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Abstract

Low-Power Reconfigurable Sensing Circuitry for the Internet-of-Things Paradigm

Alexander Todd DiLello

With ubiquitous wireless communication via Wi-Fi and nascent 5th Generation mobile com-
munications, more devices – both smart and traditionally “dumb” – will be interconnected 
than ever before. This burgeoning trend is referred to as the Internet-of-Things. These new 
sensing opportunities place a larger burden on the underlying circuitry that must operate on 
finite battery power and/or within energy-constrained environments. New developments of 
low-power reconfigurable analog sensing platforms like field-programmable analog arrays 
(FPAAs) present an attractive sensing solution by processing data in the analog domain while 
staying flexible in design. This work addresses some of the contemporary challenges of low-
power wireless sensing via traditional application-specific sensing and with FPAAs. A large 
emphasis is placed on furthering the development of FPAAs by making them more accessible 
to designers without a strong integrated-circuit background – much like FPGAs have done for 
digital designers.



iii

Acknowledgments

This material is based upon the generous support by the National Science Foundation

under Award No. CNS-1148815, Department of Energy’s National Energy Technology Lab-

oratory under Federal Grant DE-FE0012383, and West Virginia University’s Provost Fel-

lowship.



iv

Contents

Abstract ii

Acknowledgments iii

List of Figures vii

1 Introduction 1
1.1 Power Consumption with a Battery Supply . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Smart Refractory Sensor Systems for Wireless Monitoring of Temperature
in Slagging Gasifiers 7
2.1 “Smart” Foundry Bricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Resistive Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Resistive Sensing Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Voltage Regulator and Battery . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Brick Characterization and Circuit Components . . . . . . . . . . . . 14

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 High-Side Switch 20
3.1 High-Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Power management and energy-harvesting systems . . . . . . . . . . . . . . . 22
3.3 High-Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Temperature Compensation of Floating-Gate Transistors in Field-Programmable
Analog Arrays 36
4.1 Floating-Gate Temperature Dependence . . . . . . . . . . . . . . . . . . . . 36
4.2 Floating-Gate Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 FG Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 System Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



CONTENTS v

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Floating-Gate Device Introduction 49
5.1 Floating-Gate Development and Background . . . . . . . . . . . . . . . . . . 49
5.2 Floating-Gate Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Floating-Gate Device Structure and Operation . . . . . . . . . . . . . . . . . 53

5.3.1 Floating-Gate Operation . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 FG charge modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 FG Tunneling and Electron Removal . . . . . . . . . . . . . . . . . . 57
5.4.2 Hot-Electron Injection and the Addition of Electrons . . . . . . . . . 59

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Floating-Gate Injection Programming 64
6.1 Floating-Gate Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Pulsed Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Continuous-Time Programming . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Programming Target Convergence Structure . . . . . . . . . . . . . . 70
6.4 Vsd Voltage for Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 Above-Ground Injection Voltage and Associated Programming Circuitry 73
Above-Ground FG Cell Operational Modes . . . . . . . . . . . . . . . 77

6.4.2 Below-Ground Injection Voltage . . . . . . . . . . . . . . . . . . . . . 77
FG Selection and Isolation for Below-Ground Injection Programming 78

6.5 Programming Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Reconfigurable Analog Preprocessing for Efficient Asynchronous Analog-
to-Digital Conversion 92
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Asynchronous Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.1 Reconfigurable Analog Mixed-Signal Platform . . . . . . . . . . . . . 96
7.3.2 Asynchronous Data Converter Design . . . . . . . . . . . . . . . . . . 97

Successive-Approximation Register . . . . . . . . . . . . . . . . . . . 98
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Time-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Asynchronous Sampling Implementation . . . . . . . . . . . . . . . . . . . . 103
7.4.1 Extrema Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.2 RAMP Triggering Implementation . . . . . . . . . . . . . . . . . . . 105

7.5 System Implementation and Example Applications . . . . . . . . . . . . . . 107
7.5.1 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5.2 Voice Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.5.3 Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.5.4 Electrocardiogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



CONTENTS vi

8 Reconfigurable Analog Mixed-Signal Processor 115
8.1 Software Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 RAMP Version 1.1 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 Conclusions and Future Work 124
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

References 128

A Wheatstone Bridge Resistive Sensing Circuit 135



vii

List of Figures

2.1 (a) Cross-sectional diagram of the smart brick furnace and (b) a photo of the
proposed testing furnace with superimposed circles designating the proposed
smart brick positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Experimental measurements of a thermistor characterization. . . . . . . . . 10
2.3 Thermistor sensing circuit that utilizes two operational amplifiers and Wheat-

stone bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Six smart brick characterizations. . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Left y-axis shows the sensing circuit output versus thermistor resistance.

Right y-axis shows the hot-junction furnace temperature versus resistance.
The figure is used to map output voltage to temperature. . . . . . . . . . . 17

2.6 Physical design of the sensing circuit consists of battery, wireless mote, and
Wheatstone bridge circuit stack from bottom to top. . . . . . . . . . . . . . 18

2.7 The sensing circuit interfaced with a smart brick. This a staged picture to
simply demonstrate how the interface connection would look like in a real
deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Demonstration of the wireless sensing node and its fit within the smart brick
sensing system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 (a) Block diagram of a conventional high-side load switch and (b) a multi-
plexing high-side load switch. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Block diagram of a conventional high-side load switch. . . . . . . . . . . . . 26
3.3 Schematic of the multiplexing high-side load switch using adaptive well biasing. 28
3.4 Physical cross-section of the well-selection transistor pair with schematically

overlaid parasitic pn-junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 DC measured results showing Vwell (brown) floats consistently for every com-

bination of Vselect (blue) Vsupply1,2 (blue, pink) when Vsupply1,2 are within a
200mV of each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Measured transient results showing the (top) input/output behaviour, (mid-
dle) well potential, and (bottom) selection signal. Logic HIGH = Vsupply low
and logic LOW = 0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Floating-gate programming demonstration using the high-side load switch and
charge pump where Vsupply1, Vsupply2, and Vsupply out is shown in teal, gray, and
dashed red, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



LIST OF FIGURES viii

3.8 Die photo of chip with insets showing the detail of the charge pump and
high-side switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Physical layout of a 2Ω HSS. Outlined in red is a single connection or node,
which is 125µm long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 The physical connection between the HSS and the padframe of a fabricated
design contributes non-negligible amount of parasitic resistance to the ON-
resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 The left plot shows measured static power consumption as a function of the
Vsupply2 voltage. The right figure shows the respective measured current con-
tributions by the two supply voltages as Vsupply2 voltage is increased. . . . . 35

4.1 Temperature dependence of an FG transistor. The plateaued currents for
Vcg > 2.25V are artifacts of many junction connections to a single global
connection where the current reading was taken. As a consequence, their
collective leakage current becomes non-negligible. The current in a single FG
transistor continues below these values. . . . . . . . . . . . . . . . . . . . . 39

4.2 Floating-gate current mirror configuration. . . . . . . . . . . . . . . . . . . . 41
4.3 (a) FPAA block diagram showing the position of the specialized CAB which

houses the FG temperature compensation structure. (b) Floating-gate tem-
perature compensation structure showing connection to global Vcg. Currents
source to an nFET current mirror before connecting to the CAB circuits. . . 45

4.4 (a) Percent change in output current of an FG with temperature compensation
normalized to room temperature. (b) and (c) show the effects of compensation
compared to an uncompensated case for a ratio of 1:1 and 1:10 respectively. 46

4.5 Ring oscillator frequency output with respect to temperature for a compen-
sated and uncompensated FG current bias. . . . . . . . . . . . . . . . . . . . 47

4.6 Programmed comparator reference value with respect to temperature for a
compensated and uncompensated FG current bias. . . . . . . . . . . . . . . 48

5.1 Schematic representation and physical cross-section of (a) a pFET transistor
and (b) a FG transistor, respectively. . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Floating-gate transistors allow for programmable threshold shifts from the
perspective of the control gate. Injection programming adds electrons to the
floating-gate, while tunneling removes electrons from the floating-gate. . . . 53

5.3 Physical cross-sectional layout of a FG transistor. . . . . . . . . . . . . . . . 54
5.4 Physical cross-sectional layout of a FG transistor showing all capacitors cou-

pled to the FG including parasitics (in gray color). . . . . . . . . . . . . . . 56
5.5 Qualitative demonstration of Fowler-Nordheim tunneling in the FG band di-

agram. The control gate has been omitted in the schematic for clarity. . . . 58
5.6 Comparison of the required Vtun voltage for scaling CMOS technologies. Top

plot shows that the Vdd has scaled for the technologies, but Vtun plateaus at
250nm due to FGs needing to be realized in less leaky I/O devices. Bottom
plot shows the ratio of Vtun to Vdd. Above 250nm, the ratio is relatively
constant. 250nm and below, the ratio increases because Vdd continues to scale
as Vtun stays relatively constant [1]. . . . . . . . . . . . . . . . . . . . . . . 59



LIST OF FIGURES ix

5.7 Demonstration of hot electron injection in the FG band diagram. The band
diagram is not to scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.8 Comparison of the required Vinj voltage for scaling CMOS technologies. Top
plot shows that Vdd and Vinj scale similarly over the downsizing of technologies.
Bottom plot shows the ratio of Vinj to Vdd. In practice, the supply Vdd should
be kept lower than standard Vdd to prevent unwanted HEI. Taking this into
consideration,the ratio stays around 2 over all technologies [2] . . . . . . . . 61

6.1 (a) Pulsed programming sequentially cycles program/read modes until de-
sired programming target is achieved. (b) Continuous programming employs
negative feedback to converge upon programming target. . . . . . . . . . . . 65

6.2 Continuous programmers. (a) Self-converging injection configuration. Lacks
feedback for linearization, however, inherent feedback of the configuration
stops injection once programming target is reached. (b) Operational amplifier
holds Vs (and consequently Vsd) at a known value via Vcg which allows for a
constant rate of injection. (c) Current-controlled current conveyor structure
that allows for independent control of Vs and consequently Vsd via negative
feedback through Vx and I2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Continuous-time programmers with target converging circuitry that consists of
an OTA and current mirror M2/M3. Target converging circuitry operates the
same for both topologies of (a) and (b). During injection, Vcg increases linearly
from Vss. OTA compares Vcg to user-provided Vtarg. When Vcg reaches Vtarg
trip-point, the OTA cutoffs I1 drain current to effectively end the injection of
electrons onto the FG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Transient simulation of the injection process utilizing the continuous-time
linear injection programmer with target converging circuitry of Fig. 6.3(b).
The plots demonstrate that during injection, FG drain current I1 is saturated
to an appropriate current conducive to injecting electrons. In the above case
I1 = 900nA. Once Vcg reaches Vtarg, FG drain current I1 drops precipitously
to end the injection programming process. . . . . . . . . . . . . . . . . . . . 72

6.5 Functionality of a supply-voltage selecting circuit. (a) Typical charge-pump
signal used for programming FGs. The ramp-up time is on the order of mi-
croseconds and the discharge time is on the order of milliseconds to seconds.
(b) Shows the functionality of a voltage supply selecting circuit. The dashed
maroon signal FGVdd selects and outputs higher voltages when programming
(i.e. charge-pump is enabled). While run-mode, it is outputting the nominal
supply voltage Vdd regardless of Vcharge−pump

′s state. . . . . . . . . . . . . . 75
6.6 High-side switch block diagram. This circuit is capable of choosing one of two

supplies by a signal control signal. It’s design is unique in that it can select
a supply voltage larger than its nominal supply voltage without a secondary
charge-pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.7 Block diagram of all the circuits in our FPAA design which rely on the high-
side load switch and their relation among each other. . . . . . . . . . . . . . 76



LIST OF FIGURES x

6.8 Above-ground FG memory cell various operational modes and their respective
connections. In (b) the first two rows refer to programming modes in which the
selected FG is connected to the programmer, while all other FGs of the array
are disconnected. RUN-mode refers to a configuration in which programmed
FGs are connected to internal circuits. FG measure selected/unselected refers
to a configuration in which a single FG from the array is connected off-chip. 87

6.9 Below-ground programming FG circuit configurations for injection and circuit
modes (i.e. RUN-mode and FG measure). Both memory cells allow for FG
selection/deselection in an arrayed FG configuration such that only the desired
FG is programmed. Both configurations allow for circuit-mode operations. . 88

