter values such as crossover

rate, mutation rate, and population size in order to analyze the effect of the parameter values on

the outcome of the optimization, and specifically on the makespan. Our results show that though

the value of the resulting makespan may vary from one experiment to the other, over a series of

10 experiments and taking the average values of the outcome each time, the best combination of

the parameter values that we have arrived at when balancing the makespan with the running time

is: crossover rate of 0.3, a mutation rate of 0.15, and a population size of 100. These values

obtained the same average and best makespan value of 2850 seconds.

However, the dataset chosen for our research work has constant execution times on all

the machines and the capacity of each of the 806 machines has been assumed to be exactly the

same. This might not always be true in real life scenarios since the capacity of each machine to

run particular jobs may be different from each other. Also, different jobs might have different

running times for different machines. This needs to be further investigated.

29

REFERENCES

[1] M. Holena. 2008. “Genetic algorithms for the optimization of catalysts in chemical

engineering”. Proceedings of the World Congress on Engineering and Computer Science.

[2] R. Luus and B. Bojkov. 2009. “Global optimization of the bifunctional catalyst problem”.

The Canadian Journal of Chemical Engineering.

 [3] L. dos Santos Coelho and V.C. Mariani. 2006. “An efficient particle swarm optimization

approach based on cultural algorithm applied to mechanical design”. Evolutionary

Computation, 2006. CEC 2006, pages 1099–1104.

[4] Q. He and L. Wang. 2007. “An effective co-evolutionary particle swarm optimization for

constrained engineering design problems”. Engineering Applications of Artificial

Intelligence, 20(1):89–99.

[5] F. Muyl, L. Dumas, and V. Herbert. 2004. “Hybrid method for aerodynamic shape

optimization in automotive industry”. Computers and Fluids, 33(5-6):849–858.

[6] Y. Choi and H. G. Stenger. 2005. “Kinetics, simulation and optimization of methanol

steam reformer for fuel cell applications”. Journal of Power Sources, 142(1-2):81–91.

[7] F. Van den Bergh and A.P. Engelbrecht. 2000. “Cooperative learning in neural networks

using particle swarm optimizers”. South African Computer Journal, (26):84–90.

[8] M.Y. Wang, X. Wang, and D. Guo. 2003. “A level set method for structural topology

optimization”. Computer Methods in Applied Mechanics and Engineering, 192(1-2):227–

246.

[9] M.T. Jonsson and T.P. Runarsson. 1996. “Optimizing the sailing route for fixed groundfish

survey stations”. International Council for the Exploration of the Sea.

30

[10] L. Chan, J. Karceski, and J. Lakonishok. 1999. “On portfolio optimization: forecasting

covariances and choosing the risk model”. Review of Financial Studies, 12(5):2937–2974.

[11] A.C. Zecchin, A.R. Simpson, H.R. Maier, and J.B. Nixon. 2005. “Parametric study for an

ant algorithm applied to water distribution system optimization”. IEEE Transactions on

Evolutionary Computation, 9(2):175–191.

[12] J. Chuanwen and E. Bompard. 2005. “A self-adaptive chaotic particle swarm algorithm for

short term hydroelectric system scheduling in deregulated environment”. Energy

Conversion and Management, 46(17):2689–2696.

[13] S. Liu and J. Wang. 2009. “An improved self-adaptive particle swarm optimization

approach for short-term scheduling of hydro system”. International Asia Conference on

Informatics in Control, Automation and Robotics. CAR 2009, pages 334–338.

[14] T. Niknam. 2010. “A new fuzzy adaptive hybrid particle swarm optimization algorithm for

non-linear, non-smooth and non-convex economic dispatch problem”. Applied Energy,

87(1):327–339.

[15] C. Y. Zhang, P. G. Li, Y. Q. Rao. 2008. “A very fast TS/SA algorithm for the job shop

scheduling problem”. Computers & Operations Research, vol. 35, pp. 282-294.

[16] E. Nowicki, C. Smutnicki. 1996. “A fast taboo search algorithm for the job shop

scheduling problem”. Management Science, vol. 41, no. 6, pp. 113-125.

[17] A. M. Dell, M. Trubian. 1993. “Applying tabu-search to job shop scheduling problem”.

Annals of Operations Research, vol. 41, no. 3, pp. 231-252.

[18] T. Y. Wang, K. B. Wu. 2000. “A revised simulated annealing algorithm for obtaining the

minimum total tardiness in job shop scheduling problems”. International Journal of

Systems Science, vol. 31, no. 4, pp. 537-542.

31

[19] M. Kolonko. 1999. “Some new results on simulated annealing applied to the job shop

scheduling problem”. European Journal of Operational Research, vol. 113, no. 1, pp. 123-

136.

[20] I. Moon, S. Lee, H. Bae. 2008. “Genetic algorithms for job shop scheduling problems with

alternative routings”. International Journal of Production Research, vol. 46, no. 10, pp.

2695-2705.

[21] J. F. Goncalves, J. J. D. M. Mendes, M. G. C. Resende. 2005. “A hybrid genetic algorithm

for the job shop scheduling problem”. European Journal of Operational Research, vol.

167, no. 1, pp. 77-95.

[22] C. Bierwirth, D. C. Mattfeld. 1999. “Production scheduling and rescheduling with genetic

algorithms”. Evolutionary Computation, vol. 7, no. 1, pp. 1-17.

