11 research outputs found

    Techniques for low jitter clock multiplication

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 115-121).Phase realigning clock multipliers, such as Multiplying Delay-Locked Loops (MDLL), offer significantly reduced random jitter compared to typical Phase-Locked Loops (PLL). This is achieved by introducing the reference signal directly into their voltage controlled oscillators (VCO) to realign the phase to the clean reference. However, the typical cost of this benefit is a significant increase in deterministic jitter due to path mismatch in the detector as well as analog nonidealities in the tuning circuits. This thesis proposes a mostly-digital tuning technique that drastically reduces deterministic jitter in phase realigning clock multipliers. The proposed technique eliminates path mismatch by using a single-path digital detection method that leverages a scrambling time-to-digital converter (TDC) and correlated double sampling to infer the tuning error from the difference in cycle periods of the output. By using a digital loop filter that consists of a digital accumulator, the tuning technique avoids the analog nonidealities of typical tuning paths. The scrambling TDC is not a contribution of this thesis. A highly-digital MDLL prototype that uses the proposed tuning technique consists of two custom 0.13 [mu]m ICs, an FPGA board, a discrete digital-to-analog converter (DAC) with effective 8 bits, and a simple RC filter. The measured performance (for a 1.6 GHz output and 50 MHz reference) demonstrated an overall jitter of 0.93 ps rms, and estimated random and deterministic jitter of 0.68 ps rms and 0.76 ps peak-to-peak, respectively. The proposed MDLL architecture is especially suitable for digital ICs, since its highly-digital architecture is mostly compatible with digital design flows, which eases its porting between technologies.by Belal Moheedin Helal.Ph.D

    Design of energy efficient high speed I/O interfaces

    Get PDF
    Energy efficiency has become a key performance metric for wireline high speed I/O interfaces. Consequently, design of low power I/O interfaces has garnered large interest that has mostly been focused on active power reduction techniques at peak data rate. In practice, most systems exhibit a wide range of data transfer patterns. As a result, low energy per bit operation at peak data rate does not necessarily translate to overall low energy operation. Therefore, I/O interfaces that can scale their power consumption with data rate requirement are desirable. Rapid on-off I/O interfaces have a potential to scale power with data rate requirements without severely affecting either latency or the throughput of the I/O interface. In this work, we explore circuit techniques for designing rapid on-off high speed wireline I/O interfaces and digital fractional-N PLLs. A burst-mode transmitter suitable for rapid on-off I/O interfaces is presented that achieves 6 ns turn-on time by utilizing a fast frequency settling ring oscillator in digital multiplying delay-locked loop and a rapid on-off biasing scheme for current mode output driver. Fabricated in 90 nm CMOS process, the prototype achieves 2.29 mW/Gb/s energy efficiency at peak data rate of 8 Gb/s. A 125X (8 Gb/s to 64 Mb/s) change in effective data rate results in 67X (18.29 mW to 0.27 mW) change in transmitter power consumption corresponding to only 2X (2.29 mW/Gb/s to 4.24 mW/Gb/s) degradation in energy efficiency for 32-byte long data bursts. We also present an analytical bit error rate (BER) computation technique for this transmitter under rapid on-off operation, which uses MDLL settling measurement data in conjunction with always-on transmitter measurements. This technique indicates that the BER bathtub width for 10^(−12) BER is 0.65 UI and 0.72 UI during rapid on-off operation and always-on operation, respectively. Next, a pulse response estimation-based technique is proposed enabling burst-mode operation for baud-rate sampling receivers that operate over high loss channels. Such receivers typically employ discrete time equalization to combat inter-symbol interference. Implementation details are provided for a receiver chip, fabricated in 65nm CMOS technology, that demonstrates efficacy of the proposed technique. A low complexity pulse response estimation technique is also presented for low power receivers that do not employ discrete time equalizers. We also present techniques for implementation of highly digital fractional-N PLL employing a phase interpolator based fractional divider to improve the quantization noise shaping properties of a 1-bit ∆Σ frequency-to-digital converter. Fabricated in 65nm CMOS process, the prototype calibration-free fractional-N Type-II PLL employs the proposed frequency-to-digital converter in place of a high resolution time-to-digital converter and achieves 848 fs rms integrated jitter (1 kHz-30 MHz) and -101 dBc/Hz in-band phase noise while generating 5.054 GHz output from 31.25 MHz input