6.10 (a) Programming experiments are mapped to a reference IV-curve to allow for
one-to-one comparisons among different programming experiments. (b) Once
the n number of trails have been mapped – in the above case 3 –, the data can
be projected onto the x-axis and y-axis statistically calculate the accuracy of
the programming experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.11 Linearization plot for an above-ground programmer. An FG is programmed
to Vtarg voltages in linear steps. After programming to each Vtarg, the control
voltage is modulated until the desired current is measured — in this case 10nA.
The continuous-time programmer operates in a closed-loop configuration and
forces the linearization of programming. The bottom plot shows the deviation
of Vtarg from the linear regression line and the candlesticks shows the standard
deviation for the 100 programming experiments. . . . . . . . . . . . . . . . 90

6.12 Programmed C4 bandpass filters at full, half, and quarter octaves. . . . . . . 91

7.1 Asynchronous analog-to-digital conversion system. A reconfigurable analog
front-end reduces information to only the relevant data points and also triggers
the subsequent blocks, which produce digital words for the corresponding
voltages and time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Architecture of the reconfigurable analog/mixed-signal platform (RAMP) in-
tegrated circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 System diagram of the successive-approximation ADC (SA-ADC)/time-to-
digital converter (TDC). A trigger from the RAMP analog preprocessing stage
acts as the ‘Start Signal’ to initiate conversion and record the time. . . . . . 98

7.4 A schematic of the successive approximation register. The boxed area acts
as a shift register. The lower set of D flip-flops is where the bits are actually
applied to the rest of the system and stored appropriately. . . . . . . . . . . 99

7.5 (a) Comparator schematic of the nFET-based comparator. A complemen-
tary pFET-based comparator is also used in parallel. (b) Complete compara-
tor schematic showing both the nFET-based (dashed box) and pFET-based
comparators operating together. The MSB selects which version to use to
maximize the input range of the complete comparator circuit. . . . . . . . . 100

7.6 Time-to-digital converter consisting of a voltage-controlled oscillator and a
counter. The counter keeps track of the number of oscillations. The event
pulse clears the counter and also shorts part of the oscillator to logic high,
which ensures that it begins in the same state after every reset. . . . . . . . 102



LIST OF FIGURES xi

7.7 (a) A simple delay unit using a current-starved inverter. The delay is propor-
tional to the size of the capacitor and inversely proportional to the current
flowing through the inverter. (b) A simple binary counter. The D flip-flops
are sequentially linked and output successive binary numbers. . . . . . . . . 102

7.8 Comparison of constant-rate Nyquist sampling versus an adaptive-sampling
method using extrema sampling. . . . . . . . . . . . . . . . . . . . . . . . . 104
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1

Chapter 1

Introduction

Wireless communication is becoming more ubiquitous with the deployment of Wi-Fi and

nascent 5th Generation mobile communications. Furthermore, the bandwidth capacity has

never been larger. This bounty of wireless communication has created an opportunity to

connect together “dumb” devices – that is devices that were not traditionally networked

and communicating with other devices – and make them “smart.” This burgeoning trend is

referred to as the Internet of Things (IoT) and is most visibly manifested to the common

consumer in smart-home technology (e.g. thermostats, speakers, refrigerators) and smart-car

technology.

In connecting many devices, there is an exchange of information stemming from the

devices’ sensors or their remote control of actuators. In some application spaces like the

smart-home realm, there is the accessibility of a constant power source to accomplish this

type of computing. But for other applications areas that exist in energy-constrained envi-

ronments like agricultural sensing, the power consumption of the device is a large component

in what determines its viability. Energy-constrained environments rely on a battery of finite

energy. For these remote sensing applications, there is a need for energy-conscious designs

to complement the developments made in wireless communication.

The objective of this work is to addresses the sensing circuitry challenges for the Inter-

net of Things paradigm. It will advocate for a general-purpose, low-power, reconfigurable

analog circuitry solution. Beyond the immediate benefits for the aforementioned sensing

applications, developments in this field could have large impacts on integrated analog design

because of the possibility of integrated analog designs done post-fabrication. Longer-term

implications for this work would be a contribution to the democratization of analog inte-
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grated circuit design akin to what FPGAs have done to integrated digital design. Further

background and context is expanded upon below.

The conventional development of low-power sensing circuity has come from two differ-

ent sources — a digital solution and an analog solution. The former has reduced power

consumption by downscaling its feature sizes which have allowed its voltage supply rail to

shrink down to 0.75V in a nascent 7nm process [3]. Furthermore, the power savings have

been compounded with supply voltage reduction because it’s characterized by a quadratic

relationship in P = CV 2f . However, downscaling has not been following Moore’s law within

the past five years and it is showing diminishing returns due to semiconductor processing

complications at sub 100nm feature sizes. For example, from 2006-2011, Intel had been

following a schedule for downscaling the process about every two years (i.e. ”tick-tock” de-

velopment cycle) from 65nm to 22nm for their popular desktop CPUs. However, from 2011

to early 2019 (at the time of this writing), there has only been one downscale from 22nm to

14nm process. While there are optimizations in design to save power, the supply rail is not

likely to drop as precipitously as it did from 5V to 0.75V in the next decade.

Low-power sensing in the analog domain has also benefited from downscaling, but the

most dominant component of power-reduction has come from keeping computation in its

original domain to save power. It’s natural to try to keep most of the sensing in the analog

realm as long as possible because the world that is being sensed is inherently analog. At some

point in the communication chain, the analog values need to be converted to their digital

equivalency for a microprocessor. However, being the conversion process is power-hungry,

there are opportunities for power savings by employing analog front-ends to give discretion

on what data to convert. An example application for this analog-digital interface to be

applied is speech sensing. One power-savings opportunity would be to convert only speech

data but not silence and non-speech audio. This could be accomplished with an analog

front-end speech detector that listens for speech events while the digital circuitry stays in a

low-power sleep mode when speech is not occurring. When speech is detected, the digital

portions can then perform the digital conversion and transmission.

Like the speech detection example, the most power savings can be achieved by minimizing

the use of a general-purpose microprocessor and offloading a portion of the microprocessor

computation to the analog domain. The traditional method of accomplishing this is choosing

an application-specific integrated circuit (ASIC) once the application space has been deter-

mined. ASICs focus on one specific task and do it very efficiently. However, if at any point
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during the design phase that the priorities change or the sensing fundamentally changes

(e.g. changing a resistive-type temperature sensor switching a voltage-based sensor), the

ASIC may not be able to accommodate the change. For battery-powered sensing in the IoT

realm, there is a need for efficient sensing like that of ASICs, but there lacks a solution in

design flexibility like that of field-programmable gate arrays (FPGAs) in the digital realm.

FPGAs provide application-specific integrated design, as well as flexibility in its repor-

grammability. In the past, there have not been many platforms that have this ability to

reconfigure integrated analog circuity. However, recent developments of field-programmable

analog arrays (FPAAs) has brought this closer to a reality [4, 5, 6, 7]. FPAAs provide re-

configurability of integrated analog components (active and passive) at an ultra-low power

consumption (typical applications in low 10’s of µW) [8] – a great option to be used as analog

front-ends for IoT wireless sensing applications. Furthermore, if the wireless aspect of these

potential sensing devices is leveraged, the FPAAs can be reconfigured in the field.

FPAAs fulfill this need for ultra low power sensing for wireless devices. Its reconfigura-

bility and low-power operation can be attributed to large sets of floating-gate FG transistors.

For analog applications, FGs are used as programmable current sources for a variety of dif-

ferent circuit applications. With all the benefits, FGs do not come without their challenges.

Currently, the low-power operation of FGs has an exponential relationship with temperature

change, which becomes more of a challenge on an FG-dense FPAA platform. Similar issues

arise in creating repeatable and accurate programming of FGs within an array of FGs. For

both temperature and programming, reducing overhead and obviating external components

equipment becomes a goal for an FPAA platform to succeed as an in-the-field circuit solution

for wireless sensing. In the rest of this work, I set out to address these issues and contribute

to improving wireless sensing for energy-constrained applications.

1.1 Power Consumption with a Battery Supply

Throughout this work, “low-power” is frequently listed as a design goal in battery-

operated circuitry, and it would remiss if it was not given a contextual definition. “Low-

power” in this work refers to circuitry that utilizes sub-threshold-level current biases which

are largely below 1µA currents. In battery-powered sensing applications, a net sub-100µA

current draw is a good rule-of-thumb benchmark for low-power circuits; however, this is

highly dependent upon the complexity of circuits being used and application-space.
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This work focuses on the sensing circuitry aspect of the wireless sensing nodes and does

not focus on design improvements of the wireless microcontroller units (MCUs). However,

MCUs can be the largest component of the power budget when not in a lower-power sleep-

state mode. For example, current wireless COTS MCUs Particle Xenon and TelosB motes

can consume up to 20mA and 24.8mA, respectively — not including any current draw from

notification LEDs — with the RF transceiver active and the microprocessor at full capa-

bilities [9, 10]. But, both boast sleep-states (i.e. transcievers off and microprocessor in a

low-power, inhibited stated) with respective power consumptions on the order of µA draw

(unmeasured by Particle at the time of writing) and 6.1µA for the TelosB platform. There-

fore, it’s advantageous for a paradigm change from how microcontrollers are traditionally

employed to conserve a finite battery supply.

The paradigm change methodology is to (1) keep the wireless microcontroller in a sleep-

state for as long as possible and (2) offload computation to an always-on, low-power front-

end. The motivation is that most, if not, all computation can be done at a lower power

consumption by the front-end circuitry than by an active wireless MCU. The MCU can be

woken-up for certain digital computations and information transmissions. The amount of

time the MCU stays in sleep-state is ultimately dictated on a per-application basis.

The front-end circuitry can be fulfilled by employing ASICs or by the aforementioned

FPAA. It’s useful to put into context the theoretical battery life for both circuits in an

application example like thermistor temperature sensing application. The following example

is for a hypothetical agricultural application for in-the-field frost warning system. Let’s

assume both types of sensing circuits leverage the same MCU and its sleep state time; this

negates any advantage with respect to the choice of microcontroller. A thermistor’s output

of resistance is converted to voltage when a current is dropped across the sensor like that

of a Wheatstone bridge circuit — See Figure 2.3 and Appendix A. Since there are millivolt

changes (i.e. relatively small) at DC-like frequencies, instrumentation amplifiers like the

Microchip MCP6N16 are a good candidate for small-signal changes, and the MCP6N16, in

particular, can operate on a single supply voltage under 5V.

The MCP6N16 draws a quiescent current of 1.1mA, while a sensing circuit of Figure 2.3

can be completely biased at less than 500nA. When accounting for additional overheads of the

FPAA, the net current draw for FPAA synthesized circuit like that of Figure 2.3 would most

conservatively be 5µA. Furthermore, accounting for the resistive network power consumption,

we can arbitrarily design for branch current of 50µA total when utilizing a Panasonic ERT-
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Table 1.1: Operational lifetime using the ASIC front-end and on a single 4000mAh battery.

ASIC

Current

µProc.

Current w/

Radio Off

µProc.

Current w/

Radio On

Average

Current

Battery

Size(mAh)

Battery

Efficiency

Operational

Days

Active

State: 1

Sec/Min

1.15mA 1.8mA 24.5mA 8.63mA
4000 80% 360

Sleep

State: 59

Sec/Min

500nA 10µA 10µA 10.3µA

Table 1.2: Operational lifetime using the FPAA front-end and on a single 4000mAh battery.

FPAA

Current

µProc.

Current w/

Radio Off

µProc.

Current w/

Radio On

Average

Current

Battery

Size(mAh)

Battery

Efficiency

Operational

Days

Active

State: 1

Sec/Min

55µA 1.8mA 24.5mA 7.53mA
4000 80% 409

Sleep

State: 59

Sec/Min

500nA 10µA 10µA 10.5µA

J1VV154H 220kΩ thermistor. We can then compute the total ideal operational time if a

battery’s Ampere Hour rating is known. The tables 1.1 and 1.2 show the differences in

operational lifetime using the ASIC and FPAA circuits on a single 4000mAh battery.

These calculations were based on a couple of assumptions. First, the MCUs will toggle

the supply to the resistive network for the ASIC and the FPAA to sample the voltage divider.

This reduces the parasitic current draw from the resistive network. The second assumption

was that the ASIC and FPAA contain a comparator that would pulse HIGH if the tem-

perature met some temperature threshold that was representative of a frost warning (while

ignoring the dew point for this demonstrative example). This HIGH pulse would initiate the

MCU to transmit a warning message. An additional assumption was this condition would

occur 1/4 time of the year, which is represented by the metrics of the third column. The rest

of the year would operate in the second column state with the radio off. The FPAA-based

circuit would net 49 additional operational days compared to the ASIC circuit.
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The 49 additional operational days can be attributed to an order of magnitude less current

draw compared to ASIC front-end. Ultimately, there could have been a more extensive

separation between the two designs if there was not a parasitic resistive network at the

front-end and it was allowed to run 100% of the time. Chapter 7 demonstrates application

examples where the MCU is asynchronously woken up. The result is a net magnitude of

current difference from traditional periodic methods that can have an even larger effect on

battery life compared to the demonstrative example of this chapter.