[23] B. Liu, L. Wang, Y. H. Jin. 2008 “An effective hybrid PSO-based algorithm for flow shop

scheduling with limited buffers”. Computers & Operations Research, vol. 35, no. 9, pp.

2791-2806.

[24] M. F. Tasgetiren, Y. C. Liang, M. Sevkli. 2007. “A particle swarm optimization algorithm

for makespan and total flowtime minimization in the permutation flowshop sequencing

problem”. European Journal of Operational Research, vol. 177, no. 3, pp. 1930-1947.

[25] H. W. Ge, L. Sun, Y. C. Liang, F. Qian. 2008. “An effective PSO-and-AIS-based hybrid

intelligent algorithm for job-shop scheduling”. IEEE Transactions on System, Man and

Cybernetics, Part A, Systems and Humans, vol. 38, no. 2, pp. 358-368.

[26] C. A. C. Coello, D. C. Rivera, N. C. Cortes. 2003. “Use of an artificial immune system for

job shop scheduling”. Lecture Notes in Computer Science, vol. 2787, pp. 1-10.

32

[27] J. H. Yang JH, L. Sun, H. P. Lee, Y. Qian, Y. C. Liang. 2008. “Clonal selection based

memetic algorithm for job shop scheduling problems”. Journal of Bionic Engineering, vol.

5, no. 2, pp. 111-119.

[28] K. P. White Jr. 1990. "Advances in the theory and practice of scheduling”. Advances in

Industrial Systems, Control and Dynamic Systems, vol 37, CT Leondes, Ed. San Diego,

CA: Academic, pp. 115-158.

[29] S.C. Graves. 1981. “ A review of production scheduling”. Operations Res. Vol. 18, pp.

841-852.

[30] K. N. McKay. 1988. F. R. Safayeni and J.A. Buzacott, “Job-shop Scheduling theory: What

is relevant?”. Interfaces, vol. 18, pp 84-90.

[31] J.H. Blackstone, D. T. Phillips and G. L. Hogg. 1982. “A state of the art survey dispatching

rules for manufacturing job shop operations”. Int. J Productions Res., vol. 20. Pg 27-45.

[32] F. Viviers. 1983. “A decision support system for job shop scheduling”. European J

Operational Res., vol. 14, no. 1, pp 95-103.

[33] M.S. Fox and S.F. Smith. 1984. “ISIS- A knowledge based system for factory scheduling”.

Expert Syst., vol 1, pp. 25-49.

[34] A. Kuziak. 1990. “Intelligent Manufacturing Systems. Englewood Cliffs”. NJ: Prentice-

Hall.

[35] P.S. Ow, S.F. Smith and R. Howie. 1988. “A cooperative scheduling systems”. Proc. 2
nd

Int. Conf. Expert Syst. Leading Edge in Production Planning Contr.

 [36] J. Adams, E. Balas and D. Zawack. 1988. “ The shifting bottleneck procedure for job shop

scheduling”. Management Sci. vol 34, no. 3, pp. 391-401.

33

[37] J. Carlier and E. Pinson. 1989. “An algorithm for solving the job-shop problem”. Manag.

Sci. vol 35, no. 2, pp. 164-176.

[38] M. L. Fisher. 1973. “Optimal solution of scheduling problems using Lagrange multipliers,

Part 1”. Operations res. Vol 21, pp 1114-1127.

[39] M. Held and R. M. Karp. 1962. “A dynamic programming approach to sequencing

problems”. Journal of the Society for Industrial and Applied Mathematics, vol. 10, pp 196-

210.

[40] R. Nakano, T. Yamada. 1991. “Conventional Genetic Algorithm for Job Shop Problems”.

International Conference Genetic Algorithm.

[41] T. Yamada, and R. Nakano. 1992. “A Genetic Algorithm Applicable to Large scale Job-

Shop Problems”. In parallel problem solving from Nature 2 (PPSN 2).

[42] D. Crafti. 2004. "A Job Shop Scheduler using a Genetic Tree Algorithm". School of

Computer Science and Software Engineering, vol. Ph.D. Melbourne, Australia: Monash

University, Clayton Campus, p. 63.

[43] A. Cardon, T. Galinho, and J.-P. Vacher. 2000. "Genetic algorithms using multi-objectives

in a multi-agent system". Robotics and Autonomous Systems, vol. 33, p. 179.

[44] S. Lin, E. D. Goodman, W. F. Punch. 1997. “A genetic Algorithm Approach by Dynamic

Job Scheduling Problems”. International Conference Genetic Algorithm.

[45] S. Lin, E. D. Goodman, W. F. Punch. 1997. “Investigating Parallel Algorithms on Job

Shop Scheduling Problems”. Evolutionary programming Conference.

[46] E. Hart and P. Ross. 1988. “c”. Parallel Problem Solving from Nature.

[47] A. S. Jain, S. Meeran. 1998. “A state of the art review of Job Shop Scheduling techniques”.

Submitted to Journal of Heuristics.

34

 [48] A. S. Jain, B. Rangaswamy, S. Meeran, “Job Shop Neighbourhoods and Move Evaluation

Strategies”. Journal of Scheduling, 1998.

[49] S. Bagchi, S. Uckum, Y. Miyabe, K. Kawanura. 1991. “Exploring Problem-Specific

recombination operators for Job Scheduling”. International conference on Genetic

Algorithm.

[50] Dalibor Klusácek, Hana Rudová. 2010. “Alea 2 – Job Scheduling Simulator”. Third

International ICST Conference on Simulation Tools and Techniques.