    Digital Centric Multi-Gigabit SerDes Design and Verification

    Get PDF
    Advances in semiconductor manufacturing still lead to ever decreasing feature sizes and constantly allow higher degrees of integration in application specific integrated circuits (ASICs). Therefore the bandwidth requirements on the external interfaces of such systems on chips (SoC) are steadily growing. Yet, as the number of pins on these ASICs is not increasing in the same pace - known as pin limitation - the bandwidth per pin has to be increased. SerDes (Serializer/Deserializer) technology, which allows to transfer data serially at very high data rates of 25Gbps and more is a key technology to overcome pin limitation and exploit the computing power that can be achieved in todays SoCs. As such SerDes blocks together with the digital logic interfacing them form complex mixed signal systems, verification of performance and functional correctness is very challenging. In this thesis a novel mixed-signal design methodology is proposed, which tightly couples model and implementation in order to ensure consistency throughout the design cycles and hereby accelerate the overall implementation flow. A tool flow that has been developed is presented, which integrates well into state of the art electronic design automation (EDA) environments and enables the usage of this methodology in practice. Further, the design space of todays high-speed serial links is analyzed and an architecture is proposed, which pushes complexity into the digital domain in order to achieve robustness, portability between manufacturing processes and scaling with advanced node technologies. The all digital phase locked loop (PLL) and clock data recovery (CDR), which have been developed are described in detail. The developed design flow was used for the implementation of the SerDes architecture in a 28nm silicon process and proved to be indispensable for future projects

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Jitter Minimization in Digital PLLs with Mid-Rise TDCs

    No full text
    This paper analyzes the absolute jitter performance of digital phase-locked loops and compares the case when either a multi-bit time-to-digital converter with mid-rise characteristic or a bang-bang phase detector is adopted. The linear equivalent model of the PLL and expressions for random-noise and limit-cycle jitter are first derived for the case of a 2-bit time-to-digital converter with a mid-rise characteristic, and the optimal TDC resolution is determined. The analysis, which account for TDC mismatches, shows that, compared to the 1-bit one, the 2-bit time-to-digital converter can substantially reduce the quantization noise in the case of dominant random-walk noise at the TDC input. Moving to the Nb-bit midrise TDC case, the quantization noise can be further reduced at the cost of higher complexity and finer time resolution. The choice of Nb=2 seems to be the best compromise between jitter reduction and complexity increase. Time-domain simulations assess the theoretical framework and demonstrate the validity of the assumptions made throughout the paper

    Jitter Minimization in Digital PLLs with Mid-Rise TDCs

    No full text
    This paper analyzes the absolute jitter performance of digital phase-locked loops and compares the case when either a multi-bit time-to-digital converter with mid-rise characteristic or a bang-bang phase detector is adopted. The linear equivalent model of the PLL and expressions for random-noise and limit-cycle jitter are first derived for the case of a 2-bit time-to-digital converter with a mid-rise characteristic, and the optimal TDC resolution is determined. The analysis, which account for TDC mismatches, shows that, compared to the 1-bit one, the 2-bit time-to-digital converter can substantially reduce the quantization noise in the case of dominant random-walk noise at the TDC input. Moving to the Nb-bit midrise TDC case, the quantization noise can be further reduced at the cost of higher complexity and finer time resolution. The choice of Nb=2 seems to be the best compromise between jitter reduction and complexity increase. Time-domain simulations assess the theoretical framework and demonstrate the validity of the assumptions made throughout the paper

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.
    corecore