1.2 Outline of Work

The remainder of this document is devoted to elaborating on the various topics that

have been previously enumerated in this introduction. Chapter 2 exhibits a complete wireless

sensing system from its application, design, and deployment. In Chapter 3, I describe a high-

side load switch used for FG programming that could also be employed for energy-harvesting

circuits. Following in Chapter 4, I present an FG temperature compensation scheme for

FPAAs. Chapter 5 gives a floating-gate transistor overview and analysis including their

operation and programming which will be indispensable for the following chapters. Chapter

6 describes an FG below-ground programming array presented as a lower overhead alternative

to many traditional works that utilize above-ground programming. The penultimate chapter

exhibits a complete analog front-end for use with an ADC along with its use in a diverse set

of end-use applications. The final chapter will serve as my conclusion and remarks on future

work.
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Chapter 2

Smart Refractory Sensor Systems for

Wireless Monitoring of Temperature

in Slagging Gasifiers

This chapter establishes the motivational basis for this dissertation work. A complete

wireless sensor network is introduced to demonstrate the various components and their func-

tional relationships. Furthermore, the end-use application of temperature sensing is a com-

mon sensing mode for IoT. The work completed in this chapter illustrates some of the hin-

drances of developing application-specific circuity which ultimately becomes the motivation

for reconfigurable circuitry. This work was funded by the Department of Energy’s National

Energy Technology Laboratory Grant no. DE-FE0012383.

2.1 “Smart” Foundry Bricks

The premise for this Department of Energy (DOE) project was to develop “smart bricks”

for a coal gasifier furnace to monitor the internal furnace conditions. The internal furnace

environment experiences temperatures up to 1450◦C and pressure up to 1000 psi for a du-

ration over months. These extreme conditions make it a barrier to monitor internal furnace

conditions which makes it difficult to determine it’s operation. Currently, the furnace is

treated like a black box where it is operated until the structural integrity is compromised

such that it is unsafe to operate. The structure is then completely dismantled and rebuilt

which is a lengthy expensive process.
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However, if conditions within the furnace could be monitored, this information could

be fed-back to operators (computers or human) so that they could modulate operational

settings to moderate the internal conditions. The scope of the project would be to place a

number of these “smart bricks” throughout the whole furnace structure to create a three-

dimensional model for it’s state of health. Presently, a single compromised brick is what

ultimately leads to the catastrophic failure of the whole furnace. The three-dimensional

model allows operators to find “hot spots” — harsh conditions in the furnace that could

indicate impending brick failure at that particular point — and moderate furnace operation

accordingly.

The “smart bricks” compose of the same refractory material that make-up the construc-

tion of the furnace, but have a lab-designed sensors embedded in them at the time of the

brick casting. The terminals of the sensor exit the brick from the opposing side that will

be exposed to the internal furnace. The sensor can then be interfaced with electronics to

sense the internal conditions. The sensors that were developed by mechanical and chemical

engineering team, and used to sense temperature, stress/strain and the internal furnace liner

health. A cross-section of the furnace wall with a smart brick is shown in Fig. 2.1a. Fig.

2.1b shows the proposed testing furnace with the tentative sensor positions. The critical

temperatures to be sensed by the circuit should be 1100◦− 1400◦C as defined by the project

proposal.

The sensing circuitry will be wireless and will run off battery power because there will

be a number of sensors that could potentially be set in hard-to-access places on the furnace.

The the test setup of Fig. 2.1b is for demonstration of the concept, but one can imagine the

wireless sensing nodes encompassing the whole furnace. All the measured data at the sensor

is transmitted to a centralized base-station node that listens for the data. The received data

can then be processed and reviewed by an operator in real time.

2.2 Resistive Sensor

The two modes of temperature sensing that were explored in this project were voltage

and resistance. The focus of this section is to examine the resistive sensors and its associated

electronics. While the project explored both modes, the resistive sensors ultimately became

the project’s preferred avenue for temperature sensing.

A thermistor was chosen as the resistive temperature sensor and was designed by the
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Figure 2.1: (a) Cross-sectional diagram of the smart brick furnace and (b) a photo of the
proposed testing furnace with superimposed circles designating the proposed smart brick
positions.

material sciences group. A thermistor is a resistor whose resistance is a function of temper-

ature. There are two different types of thermistors: negative temperature coefficient (NTC)

and positive temperature coefficient (PTC). An NTC thermistor’s resistance decreases with

an increase temperature, while the PTC resistance has the opposite behavior with an in-

crease in resistance. The thermistors for this project are of NTC type due to their chemical

composition.

An example thermistor used in this project is pictured in Fig. 2.2. The figure is a

characterization plot of the measured thermistor resistance versus the temperature that the

sensor experiences in the furnace. This characterization experiment is function of time since

the furnace instantaneously heat-up or cool-down to the target temperature. Additionally

the sensor is embedded in the furnace brick since this is how the sensor will be deployed

in actual application. The first ten hours of the experiment has the furnace heating up to

its highest temperature of 1350◦C; this is shown as the red line utilizing the right y-axis.

Within that time frame, we see the measured resistance (in blue utilizing the left y-axis)

conversely decreasing in resistance during the same time period. This confirms the sensor is

an NTC thermistor. The experiment holds the temperature of the furnace for a few hours

before plateauing at lower successive temperatures. This is shown from 10 hours to 40 hours
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Figure 2.2: Experimental measurements of a thermistor characterization.

during the experiment, followed by a ramping down of temperature.

Designing a circuit for the thermistor in Fig. 2.2, we must account for the range of

resistances the thermistor can take on while balancing sensitivity of the sensing circuit. The

critical temperatures we want to be able to sense are temperatures above 1150◦C. However,

the range of resistances that correspond to the desired temperatures must be set within

reasonable range to be useful. Using Fig. 2.2 as an example, the sensing electronics could be

configured to sense a resistance between 15Ω and 115Ω. However, referring back to Fig. 2.2, if

the temperature changed from 1200◦C to 1300◦C, and consequently the thermistor resistance

would change from 33.7Ω to 22.8Ω, the sensing circuitry’s output would only change about

10%. This example demonstrates that for the desired temperature range, there is relatively

little change (only about 10%) in the output. On the other hand, every fabricated sensor will

have mismatch among their resistance readings at the same corresponding temperature. As a

result, the design must accommodate these 10-15% tolerances in their respective resistances

due to non-idealities in the fabrication process.
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2.3 Resistive Sensing Circuit

As described in the introductory section, the sensing circuitry needs to be battery-

powered. Therefore, it needs to be energy efficient so that the batteries do not need to

be replaced often – at least on the scale of months. The specific battery circumstances of

this design will be three AA batteries as this supply will be shared with more than just the

sensing circuitry. This constraint is set by the wireless microcontroller that will transmit

the data and will be described in a following section. Furthermore, battery operation also

means the circuitry needs to work on a single supply voltage.

Since the constraints are known and the solution needs to be low-power, the number of

active components should be minimized. Furthermore, looking back at Fig. 2.2, we will

need the circuitry capable of sensing a very small resistance whose change over the desired

temperature range is in tens of Ohms. Measuring a resistance of this magnitude by means

of Ohm’s law (i.e. V = I × R) will require either a robust voltage or current relative to

the demands of low-power sensing. Since this design is operating off of a battery supply, we

are limited to a supply voltage of 2.5V – this voltage is dictated by the microcontroller [11].

This supply voltage constraint means that the current will need to be in the milliampere

range given the sensor change is in tens of Ohms resistance.0

Given that the overall constraints are known, we employed a resistive sensing circuit

pictured in Fig. 2.3 [12], [13]. This design utilizes a traditional Wheatstone bridge circuit

and only two operational amplifiers (op-amps). In its essence, this circuit senses a change in

resistance, and in response, outputs a corresponding voltage. This output voltage can then

measured by the wireless mote’s analog-to-digital converter (ADC). The ADC’s conversion

represents this data as a codeword that can transmitted back to the base-station mote.

This design has a number of advantages for battery-powered sensing. The first is that

only two op-amps are being used as opposed to an instrumentation amplifier, which in their

most conventional forms, utilize three op-amps. The second is that this design can be easily

designed for at the board level and integrated level. Third, this circuit can operate from a

single supply rail if the operational amplifiers are chosen/designed correctly.

The qualitative operation can be understood and help in the analysis of the output

voltage expression. Ignoring the second op-amp (OP2) circuit for the time being leaves the

Wheatstone bridge and op-amp one (OP1). R1 and R of the Wheatstone bridge are static

resistors, while R(1 + δ) is the thermistor. The thermistor is placed in a negative feedback



Alexander T. DiLello Chapter 2. Resistive Sensing Circuitry 12

R

V
ref2

V
ref2

V
out

V
ref1

R
2

R(1+δ)

R
1

OP
2OP

1

R
1

V
x

Figure 2.3: Thermistor sensing circuit that utilizes two operational amplifiers and Wheat-
stone bridge.

configuration of OP1. Ignoring the right branch of the Wheatstone bridge simply yields a

voltage divider down from Vref1. This configuration permits a current to flow down from

Vref1 to Vx, and the negative feedback configuration will attempt to maintain a consistent

voltage drop across the thermistor such that its inverting input is the same value as its

non-inverting input Vref2. Stated another way, OP1 will modulate Vx such that the same

current is always flowing through the left branch of the Wheatstone bridge. OP1 will only

module Vx in response to a changing R(1 + δ) resistance, which in our application will be

when furnace temperature changes.

This leaves the right branch of the Wheatstone bridge and the inverting configuration

of OP2 . The right branch of the Wheatstone bridge is simply a voltage divider with static

resistances R1 and R. When the thermistor changes, and consequently Vx, the current

through the right branch will change. Simply looking at the right branch and ignoring the

OP2 inverting amplifier, the net effect is that the voltage division seen at the node of R1 and

R will be Vref2 when δ 6= 0. This voltage can be leveraged to produce an linearized output

voltage with the help of OP2’s feedback configuration.

Taking the closed-loop OP2 amplifier configuration into consideration, OP2 will respond

to the voltage difference between its two input terminals. If there is too much current running

through the right branch (i.e. the voltage at the top of R is too high), OP2 will lower Vout

to draw some current out of the branch to maintain Vref2 at the non-inverting terminal. If

there is too little current flowing through the right branch, OP2 it will attempt to source the
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current difference by increasing Vout.

Using Ohm’s Law and the ideal op-amp characteristics, the output voltage of the Wheat-

stone bridge sensing circuit can be expressed as the following equation. The full derivation

is shown in Appendix A.

Vout = Vref2 +
R2

R1

δ(Vref1 − Vref2) (2.1)

δ is the change in the sensing resistor (specifically, a thermistor). Also note that the

output is not dependent upon the sensing resistance R (i.e. the resistance without any sub-

script), but is a function of its change. However, when designing and selecting an appropriate

value for R in the right leg of the Wheatstone bridge, you must know the top and bottom

range of R(1 + δ). Ultimately, R is selected to be the middle value of the R(1 + δ) range.

After R has been determined, one can select R1 to determine an appropriate amount

of current through the Wheatstone bridge legs. This would be dependent upon R. For

example, if R is in tens or low-hundreds of ohms, the current through the Wheatstone

bridge legs should be in the low milliampere range to create a large enough voltage drop

across R(1+δ) for OP1. This would also depend upon Vref1 and Vref2. For our designs, Vref1

and Vref2 have been chosen to be Vdd and mid-rail, respectively. And finally, R2 is selected

to gain up the change in resistance to correspond the R(1 + δ) range to an output voltage

between 0V and Vdd.

2.4 Circuit Implementation

2.4.1 Voltage Regulator and Battery

The focus of this work has been to design a low-power sensing circuit for a wireless

microcontroller, which implicitly means the power source is battery. A voltage regulator

is needed to generate a stable and known voltage from an ever-changing battery output.

Without regulation, the effective supply voltage would lower (non-linearly) over time. More

specifically, the output voltage expression of relies on assumption of stable voltage references

of Vref1 and Vref2, which need to be held constant as the batteries’ output voltage lowers

over time. While it has not been explicitly stated or shown in the schematics up to this

point, a voltage regulator is called for in this design.



