2 research outputs found

    Analog Signal Buffering and Reconstruction

    Get PDF
    Wireless sensor networks (WSNs) are capable of a myriad of tasks, from monitoring critical infrastructure such as bridges to monitoring a person\u27s vital signs in biomedical applications. However, their deployment is impractical for many applications due to their limited power budget. Sleep states are one method used to conserve power in resource-constrained systems, but they necessitate a wake-up circuit for detecting unpredictable events. In conventional wake-up-based systems, all information preceding a wake-up event will be forfeited. To avoid this data loss, it is necessary to include a buffer that can record prelude information without sacrificing the power savings garnered by the active use of sleep states.;Unfortunately, traditional memory buffer systems utilize digital electronics which are costly in terms of power. Instead of operating in the target signal\u27s native analog environment, a digital buffer must first expend a great deal of energy to convert the signal into a digital signal. This issue is further compounded by the use of traditional Nyquist sampling which does not adapt to the characteristics of a dynamically changing signal. These characteristics reveal why a digital buffer is not an appropriate choice for a WSN or other resource-constrained system.;This thesis documents the development of an analog pre-processing block that buffers an incoming signal using a new method of sampling. This method requires sampling only local maxima and minima (both amplitude and time), effectively approximating the instantaneous Nyquist rate throughout a time-varying signal. The use of this sampling method along with ultra-low-power analog electronics enables the entire system to operate in the muW power levels. In addition to these power saving techniques, a reconfigurable architecture will be explored as infrastructure for this system. This reconfigurable architecture will also be leveraged to explore wake-up circuits that can be used in parallel with the buffer system

    Low-Power Reconfigurable Sensing Circuitry for the Internet-of-Things Paradigm

    Get PDF
    With ubiquitous wireless communication via Wi-Fi and nascent 5th Generation mobile communications, more devices -- both smart and traditionally dumb -- will be interconnected than ever before. This burgeoning trend is referred to as the Internet-of-Things. These new sensing opportunities place a larger burden on the underlying circuitry that must operate on finite battery power and/or within energy-constrained environments. New developments of low-power reconfigurable analog sensing platforms like field-programmable analog arrays (FPAAs) present an attractive sensing solution by processing data in the analog domain while staying flexible in design. This work addresses some of the contemporary challenges of low-power wireless sensing via traditional application-specific sensing and with FPAAs. A large emphasis is placed on furthering the development of FPAAs by making them more accessible to designers without a strong integrated-circuit background -- much like FPGAs have done for digital designers
    corecore