Alexander T. DiLello Chapter 2. Resistive Sensing Circuitry 14

The dynamic between the battery supply and the voltage regulator is for the battery to

supply a larger than needed voltage and for the regulator to regulate the supplied battery

voltage down to a desired value. Voltage regulators are able accomplish this functionality

through a negative feedback configuration. For the case of this work, the main specification

of the voltage regulator is to maintain a regulated 2.5V as the reference voltage and power

supply of the sensing circuit. The output of three AA batteries is typically measured to

about 4V, which gives plenty of headroom for the voltage dropout.

The voltage dropout specification is main reason for not choosing two AA batteries in

series as the supply. The difference in measured output voltage of a two, full-capacity AA

battery supply and the regulated voltage is on the order of 250mV. This is close to the

minimum dropout voltage required for regulators of this application. If the two AA battery

supply was employed, it would only be a matter of hours to draw down the capacity below

the minimum dropout voltage. The issue is resolved by simply adding a third AA cell in

series with the aforementioned two AA cell. This design choice does not affect any space

and weight requirements of the project, and has the additional benefit of extended operation

time. Ultimately, we chose a commercially available off-the-shelf component MCP 1700 as

our voltage regulator [14].

2.4.2 Brick Characterization and Circuit Components

The smart bricks that were cast have been characterized and are shown in Fig. 2.4. This

figure is a slightly different viewpoint from Figure 2.2 in that time has been removed from

the figure, but ultimately conveys the same information. There is some variance among the

smart bricks in that for the same furnace temperature, each respective thermistor does not

map to the same measured resistance. As discussed in the previous section, the sensing range

of R(1 + δ) should encompass the top-end of the highest resistive sensor and the bottom-end

of the lowest resistive sensor in the desired temperature range. Furthermore, only four of

the bricks are being deployed for the final demo: Brick D, Brick C, Brick 3, and Brick 2.

This means that the expected R(1+ δ) sensing range to design the circuit around is 35Ω and

115Ω.

Knowing the data from Fig. 2.2 and considering the aforementioned design process of

the circuit, the following values were selected for the various reference voltages and resistors

of the Wheatstone bridge circuit in Table 2.1.
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Figure 2.4: Six smart brick characterizations.

Fig. 2.5 allows one to map the output voltage of the sensing circuit to a specific temper-

ature. The data of the figure is from two separate experiments layered over each other. The

sensing circuit was physically measured with R(1 + δ) changing in 10Ω increments, and the

resistance measurement of the smart brick was measured during a characterization run. It

is evident that the chosen sensor material has a nonlinear dependence on temperature, but

the sensing circuit output is linear with the exception of when the op-amp does not operate

in it’s linear region at the supply-rail extremes. The nonlinear temperature dependence was

expected for the sensor in this type of high-temperature, high-pressure furnace environment.

The wireless sensing circuit that will be used in proof-of-concept demonstration is shown

in Fig. 2.6. It consists of a vertical stack of battery-pack, wireless mote, and sensing circuit

from bottom to top. The sensing circuit contains two standard banana adapters to directly

interface with the smart brick. Fig. 2.7 demonstrates how the wireless sensing circuit would

be interfaced at a foundry furnace wall. The mechanical design of the wireless sensing circuit

allows them to be vertically stacked. The top metal spacer can be screwed into the bottom

of the taller spacer of another wireless sensing circuit.

The data shown Fig. 2.8 is the wireless sensor mote’s data received at the master mote
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Vref1 2.5V

Vref2 1.25V

R1 680Ω

R2 1.133kΩ

R 75Ω

Table 2.1: Designed values for Wheatstone bridge resistive sensing circuit.

node. This figure demonstrates how one of the wireless sensing nodes fits within the whole

system. The chain of events begins at the sensor. The sensing circuit amplifies and conditions

the sensor signal for the mote ADC to measure. The mote takes the ADC measurement,

encodes it into a code-word, and wirelessly transmits the measurement to the master mote.

The master mote is the central location where all the measured data is aggregated and

provides the human interface to the system. The master mote can then decode the code-

word and plot the data.

The plot pictured in Fig. 2.8 is data from an experiment ran with a wireless sensing node

on a WVU-made thermistor. The plotted data is the received data at the master mote that

has been decoded from code-words into corresponding voltages. The data was measured

from the sensing circuit and a smart brick from the same set of bricks pictured in Fig. 2.7.

The experiment holds the brick at 1200◦C for 40 hours and the data (one sample per minute)

is received by the master node from the sensing node. One can use a look-up-table to map

the decoded voltage back to a specific temperature, and in fact, looking back at Fig. 2.5,

the voltage matches up well to the expected hot-junction furnace temperature. The change

in the voltage output when the furnace is“held” at 1200◦C reflects the realities of keeping a

stable hot-junction temperature of 1200◦C in a furnace. The feedback controls of the furnace

continually keep a heats and cools which these changes are reflected in the measured data.

2.5 Conclusion

A wireless sensing circuit has been presented for a Department of Energy project. The

project consists of lab-made temperature sensors embedded in refractory material that can

withstand the high-temperature, high-pressure of a coal gasification furnace. It was demon-
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Figure 2.5: Left y-axis shows the sensing circuit output versus thermistor resistance. Right
y-axis shows the hot-junction furnace temperature versus resistance. The figure is used to
map output voltage to temperature.

strated that the sensors can be used to electrically monitor conditions inside the furnace.

The focus of this work gives the design of electronic interface circuitry that is capable of

measuring the sensor’s signal (resistive), logging, and transceiving the data. The sensing

circuit design consists of a low-power two op-amp design that is capable of running off of

battery supply.
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Figure 2.6: Physical design of the sensing circuit consists of battery, wireless mote, and
Wheatstone bridge circuit stack from bottom to top.

Figure 2.7: The sensing circuit interfaced with a smart brick. This a staged picture to simply
demonstrate how the interface connection would look like in a real deployment.



Alexander T. DiLello Chapter 2. Resistive Sensing Circuitry 19

Base Station Desktop/Laptop

Sensor and Wireless Interface Circuit

Hours

0 10 20 30 40 50 60 70

V
o
lt
a
g
e

1.0

1.25

1.5

1.75

2.0

2.25

2.5
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Chapter 3

High-Side Switch

Reconfigurable analog circuitry has many barriers to entry and there is a large need for

lowering their peripheral-circuit overhead to encourage wider use. These peripheral circuits

assist in one of FGs two operational modes: Run-mode and program mode. To that end, this

chapter presents work that supports the former responsibility but is presented here because

it has larger applications in the power-management and energy harvesting space. This fits

our larger narrative of advocating for low-power analog circuitry but also demonstrates that

more can come of FG development beyond its immediate usage.

3.1 High-Side Switches

As low-power electronics become more prevalent for IoT applications, power management

is a significant concern. In low-power systems, multiple voltage sources are often used to

provide supplemental energy or to reduce power consumption. Examples include switching

the supply voltage from a battery to an energy-harvesting system or switching unused sub-

systems to a lower supply voltage. Selecting a specific voltage source to use at any given

time requires a high-side load switch, which is a switch that can connect/disconnect a supply

voltage to a particular load.

The conventional usage of a high-side load switch (HSS) is demonstrated in Fig. 3.1a.

The load is connected/disconnected from a single supply voltage with a digital selection signal

denoted by Vsel. A real-world power management example would be a smartphone needing

to shut-off the power supply to a auxiliary component like a bluetooth transceiver. High-side

switches used for these purposes are well known and readily available components [15, 16].
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A slightly more complicated configuration of a HSS is shown in Fig. 3.1b, where a circuit’s

supply voltage (Vsupply) is multiplexed between two voltage sources. This configuration would

be beneficial in energy harvesting applications for conserving the supply power of the battery

by switching to an alternative energy source like solar or thermoelectric. These kinds of

products have began to emerge in the past couple of years [17].

V
supply1

V
supply2

Circuit/Load

V
supply

V
sel

V
sel

+
-

+
-

V
supply1

Circuit/Load

V
supply

V
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High-side

load switch

(b)(a)

+
-

High-side

load switch

Figure 3.1: (a) Block diagram of a conventional high-side load switch and (b) a multiplexing
high-side load switch.

The motivation for this research is to present a HSS suitable for floating-gate (FG)

operations, which requires multiplexing two supply voltages to the FG transistor cell. FGs

are explained in a more exhaustive manner in Chapter 5, but they are most well known for

flash memory applications in CMOS technologies. FGs have two modes of operation: run

and programming. These two modes correspond to two entirely different supply voltages.

Fundamentally, this is different from the aforementioned energy harvesting example in that

from the load’s perspective, it perceives the same supply voltage regardless of energy source.

Therefore, one of the main design criteria of a FG HSS is the capability to multiplex two

different supply voltages like that of Fig. 3.1b.

There are a number of reasons why there are no existing circuits for this application.

First, the FG programming voltage is higher than the rated voltage of the process, so the

design must be able to accommodate voltages higher than the rated voltage. Secondly, the

HSS design cannot depend on the programming voltage to always be present. Therefore, a

HSS design cannot be made with the assumption that since the programming voltage will

be the highest of the two voltages and should act as the supply voltage for the entire circuit.

The implication of these two points is the HSS must (1) accommodate for the cases of two
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different voltages and (2) be capable of operation with the possibility of only one voltage

being applied.

In a FG system, there are usually arrays of FGs for digital storage or analog computation.

The FG HSS will act as the voltage supply to all FG cells. However, it would not be a stretch

of the imagination to re-purpose this design to in carrying out the same operation as the

energy-harvesting battery-life extender of [17]. In fact, there are a number of advantages of

this design that will be detailed in the following section that include lower chip footprint,

lower power consumption and operational insensitivity to supply voltage values and their

changes.

The layout of this chapter is organized as follows. In the following section, an overview

on current state of HSSs and the rationale for a new high-side switch is given. The final

section is devoted to FGs. A historical context is given in terms of the development of both

analog and digital applications in addition to programming a FG. This section will also serve

to show the application overlap between traditional HSSs and FGs. The final section 3.3

presents our design of the FG HSS along with its mechanics and operation.

3.2 Power management and energy-harvesting systems

The driving force behind this research was originally for floating-gate programming, how-

ever, power management and energy harvesting systems could also directly benefit from this

development of a new high-side switch. Before the case for this can be made clear, the back-

grounds of HSSs are be presented to the reader. There are two main types of HSSs: high-side

power switch and high-side load switch. The high-side power switch is capable disconnect-

ing/connecting the supply voltage and regulating power consumption of a load. Examples of

this type of HSS are prevalent in the automotive industry where there are many components

with high voltages and large current draws that require power delivery regulation. On the

other hand, the high-side load switch simply functions as a multiplexer, but does not limit

power consumption. An excellent example of this type would be the previously given HSS

whose function it was to turn on/off the bluetooth transceiver in a mobile device. For both

types of HSS, their operation satisfies one of the objectives of power management to reduce

power consumption.

Power management is also employed in energy-constrained applications. In battery-

powered systems, multiple voltage sources are often used to provide supplemental energy
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or to reduce power consumption. Examples include switching the supply voltage from a

battery to an energy-harvesting system (e.g. solar power) [17]. Note that the difference in

this application setting is that the high-side switch multiplexes between two supply voltages

as opposed a single supply and floating node. In this context of selecting a particular voltage

source classifies it as a high-side load switch because there is no concern for current regulation

to the load (e.g. a circuit).

There has not been as much of a focus on developing new high-side load switch designs.

One of the reasons for this is that a high-side load switch is schematically realized with a

single transistor which fulfills its operational constraints. Furthermore, most applications do

not need to multiplex more than one supply voltage, so there are not many configurations to

create with a single switch. Most attention has been on improving high-side power switches.

These improvements are seen in energy efficiency since most of development is spent not on

better switches, but on improving regulators and gate drivers.

Typically, switch design for both types of HSSs are comprised of NMOS devices. For

an NMOS transistor to operate as a HSS, the gate-to-source voltage must be at least a

threshold voltage above the drain-to-source voltage. The implication of this constraint is

that the HSS design must include a gate driver capable of driving the gate voltage above

the supply voltage. This ultimately means more support circuitry. The alternative is to use

a PMOS transistor as the switch, which would obviate need of the gate driver and makes it

the more natural choice in passing a supply voltage. This was ultimately the design choice

taken for this HSS that will be presented in the next section. However, most designers opt

for NMOS switches. The rationale for this choice is that PMOS transistors can be up to 3

times larger than NMOS transistors for the same switch on-resistance due to device mobility

of charge carriers.

One of the most active research areas for HSSs is power management for industrial

environments like the automotive industry. Newer vehicles are becoming more interconnected

than before with sensors and control systems. These designs require the ability to withstand

large voltages in the range of tens of volts (up to 55V ) and large current draws in the single

amperes (up to 3A) [18, 19]. The switch resistances for these designs range from about

sub 1Ω to 10Ω. For these industrial applications, a HSS is usually designed in a Bipolar,

Complementary MOS, Double-diffused MOS (BCD) technology. This allows for a fully-

integrated and robust design with flexibility of technology choice. Additionally, these HSSs

are of the power switch type since they must have short-circuit protection and high-voltage
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protection from demagnetization (due to inductive loads).

Since most applications that HSSs have been designed for have been high-voltage and

high-current applications, there is a good argument to be made that the switch resistance

should be as small as possible to minimize the voltage drop. On the other hand, for energy-

constrained power management applications like energy-harvesting, there is less of a case to

be made since the value of switch resistance can likely be softened; the loads usually use

smaller supply voltages and draw smaller amounts of current (i.e. sub 1mA), so voltage

drop seen by the loads is not very drastic. This makes a compelling case for utilizing PMOS

switches in energy-constrained applications considering a significant power savings may be

made by not having a gate driver. This is one of the justifications for PMOS switches in the

HSS that will be presented in the following section.

Our stated objective is to design a HSS capable of multiplexing two different supply

voltages to a load. However, among the current HSS designs, there are not any that meet

all of our desired criteria. On one extreme is the energy-harvesting battery-life extender of

[17]. It was designed to multiplex a battery source and an ultra-low energy harvesting device

like a thermopile whose voltage does not get above 1V . On the other extreme are industrial

HSSs that are designed to withstand supply voltages in tens of volts, but are realized in

a Bipolar, Complementary MOS, Double-diffused MOS technology. This is not a viable

technology for FGs because they are built in standard CMOS processes and are arrayed by

the hundreds to millions on a single chip. And to the best of author’s knowledge, there is

not any published industrial HSS design that exhibits multiple supply voltage multiplexing.

Furthermore, both of these HSS solutions consists of a complex system of components like

boost converters, regulators, and off-chip passives (e.g. inductors). These components are

not necessary for the needs of FG programming and consume extra power and a larger

physical footprint. The requirements of the FG HSS need to be low-power (sub 10nW ) and

as small as physically possible for given switch resistance.

3.3 High-Side Switch

The previous section focused on the background information of a HSS and the justification

for a new voltage multiplexing HSS. This new type lends itself useful for FG programming

and energy harvesting power management applications. In particular, a HSS with a low

design overhead and the ability to multiplex voltages beyond the nominal supply voltage are
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two features unique to this design. Many of the current HSSs with similar features were not

designed in a CMOS technology and contain unnecessary components for FG programming.

The design choices to achieve these goals will be presented in this section.

In a CMOS process, either an n-channel or p-channel MOSFET (nFET or pFET) can

be used as a switching element. Using a MOSFET as a switch means one is operating

the transistor in the triode region because VDS<VGS−Vth. Furthermore, when operating a

MOSFET as a closed switch in triode, it’s a reasonable assumption that there will be a very

low VDS drop across the channel — in fact, most load transistors are designed such their

ON-resistance is low, and therefore, have a very low voltage drop. Therefore, the triode

equation for the drain current,

ID = µnCox
W

L

[
(VGS − Vth)VDS −

1

2
V 2
DS

]
(3.1)

can effectively be reduced by approximating the 1
2
V 2
DS ≈ 0 which yields following expres-

sion:

ID = µnCox
W

L
[(VGS − Vth)VDS] (3.2)

where
µn electron mobility constant for nFET;

Cox oxide capacitance;

W
L

FET device dimensions;

Vth threshold voltage;

VDS drain-to-source voltage.

Operating in this extreme is referred to as the deep ohmic region because there is a linear

relationship between the drain current ID and voltage VDS. With (3.2) we can characterize

the effective MOSFET ON-resistance with dividing it by VDS:

RDSON
=

1

µnCox
W
L

[(VGS − Vth)]
(3.3)

(3.3) shows that the designer of the MOSFET switch can maximize W
L

to lower the on-

resistance. Furthermore, the designer has the choice between pFET and nFET which would

change the charge carrier mobility constant. In (3.3) shows µn which designates this device

as an nFET switch, where for a typical CMOS process µn ≈ 3µp. Considering that the
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objective of a high-side load switch is to pass a supply voltage, a pFET is a more natural

choice to act as the switch even though nFETs have a better RDSON
per unit area because

of its larger mobility of charge carriers. To achieve the same objective with nFET switches,

a voltage step-up converter must be used to generate a gate voltage at least one threshold

voltage above the supply voltage that is being passed; this added circuitry comes at the

expense of greater silicon area, power consumption, and design complexity.

The conventional usage of a pFET-based high-side load switch is demonstrated in Fig.

3.2, where a load is connected/disconnected from a single supply voltage. The source and well

of the single pFET are connected together to ensure that the well voltage is at the highest

potential. However, this configuration poses a problem when there are multiple, differently

valued, and dynamic supply voltages each coupled to the load via different pFETs. The well

of each pFET switch must be connected to the highest voltage encountered, or else there is

significant possibility that a well-to-diffusion junction will become forward biased, causing

the high-side load switch to fail.

V
supply Load

Gate 

Control
Logic

V
well

 = V
supply

Figure 3.2: Block diagram of a conventional high-side load switch.

In this work, a pFET-based multiplexing high-side load switch that is capable of con-

necting multiple supply voltages to a single load is presented. To ensure that no junction is

ever forward biased, a technique for dynamic biasing of the well potentials is employed. This

high-side load switch is capable of passing supply voltages above the rated supply voltage

for a process. As a result, this circuit is able to connect the large voltages required for

hot-electron injection when programming FGs used in flash memory and analog non-volatile

memory [8], which was the original application of this high-side load switch.

While recent work on high-side switches has largely focused on using specialized processes

(e.g. Bipolar-CMOS-DMOS [19, 20]), this work is focused on utilizing standard devices in

a CMOS process. In the following, we present the operation of the CMOS high-side load

switch.
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3.4 Circuit Implementation

When using pFET switching elements in a high-side load switch, the wells must be biased

at or near the highest potential to prevent the possibility of forward biasing. Fig. 3.3 displays

our multiplexing high-side load switch that incorporates pFET switches along with adaptive

well biasing. The adaptive well biasing occurs through the well-selection transistor pair,

M5 and M6, by passing the higher of the two supply voltages to the common well, Vwell.

This novel technique was re-purposed from [21] which adaptively biased the wells of pFET

charge-pump stages. In most charge pump designs prior to [21], the stages were designed

with nFET devices. As a consequence, when the charge-pump stages were cascaded, each

successive stage beyond the first increasingly suffered from the body-effect which ultimately

lowered the theoretical charge pump output voltage. While this same method solves two

different issues for two different applications, it ultimately shows a pFET-type solution born

out of issues from an nFET.

The HSS schematic of Fig. 3.3 can be compartmentalized into its operational parts. The

transistors M7 and M8 are the switch elements that multiplex either Vsupply1 or Vsupply2 to the

output, Vsupply out. M5,6 senses and dynamically bias the common Vwell connection among

the pFETS. Transistors M1−4 form a standard level shifter driven by an inverter and its

complement signal; M1−4 and the inverter perform the function of the gate-control block of

Fig. 3.2. The inverter should be powered either by the lowest supply or chip Vdd.

The determination of which supply source is connected to the output load is specified

by digital selection Vselect. When Vselect is HIGH, M2 is turned ON and the gate of M8 is

pulled towards ground, thus connecting Vsupply2 to Vsupply out. At the same time, M3 is turned

ON and level shifts the gate of M7 to the highest potential (i.e. n-well potential) to turn

OFF the unselected switch. Recall that this n-well potential is established by the dynamic

biasing from the well-selection transistor pair (M5,6) and will be connected to the higher of

Vsupply1,2 regardless of the value of Vselect. When Vselect is LOW, the same, but complementary

operations will occur to turn ON M7 and turn OFF M8.

The well-selection pair (M5,6) has a clearly defined output when Vsupply1,2 are significantly

different from each other; the common well has a potential equal to the maximum of Vsupply1,2.

However, when Vsupply1,2 are within approximately one threshold voltage (VT ) of each other,

M5,6 turn OFF, and the well voltage floats. Traditionally, this well-selection pair has been

used exclusively for when Vsupply1,2 are significantly different (e.g. the charge pump of [21]).
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Figure 3.3: Schematic of the multiplexing high-side load switch using adaptive well biasing.

However, we will describe how the well-selection pair continues to keep the high-side load

switch operating as desired, even when Vsupply1,2 have similar values.

When Vsupply1 ≈ Vsupply2, Vwell is floating but will stay in close proximity to Vsupply1,2. For

instance, Vwell cannot float higher than Vsupply1,2+VT since that would turn ON M5,6 and pull

Vwell back towards Vsupply1,2. Also, Vwell cannot float too low, since that would forward-bias

the diffusion-to-well p-n junctions of Fig. 3.4, thus adding charge to the floating well. As a

result, Vwell would begin pulled back towards Vsupply1,2. In either scenario, Vwell stays close

enough to Vsupply1,2 that there are no significant effects on the performance of the high-side

load switch.

The exact value to which Vwell floats depends on how quickly Vsupply1,2 are changing. If

Vsupply1,2 are moving slowly (e.g. DC changes) in either the same or opposite directions,

then Vwell will settle to a value slightly less than Vmax=max(Vsupply1,2); experimentally, we

have found this voltage to be within 200mV of Vmax. This DC experimental measurement

of a buffered Vwell node is shown in Fig. 3.5. The reason for this behavior is due to the

reverse-bias leakage current from the well-to-substrate pulling Vwell down and also a slight

forward-biasing of the diffusion-to-well potential for Vmax, thus establishing an equilibrium.

These two different interfaces are represented in Fig. 3.4, where the parasitic pn-junctions



Alexander T. DiLello Chapter 3. Multiplexing High-Side Load Switch 29

V
s

I
tun

V
d

V
d

V
d5

V
g5

V
w

V
d6

V
s5

+
- +

-V
supply1

V
supply2V

s6

V
g6

Metal 1

N-Well

P-Sub

Poly 1

P
+

 Diffusion

N+ Diffusion
V

w

Figure 3.4: Physical cross-section of the well-selection transistor pair with schematically
overlaid parasitic pn-junctions.

are overlaid schematically.

For faster changes in Vsupply1,2, the well capacitance keeps Vwell in close proximity to Vmax

until |Vsupply1 − Vsupply2| > VT and Vwell becomes strongly connected to the larger of Vsupply1,2.

The transient case is shown in Fig. 3.6 with Vwell in the middle plot. Vwell does not fall below

4.75V where Vsupply1,2 meet.
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bination of Vselect (blue) Vsupply1,2 (blue, pink) when Vsupply1,2 are within a 200mV of each
other.
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3.5 Results

The high-side load switch of Fig. 3.3 was fabricated in a 0.35µm CMOS process using

only standard 3.3V devices (i.e. no thick-oxide I/O devices). The measured results are

displayed in Fig. 3.6, which varies both supplies over time while switching the selection

signal. Fig. 3.6 covers a combination of various signal situations and shows the output,

Vsupply out, following its selected supply voltage. The middle plot shows the waveform of the

common well potential, which was measured on an auxiliary circuit since this node was too

sensitive to pin out; this subplot shows that the well-selection transistor pair dynamically

biases Vwell to the highest supply voltage, and when Vsupply1 ≈ Vsupply2, Vwell stays in close

proximity among all switching cases. The bottom plot is the selection signal Vselect that

dictates which supply voltage is chosen to output to Vsupply out. The experimental results

also demonstrate that the circuit can safely withstand temporary voltages that exceed the

rated 3.3V supply voltage of the process. Care should be taken so that no device undergoes

junction or oxide breakdown, which set the limit for Vmax. Typically these breakdown

mechanisms occur at 2-3× Vdd in most processes [22]; our circuit was limited to ≈ 7V.
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Figure 3.6: Measured transient results showing the (top) input/output behaviour, (middle)
well potential, and (bottom) selection signal. Logic HIGH = Vsupply low and logic LOW =
0V .

Operation beyond the rated 3.3V is especially useful for our target application of program-
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ming non-volatile analogue memory using floating-gate (FG) transistors [8]. For example,

hot-electron injection is a common method of precise FG programming which requires large

voltages outside of the typical supply rails to create a large source-to-drain potential [23].

In this 0.35µm process, Vsd ≈ 6.5V is required. Therefore, we temporarily enable a charge

pump to generate this high voltage and use the high-side load switch to connect the FG

device to the high voltage while programming. Otherwise, we connect the FG device to chip

Vdd = 2.5V . The programming procedure is demonstrated in Fig. 3.7 where a charge pump

is connected to Vsupply2 and is enabled at t = 1s. Once the charge pump output is at 6.5V ,

the high-side load switch connects Vsupply out (i.e. the FG transistor) to the charge-pump out-

put (Vsupply2) via Vselect. When programming has been completed, the high-side load switch

reconnects the FG transistor to chip Vdd (Vsupply1), and then the charge pump is disabled

and allowed to discharge slowly towards ground. A die photograph of the high-side switch

and charge pump are displayed in Fig. 3.8.
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Figure 3.7: Floating-gate programming demonstration using the high-side load switch and
charge pump where Vsupply1, Vsupply2, and Vsupply out is shown in teal, gray, and dashed red,
respectively.

Measured characteristics of the multiplexing high-side load switch are displayed in Table

3.1. The ON-resistance of both pFET switches was measured to be 45Ω, as designed, to

meet our constraint of RON ≤ 50Ω. The ON-resistance is adjustable by sizing the switching

transistor dimensions (M7,8) to meet an application’s design constraints as was shown in
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Figure 3.8: Die photo of chip with insets showing the detail of the charge pump and high-side
switch.

(3.3). One additional consideration a designer should take into account are the parasitic

resistances that occur in layout. For example, Fig. 3.9 shows the physical layout of a HSS

with a designed ON-Resistance of 2Ω, where the device dimensional width was on the order

of 125µm. However, the physical on-chip connections between pads and the pins of the 2Ω

HSS contributes to the overall measured ON-resistance, which was the unfortunate case with

a HSS that was fabricated in Fig 3.8. The 2Ω HSS had a die placement shown in Fig. 3.10

and the the parasitic resistances of the pad to pin connections contribute ≈ 100Ω. Thus

the effective measured ON-resistance was approximately 102Ω. Our physical measurements

were verified parasitic resistance simulation.

Figure 3.9: Physical layout of a 2Ω HSS. Outlined in red is a single connection or node,
which is 125µm long.

Fig. 3.11 shows the measured power consumption of the circuit when sweeping Vsupply2

and while holding Vsupply1 = 2.5V . The trend can be attributed to a combination of reverse-
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Figure 3.10: The physical connection between the HSS and the padframe of a fabricated
design contributes non-negligible amount of parasitic resistance to the ON-resistance.

biased p-n junction current and subthreshold leakage current. As Vsupply2 decreases, the total

current consumption greatly decreases, thereby reducing the static power consumption. The

static power consumption of 4.6nW shown in Table 3.1 was taken under the conditions

of Vsupply low = Vsupply1 = 2.5V and Vsupply2 = 7V , which represents a worst-case power

consumption scenario for this circuit. Note also from the right plot of Fig. 3.11 that there

is a slight increase in static current when |Vsupply1 − Vsupply2| < VT . This current increase

helps to validate our discussion regarding the operation of the well-selection pair (M5,6) when

Vsupply1 ≈ Vsupply2. When |Vsupply1 − Vsupply2| < VT , Vwell is at a voltage between Vsupply1,2.

Thus, a slight forward biasing from the higher Vsupply to the well causes current to flow into

the circuit and is counteracted by a reverse-bias current flowing out of the circuit from the

well to the lower Vsupply.

Two points can be made about this phenomenon. First, note that the supplier of the

current into the circuit is whomever is the higher Vsupply and hence why we see this role change

as Vsupply2 is swept above Vsupply1 at 2.5V . Secondly, note how the currents counteract in

equally but opposite amounts. They eventually self-bias as |Vsupply1 − Vsupply2| ≈ VT . These

currents are small (i.e. < 300pA) and do not impact the operation of the circuit when

Vsupply1 ≈ Vsupply2.
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Parameter Measurement

ON-Resistance 45Ω

Rise time 10.5ns

Fall time 16.5ns

Turn-on delay time 11.5ns

Static power consumption 4.6nW

Dimensions 67× 84µm

Table 3.1: Measured Characteristics

3.6 Conclusion

A multiplexing high-side load switch with adaptive well-biasing was presented. It was

fabricated in a standard 0.35µm CMOS process. Although the rated voltage is 3.3V , the

circuit is capable of operating at a much higher supply voltage. The load switch can serve

a variety of applications, such as energy-harvesting power management and floating-gate

programming. While this design meets all the criteria that was required for our applications,

there could be improvements made to future iterations.

The design is schematically small (≈ 10 transistors), so there is very little room for

improvement in this aspect of it without a completely new schematic. Even considering the

lower mobility of pFETs that contribute to larger sized switch devices, this design choice is

validated in that the additional support circuitry physical dimensions and power consumption

of charge-pumps and other circuitry is not needed for operation. However, the case could be

made that there should be improvements made on the physical aspects of design to improve

performance. The measured ON-resistance was in the tens of Ohms, which could be lowered

to single Ohms. Recall that there are chip-level parasitic resistances that are not accounted

for in the transistor-level design. Parasitic resistances may be reduced by increasing metal

trace widths, placing the circuit closer to its connections, and employing parasitic extraction

simulations.

In terms of applications, the circuit has been well-tested in floating-gate programming

environment. However, its capabilities for energy-harvesting power management have only

been simulated and tested in a contrived lab environment. While the circuit meets the

conditions and criteria for energy-harvesting power management, it has not yet been used
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Figure 3.11: The left plot shows measured static power consumption as a function of the
Vsupply2 voltage. The right figure shows the respective measured current contributions by the
two supply voltages as Vsupply2 voltage is increased.

in a real application. For example, the HSS coupled with some energy harvesting circuitry

would be an interesting complement to the work in high thermal energy environment of in

Chapter 2.
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Chapter 4

Temperature Compensation of

Floating-Gate Transistors in

Field-Programmable Analog Arrays

Post-fabrication reconfigurability is the feature that makes FGs attractive to analog de-

signers. However, thinking about their real-world use, one quickly realizes that for the

majority of an FG’s operational life, it will be serving as a bias in a circuit. In other words,

not operating in programming mode. Therefore, a designer must also consider its operation

as a current bias, which unfortunately has a temperature dependence. Furthermore, how

can this issue be addressed within the context of a large array of FGs that provides diverse

current biases? This chapter presents a low overhead temperature compensation scheme for

FG-dense designs.

4.1 Floating-Gate Temperature Dependence

Analog computation and pre-processing has been used in a wide variety of systems to im-

prove energy savings, showing in some cases the equivalent of a 20-year leap in digital scaling

[5]. Traditional analog pre-processing stages tend to be highly specialized application-specific

systems, but developments in reconfigurable field-programmable analog arrays (FPAAs) [4, 6]

have allowed these analog techniques to be applied to systems without a priori knowledge

of the application space. One of the biggest hurdles in implementing reconfigurable analog

systems lies in the infrastructure of the system. Temperature compensation is a particular
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challenge since the diverse application space demands a wide range of stable bias currents.

Many reconfigurable analog systems utilize floating-gate (FG) transistors to provide pro-

grammable bias currents [4, 6]. Unfortunately, the programmable bias currents generated

by FG transistors are quite sensitive to temperature. There have been some successes in

implementing temperature compensation for FGs employing large passive devices; however,

these techniques are too area-hungry to be a viable option in dense FG arrays [24]. Others

have employed a varactor on the FG node and use an additional voltage to modulate the

capacitance at the FG node in response to temperature effects [25, 26]. This varactor-based

method has been implemented on-chip and off-chip with great success, but has only been

demonstrated for a temperature range between 25− 43◦C due to the small tuning range of

the varactor. Moreover, no work has yet demonstrated the ability of a temperature compen-

sation circuit to accurately regulate a multitude of currents across an array of floating-gates,

as would be utilized by an FPAA system, without adding unfeasible levels of power or area

overhead.

This work chapter temperature compensation of FG transistors when the required number

and values of currents remain unknown at design time. All plots depict measured results

from an integrated circuit fabricated in a standard 0.35µm CMOS process.

4.2 Floating-Gate Devices

FG devices are most commonly implemented as flash memory in digital systems, but

they also have a memory-like application in analog systems. Within the context of analog

systems, floating-gate devices can be programmed to hold a specific amount of charge on the

gate, which is electrically isolated by a coupling capacitor. By programming specific amounts

of charge on the gate, and thus programming the channel current to a specific value, the FG

transistor becomes a tunable current source.

FPAAs often utilize large arrays of these FG devices and within the FPAA system in this

work, there are over 300 biases realized by FGs which control elements ranging in granularity

from current-starved inverters to bandpass filters. This wide range of elements necessitates

a vary wide range of bias currents — creating a need for a temperature compensation circuit

which can stabilize a wide range of currents.

Before operating an FG device as a current source, it must first be programmed. There

are two common programming mechanisms for modifying charge on an FG: Fowler-Nordheim
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(FN) tunneling and hot-electron injection. FN tunneling is typically used as a global erasure

for all FGs since it is difficult to tunnel individual FGs. The procedure for FN tunneling is

accomplished by significantly increasing the tunneling node capacitor (referred to as Vtun in

Fig. 4.2). Under these conditions, charge is drawn off the FG node. Hot-electron injection is

typically used to add electrons to the FG. This is accomplished by raising the FG transistor’s

VDD to generate drain current conditions favorable for impact ionization. The ‘hot electrons’

with enough energy to surmount the FG barrier contribute charge to the FG. A more in-depth

overview of these programming methods are explained in Chapter 5.

A transistor’s operational characteristics will have an inherent dependence on temper-

ature. Furthermore, transistors operating in the sub-threshold region, which is our main

application operation area, experience more extreme changes (exponential) in channel cur-

rent for a change in temperature than when in above-threshold operation.

Figure 4.1 shows the extent of temperature effects on an FG transistor. This example

demonstrates for a single programmed FG device with a fixed Vcg — the voltage node for

setting the target current bias — that the output current wildly varies with temperature

change. Holding Vcg constant is the traditional method for setting target bias currents in

FPAAs; however, a compensation circuit to modify Vcg in response to a change in temperature

is clearly needed.

To generate temperature compensation, we use an FG current multiplier, as illustrated

in Fig. 4.2 [26]. Considering that MREF and M1 have the same W/L, the charge stored

on their respective FGs can be modified and used to ratio the reference current IREF to

IM1. Operating an FG in the sub-threshold saturation region can be characterized by the

following:

Id = Io
W

L
e−κVfgq/kT eVsq/kT eVd/VA (4.1)

where all voltages are referenced to the well potential and
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Figure 4.1: Temperature dependence of an FG transistor. The plateaued currents for Vcg >
2.25V are artifacts of many junction connections to a single global connection where the
current reading was taken. As a consequence, their collective leakage current becomes non-
negligible. The current in a single FG transistor continues below these values.

I0 pre-exponential current scaler;

W
L

device dimensions;

Vfg FG voltage;

VA Early voltage;

kT/q thermal voltage;

κ coupling coefficient from gate to channel that defines the subthreshold current

slope;

Vs source voltage;

Vd drain voltage.

Equation (4.1) is the same equation as (5.1) with the thermal voltage being expanded

here for the context of the temperature effects. Furthermore, Vfg as defined in equation (5.2)

is repeated here for improved readability:

Vfg =
QFG

Ctot
+
Ccg
Ctot

Vcg +
∑ Cpar

Ctot
Vx ≈

QFG

Ctot
+
Ccg
Ctot

Vcg (4.2)

where
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Qfg total charge present on the FG;

Ctot sum total of all capacitances coupled to the FG including parasitics;

Ccg control gate capacitance;

Cpar parasitic capacaitences;

Vx the respective terminal voltages that correspond to Cpar coupled to Vfg.

The right-hand side is a reasonable approximation given that Ccg — shown in Fig 4.2 —

represents the majority of total capacitance CT . Then, incorporating (4.1) and (4.2) into the

FG current multiplier topology of Fig. 4.2 renders the following output current relationship:

IM1 ≈ I
REF

exp
qκ(QMREF

−QM1)

CTkT
(4.3)

where

QMREF
, QM1 amount of charge on their respective FGs.

Equation (4.3) shows that all temperature dependence is removed from the output cur-

rent for charge-matched FGs in the mirror topology. For FGs with unmatched charges in

the mirror, there still exists a temperature dependence, but its effects are greatly diminished

compared to an FG without temperature compensation. Unmatched charges have a temper-

ature dependence that can be characterized for the following two cases: QM1 < QMREF
and

QM1 > QMREF
, where a larger charge amount is the result of fewer electrons on the FG and

will correspond to a smaller current. Defining the exponential terms in equation (4.3) as β

with the exception of T

β =
qκ(QMREF

−QM1)

kCT
(4.4)

gives the following expression of IM1 for the two differing charge cases:

IM1 =

{
I
REF

eβ/T QM1 < QMREF
⇒ I

M1
> I

REF

I
REF

e−β/T QM1 > QMREF
⇒ I

M1
< I

REF

(4.5)

Taking the derivative of (4.5) with respect to temperature yields a negative temperature

relationship for IM1 > I
REF

and a positive relationship for IM1 < I
REF

.

dIM1

dT
=

{
− I

REF
β

T 2 eβ/T QM1 < QMREF

I
REF

β

T 2 e−β/T QM1 > QMREF

(4.6)
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Figure 4.2: Floating-gate current mirror configuration.

These temperature coefficients will be manifested in the current measurement slope over

a temperature range and become more apparent with larger differences in charge.

4.3 FG Temperature Compensation

The application presented in this discussion is applied to our FPAA, which is called the

Reconfigurable Analog and Mixed-signal Platform (RAMP) [4]. To provide temperature

compensation to such a large-scale system, we are leveraging the FG current mirror shown

in Fig. 4.2. As stated in Section II regarding FPAAs, the RAMP utilizes floating-gates to

provide precise, but temperature-dependent current sources. The FG current mirror is used

to generate a control gate (Vcg) voltage that responds to changes in temperature and reduces

its effect on current variation.

4.3.1 System Architecture

Our RAMP includes over 300 controllable current sources generated from FGs to be

used as biases for the different circuits included within the RAMP. As an FPAA, the RAMP

utilizes “Computational Analog Blocks,” or CABs, as building blocks for post-fabrication

reconfiguration. The CABs can include simple devices or full circuits. By routing the CABs

together and making connections to the FG biases, analog and mixed-signal systems can be



Alexander T. DiLello Chapter 4. Temperature Compensation of FGs in FPAAs 42

synthesized directly on the RAMP. Figure 4.3(a) shows a block-level diagram of the RAMP

and how the bias currents, as well as how temperature compensation fits in to the system

as a whole.

To implement the FG current mirror for temperature compensation, a “reference” tran-

sistor is set-up in diode connection to dynamically set the global Vcg so that a steady current

will be seen on any other FG connected to the mirror topology. To accomplish this, a spe-

cific CAB has been added to the RAMP that allows for the diode connection. Figure 4.3(b)

shows the full schematic of the compensation circuit within a floating-gate array. Transistor

MREF is placed in diode connection via the current mirrors comprised of transistors MA-

MD. Transistor MD mimics the behavior of the MREF , specifically at its drain. All reference

transistors are sized identically to ensure the same current flowing from the drain of MREF

is also flowing from the drain of MD. The drain of MD is then connected to the global Vcg

node, allowing for the complete diode connection of MREF .

This topology employing two current mirrors out of the reference FG transistor is used

instead of a simple diode connection (i.e. drain connected to the control gate) to ensure

that the drain of MREF is kept at a relatively fixed potential. With a conventional diode

connection, any fluctuations at the drain of the reference transistor would be parasitically

coupled to the floating-gate as indicated by (4.2), causing potentially large fluctuations in

channel current. By using the current mirrors to create the diode connection, the voltage

seen at the drain of the reference transistor will be more constant. A similar method is

employed with the FGs used as current references. Instead of connecting the FG directly to

a circuit as a bias, a single nFET-based current-mirror is used to ensure that any fluctuations

in the circuit will not affect the FG output.

4.3.2 System Programming

The first crucial step in programming our temperature compensation system is to deter-

mine a value of IREF . IREF is the stable, temperature-independent, reference current which

the rest of the system will refer to as the temperature of the environment fluctuates. The

closer IREF is to the individual mirrored current values, the more accurately the system will

be able to compensate. For this demonstration within the RAMP system, we chose a value

typical of low-power analog bias currents – 10nA. Generally, this choice should be made by

matching IREF to the average value of the expected currents of M1-Mn or the current which
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is most sensitive to temperature that is being implemented in the design.

For a given IREF , when MREF is programmed and diode connected, a particular Vcg will

occur. With a known value of Vcg, we can characterize the programming of M1-Mn. The

programming is controlled by a continuous-time feedback circuit, similar to the one presented

in [27]. The continuous-time programmer injects the FG to some value dependent upon a

user-specified target voltage. At a given Vcg, this FG value will generate some specific current

in Mn which can be stored in a look-up table to relate the value of the programmer’s target

voltage to the resultant current in Mn for a given Vcg. We can then use this look-up table

to program the currents of M1-Mn to any specified value.

A comparative view on the effectiveness of temperature compensation is demonstrated

in Fig. 4.4. This shows the temperature compensation performance relative to the room

temperature programming target from −25◦C to 85◦C. Each line in Fig. 4.4(a) corresponds

to a different ratio between the current IREF and the current flowing through transistor Mn

(depicted in Fig. 4.3(b)). The current IMn was programmed at room temperature (25◦C)

and adjusted via the FG temperature compensation structure shown in Fig. 4.3.

The large variance in current ratios shown in Fig. 4.4 is a constraint imposed by the

nature of the RAMP, allowing for the device to span a wide range of applications without

limiting the range of available bias currents. The best case is when the current targets

between the FG (Mn) and FG reference (MREF ) are equal. As predicted by (4.3), ratios

other than 1 : 1 will result in less temperature compensation. With these ratios, which are

a result of differing FG charges, a positive (negative) trend versus increasing temperature

is the result of a negative (positive) difference in the numerator of (4.3). However, despite

not working as well as a 1 : 1 ratio, these cases still perform better than an umcompensated

scenario, as shown in Fig. 4.4(c).

4.4 System Performance

Figure 4.1 shows the exponential dependence of temperature effects on uncompensated

FGs. Due to the nature of the RAMP, target currents used for the operation of specific,

synthesized circuits will be unknown until the end-user picks a desired application. Subse-

quently, depending on the complexity of the synthesized design, there will be more than one

target current, at more than one target value. This calls for the ability to apply temperature

compensation for a wide range of FG injection targets from a single targeted IREF .
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To show the advantage of temperature compensation in the RAMP system, a current-

controlled ring oscillator has been synthesized from one of the CABs. This circuit utilizes

an input current, Iin (generated by one of the FGs) to starve its odd number of inverters,

producing output frequency oscillations proportional to the input current (Fig. 4.5(a)).

For an output frequency of 10kHz, Iin was set to 33nA. The IREF current chosen for the

temperature compensation system was set at 20nA. Utilizing a ratio of 1 : 1.65 for IREF and

Iin, the compensation scheme is able to decrease the fluctuations of the bias current over the

temperature sweep of 0− 90◦C.

The ring oscillator was tested with both an uncompensated and temperature-compensated

FG. The oscillator output frequency for both cases is shown in Fig. 4.5(a). The current bias

using an uncompensated FG changes exponentially with increasing temperature while the

compensated current bias remains close to the same value for the full temperature sweep.

A synthesized comparator example is shown in Fig. 4.6. The FG is programmed to draw

a current across a resistor to set a desired reference voltage level, VREF . The uncompensated

and compensated VREF measurements are shown in Fig. 4.5 where the reference current was

set to 10nA and the current through the resistor was programmed to be 100nA for a ratio

of 1 : 10. The temperature compensation ratio does not represent an ideal case, but greatly

outperforms the uncompensated case.

4.5 Conclusion

A temperature compensation circuit was presented for FG-dense structures such as an

FPAA to improve performance over a temperature-varying environment. It is able to com-

pensate for a multitude of FG biases with various output currents, which is representative

of the variable nature of FPAA usage. The compensation system has been demonstrated

to work with an array of FG current sources intended for biasing components such as an

oscillator or other analog blocks. Its performance has been tested as a part of the larger

FPAA system and shown to improve current bias stability.
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Chapter 5

Floating-Gate Device Introduction

Before presenting research on FG programmers, we need to establish a requisite knowl-

edge base of the device. This chapter presents the origins of FGs and their applications and

development over the years. Furthermore, we’ll describe the device’s physical make-up and

how that affects its operation, and the mechanisms that permit its programmability.

5.1 Floating-Gate Development and Background

Non-volatile memory (NVM) is probably the most familiar application of floating-gate

(FG) transistors which was discovered by Kahng and Sze in 1967 [28]. Since then, NVMs

found in such products as flash memory and solid-state drives have received a large research

focus and have become ubiquitous in consumer electronics in the past ten years. As the name

suggests, NVM distinguishes itself from it’s “volatile” counterpart (most conventionally used

as computer memory) in that it holds its state or charge after it loses power.

FG transistors are charge-holding devices whose gate does not have a DC path to ground

(i.e. capacitively held), which makes them great candidates for holding charge for long

periods of time. In fact, it has been shown that the change in charge is < 1% over a 10

year period [29, 30]. Excellent charge retention and the consistent downscaling in device

dimensions have made it a pervasive in digital applications [31]. Employing FGs for digital

purposes literally means adding/removing enough charge to the FG to measure a ‘0’/LOW

or a ‘1’/HIGH at the output. This is akin to measuring a digital output voltage where a ‘0’

is ground and a ‘1’ is circuit’s supply voltage. However, much in the same way there is a

spectrum of analog voltage outputs between a ‘1’ and a ‘0’, FGs can be employed for analog
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applications since there is a continuum of charge that can be placed on the FG.

The amount of charge placed on a FG can be quantitatively modeled as a smooth con-

tinuous function allowing it to be used as a computational element since this charge amount

can be controlled by a programming process. Much in the same way of digital flash appli-

cations benefited from FG dimension downsizing, analog FGs stand to benefit as well [32].

Some of the first applications of analog NVM were largely biologically-inspired. In 1989,

Mead presented a retina circuit and cochlear model [33] and Intel offered their electrically

trainable artificial neural network chip (ETANN) that utilized an array of FGs to create

learning synapses [34]. In 1992, a ‘nueron MOS’ was presented because of its behavior that

was markedly similar to neurons [35].

Many of these biologically-inspired circuits laid the groundwork for the synthesis of FGs

into traditional analog circuits: translinear and log-domain computations [36, 37, 38], adap-

tive voltage taps for analog-to-digital converters [39], and input-offset compensation for

amplifiers [40]. FGs have also offered compelling solutions for post-fabrication mismatch

through trimmable current sources [41, 42, 43] and pin-count reduction with on-chip biasing

[37].

Many of the aforementioned FG usages have been application-specific or supplemental

to a circuit’s function with the exception of the ETANN chip. The ETANN chip has become

the archetype of contemporary system-level FG design for its arrays of FGs used to create

individual computational blocks. However, the impetus for modern system-level designs have

been to gain the benefits of reconfigurability for analog design and analog signal processing.

As a result, the modern realizations follow in spirit of Field-Porgrammable Gate Arrays

(FPGAs), and these analog counterparts are referred to as Field-Programmable Analog

Arrays (FPAAs) [44]. Over time though, FPAA platforms have since been developed to

harmonize the analog/digital divide onto a single chip to complement the circuit needs for

the application space [4],[7], [45].

Given all these highly sought after analog applications, one would conceive FGs are highly

emphasized and vastly deployed in analog design. However, analog FGs have been slow to

be integrated into designs due to practicality of programming. Many of the aforementioned

research designs need to be programmed with fine granularity which involves intimate physi-

cal device knowledge, expensive laboratory equipment (many high-precision voltage/current

references), and extensive support circuitry. Because of this high barrier to entry, improving

the support circuitry became the inspiration to a lot of the designs in this work.
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5.2 Floating-Gate Device Overview

A FG transistor in this work refers to a p-channel MOSFET (pFET), whose gate is

isolated via opposing oxides and does not have any direct connections to a voltage potential.

A schematic of a FG transistor juxtaposed with a conventional pFET is displayed in Fig.

5.1 along with the physical representation. From the physical cross-section, we can see that

the FG is essentially has an additional gate-oxide stacked on top of a conventional pFET to

render the FG. Interestingly, the floating gate utilizes polysilicon material (i.e. not a metal

material) which is better for long-term charge storage as it will not leak charge over time.

A few other distinctions from a conventional pFET is that the two gates on the FG must

be distinguished from each other. The node that is accessible to the designer is referred to

as the control gate Vcg. The control gate is the gate that will be used in the same manner

as Vg of the pFET to operate the FG device. Additionally, there is a parallel plate structure

in the FG formed by the gate-oxide-gate stack. Because of this structure, it is schematically

modeled as capacitor Cg. And finally, Vfg refers to the effective floating gate voltage which

will be the node that stores the charge.
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Figure 5.1: Schematic representation and physical cross-section of (a) a pFET transistor and
(b) a FG transistor, respectively.
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For a FG to be used computationally, the amount of charge on the FG must be modifi-

able. The process of modifying charge on a FG is referred to as FG programming and this

distinction is made because of the unusual nature of a capacitively isolated node. In this

work, ‘FG programming’ refers to electrically programming a FG to add and remove charge.

The main approach to create electrical programming conditions is to distort the FG energy

band diagram such that there is a great probability for charge transport to/from the floating

gate. For most designers to accomplish the energy band distortion, they employ one of two

quantum mechanical processes: Fowler-Nordheim (FN) tunneling or hot-electron injection

(HEI).

In the earlier years of FG developments, charge was added to floating gates via FN tun-

neling. If the devices were not of the type one-time programmable (PROM), they could

be erased and re-programmed again (EPROM). EPROM devices were globally erased by

exposure to UV light which exploited the photoelectric effect to remove the electrons. After

erasure, EPROM devices could be reprogrammed, and by this point in time, many devices

were utilizing HEI as their method of choice for adding electrons to the FG. Further de-

velopments allowed for electrically programmable and erasable devices (EEPROM), which

obviated the need for UV erasure. EEPROM devices have many FGs arrayed and address-

able in a NOR flash configuration for the designer. This configuration permitted HEI to add

charge to the FG selectively (i.e. program a specific FG) and globally erase all devices via

FN tunneling. This is exactly the method that is used to add/remove charge from the FG

devices in this work.

The effects of HEI and FN tunneling are visually illustrated in the analog FG context

in Fig. 5.2 in terms of an IV-curve. For conceptual example, the effect of electron removal

via tunneling is represented in an IV-curve shift from the pre-tunneled green curve to the

post-tunneled blue curve. In essence, to achieve the same output current after tunneling

as before tunneling — for example at 1µA — the Vcg must be lowered to compensate for

the loss of negative charge. The opposite is true for the HEI process. Additional negative

charge on Vfg effectively pulls Vfg lower, resulting in larger Vcg voltages needed to achieve

its pre-injected current position. More generally, the shifts in the IV curve can be viewed as

a change in the threshold voltage of the FG from the perspective of the control gate.
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Figure 5.2: Floating-gate transistors allow for programmable threshold shifts from the per-
spective of the control gate. Injection programming adds electrons to the floating-gate, while
tunneling removes electrons from the floating-gate.

5.3 Floating-Gate Device Structure and Operation

The schematic and cross-section of a FG Fig. 5.1b is a generic representation of the device

does not fully encompass the devices used in this work and their connection to programming.

A more accurate schematic model is shown in Fig. Fig. 5.3. In fact, the FG devices deployed

on all designs described in this work include a supplementary node called the tunneling

node Vtun. From the schematic of the device, the Vtun is a second interface to the floating

gate node Vfg via a varactor that will be activated during FN tunneling. The varactor is

realized with a pFET MOSCAP (i.e. shorted source, drain, and well connection) which can

be seen in the physical cross-section. A pFET MOSCAP was chosen over other capacitors,

including nFET MOSCAPs, for its more efficient charge transport, lower power consumption,

and consistency across various CMOS processes [46]. The pFET MOSCAP still conforms

with the aforementioned specification that the floating gate must be implemented in a non-

metal material like polysilicon. Furthermore, from Fig. 5.3 it’s shown that the control-gate

capacitor plates are of polysilicon-insulator-polysilicon type visually represented as light

grey and dark blue. The last component of the FG schematic is the pFET transistor; it is

represented as the left device in the physical cross-section. It has its own n-well, but shares

the floating gate poly1 connection with the MOSCAP.
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Figure 5.3: Physical cross-sectional layout of a FG transistor.

5.3.1 Floating-Gate Operation

FGs utilized in this work are operated in the subthreshold region — a weak inversion

region — where Vsg < |Vthp|. While introductory texts of MOSFETs largely describe Vsg <

|Vthp| from an operational standpoint as ‘OFF’, when in actuality a Vsg voltage very near but

below |Vthp| is an edge-case where there is still current conduction. The rationale being that

the current is ‘OFF’ in that the channel current measured in weak inversion is magnitudes

lower relative to strong/moderate inversion. Subthreshold current was initially been viewed

by analog designers as a parasitic leakage current since the device was not being used but

drew currents. However, as demand for lower-power design has significantly increased, many

designers have leveraged this region of operation for supremely large power savings in their

designs.

The drain current of a pFET in the subthreshold saturation is expressed as follows:

Id = I0
W

L
exp

(
−κVg
UT

)
exp

(
Vs
UT

)
exp

(
Vd
VA

)
(5.1)
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with all voltages are referenced to the well voltage, where

I0 pre-exponential current scaler;

W
L

FET dimensions;

κ coupling coefficient from gate to channel;

Vg gate voltage;

UT thermal voltage ≈ 26mV at room temperature;

Vs source voltage;

Vd drain voltage;

VA Early voltage.

Like the above threshold case, we can see in (5.1) that there is a relation between Vsg and

the channel current which has made subthreshold operation viable. The relationship in (5.1)

is not governed by square law, but is exponential since the dominant current component is

diffusion current [47]. This means that a small movement in Vsg away from Vth results in

a precipitous drop in output current. This is an aspect of subthreshold conduction that it

shares with BJT conduction. In fact, subthreshold conduction boasts the highest ratio of

transconductance-to-channel current out of all regions of operation in MOSFETs. This is

only slightly lower than BJT’s transconductance-to-channel current ratio [47].

Next, we need to incorporate the FG element into (5.1). The first modification is Vg

becomes Vfg for the FG. The FG’s operation will be dictated by the voltage Vfg which is

made up by the charge on the FG divided by the total effective capacitance plus/minus

the voltage coupled from the Vcg. The total capacitance Ctot is the sum of all capacitances

interfaced with the FG including all parasitic capacitances. All the capacitors referred to

the floating-gate are visually represented in Fig. 5.4 showing the tunneling and control gate

capacitor in addition to the physical parasitic capacitances. Modeling Vfg can be expressed in

terms of a capacitive divider where each corresponding capacitance/voltage pair contributes

to the overall Vfg. Each capacitive/voltage pair is more generally referred to as Cx and Vx

in the following expression:

Vfg =
Qfg

Ctot
+
∑ CxVx

Ctot
(5.2)

Vfg =
Qfg + CcgVcg + CtunVtun + CsVs + CdVd + CwellVwell

Ctot
(5.3)

where
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Qfg total charge present on the FG;

Ccg,Ctun node capacitances (see Fig. 5.4);

Cs,Cd,Cwell parasitic capacitances (see Fig. 5.4);

Ctot sum total of all capacitances coupled to the FG.
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Figure 5.4: Physical cross-sectional layout of a FG transistor showing all capacitors coupled
to the FG including parasitics (in gray color).

However, when taking into consideration each capacitor’s contribution to the overall Ctot,

over 90% of the capacitance is dominated by Ccg at 100fF. The next largest contribution is

Ctun, but Vtun is always LOW (unless there is tunneling), and the parasitics are magnitudes

lower in capacitance. (5.3) can be accurately approximated to the following expression:

Vfg ≈
Qfg + CcgVcg

Ctot
(5.4)

We can now substitute (5.4) into (5.1) to completely model a FG for subthreshold which

renders the following expression:

Id = I0
W

L
exp

(
− κ

UT

Qfg + CcgVcg
Ctot

)
exp

(
Vs
UT

)
exp

(
Vd
VA

)
(5.5)

From (5.5), there is still have a controllable voltage node Vcg to modulate the drain

current like Vg in (5.1). What’s been gained with the FG functionality is the Qfg factor gives

a designer the ability to choose a threshold voltage after fabrication with FG programming.

The programmable threshold shift is demonstrated in Fig. 5.2.
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5.4 FG charge modification

5.4.1 FG Tunneling and Electron Removal

Referring back to Fig. 5.3, the tunneling current labeled on the MOSCAP indicates that

FN tunneling process removes electrons from the FG. In order for electrons to be transported

across the oxide barrier, the band diagram needs to distorted at the oxide interface (i.e. by

creating an electric field across it) to effectively reduce the barrier width. This charge

transport mechanism is a probabilistic event, and therefore, the smaller the barrier width,

the higher the probability for the electron to cross the barrier. A figure demonstrating FN

tunneling through the pFET MOSCAP on a FG device is shown in Fig. 5.5. Employing a

pFET MOSCAP is the typical method of realizing a tunneling connection. The FG schematic

representation has the same orientation to match the corresponding energy band diagram.

In this instance, a large electric field bends the oxide barrier at Vtun which has the source,

drain and body shorted to a single node. The effective width of the barrier needs to be

reduced to at least 5nm for the FN tunneling process to have a measurable effect [30].

The tunneling current can be expressed by the follow equation [46]:

Itun = αexp
−βtox
Vox

(5.6)

where tox is the oxide thickness, Vox is the potential difference between Vtun node and Vfg,

and α and β are constants that depend on the CMOS process and the type of device one is

tunneling through. To prevent undesirable tunneling in smaller CMOS processes, where the

standard device oxide thickness is smaller than 5nm, typically FGs are implemented with

I/O high voltage devices [48].

The top plot of Fig 5.6 shows the effective tunneling voltage for standard CMOS pro-

cesses. Included in the same plot shows the scaling of Vdd over the various CMOS processes.

The plateauing of Vtun at 250nm and below can be contributed to FG devices being realized

with I/O devices as opposed to their standard CMOS device. Much like the scaling of feature

sizes, the oxide thicknesses of the respective processes have downsized too. The standard

FETs of the smaller technologies have thin oxides that are not conducive to retaining charge

for long periods of time. In the bottom plot of Fig. 5.6, we see the ratio of Vtun/Vdd. For

larger devices (i.e. < 250nm), the ratio stays relative constant, while smaller technologies

have seen an expected rise in ratio due to the usage of I/O devices. The dashed ratio line

in the bottom plot shows that a lower supply Vdd should be employed for FGs as opposed
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Figure 5.5: Qualitative demonstration of Fowler-Nordheim tunneling in the FG band dia-
gram. The control gate has been omitted in the schematic for clarity.

to the stated nominal Vdd of top plot. This is due to unwanted HEI that can occur at the

standard supply Vdd which can add additional charge to the FG. Hence, the practical ratio

line is given, but is not relevant to smaller technologies using I/O devices.

In conclusion, tunneling for this work is used to remove electrons from a FG. The net

result of having less negative charge on the FG effectively reduces the threshold voltage

from the perspective of the control gate Vcg and confirms the movement of the blue IV-curve

to the left in Fig. 5.2. Tunneling is typically used as a global charge erasure since circuit

configurations are limited and make it difficult to isolate to just a single FG among many

on the same chip.
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Figure 5.6: Comparison of the required Vtun voltage for scaling CMOS technologies. Top
plot shows that the Vdd has scaled for the technologies, but Vtun plateaus at 250nm due to
FGs needing to be realized in less leaky I/O devices. Bottom plot shows the ratio of Vtun
to Vdd. Above 250nm, the ratio is relatively constant. 250nm and below, the ratio increases
because Vdd continues to scale as Vtun stays relatively constant [1].

5.4.2 Hot-Electron Injection and the Addition of Electrons

The complementary process of FN tunneling is to add electrons to the FG by hot-electron

injection (HEI). The term ‘injection’ refers to an electron having enough energy to overcome

oxide barrier and inject onto the FG from the drain/channel interface. While somewhat

similar to FN tunneling in that an electron tunnels through the oxide barrier, the event is

created under a different set of circumstances. Additionally, it must be reconciled that the

context of this discussion is charge modification of pFET FGs, whose majority carriers are

holes. So, in order for an electron to surmount the oxide barrier, the electron must first be

sourced by an electron-hole pair generation. The conditions suitable for HEI stem from a

series of probabilistic events.

The main impetus for creating highly energized electrons to overcome the oxide barrier is

a large potential difference from the source to drain nodes. This will in turn create an strong

electric field, with especially strong electric field lines at the interface of the drain depletion

region interface with the channel (i.e. pinch-off region). It is at the drain interface that the

conducting holes will become highly energized and some will collide with the lattice. It is
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from these collisions that a subset of them will have enough force to promote a valence band

electron to the conduction band, and consequently generate a new electron-hole pair. Even

at this point in the process, it is not guaranteed that the newly freed electron will inject

on to the FG. It is only if the resulting ‘hot’ electron has enough energy to surmount the

oxide barrier. This process is illustrated in Fig. 5.7. While the diagram is not to scale,

the depletion region between the drain and channel demonstrates how impact ionization is

possible given the amount of band distortion.

Source
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FG4.
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Figure 5.7: Demonstration of hot electron injection in the FG band diagram. The band
diagram is not to scale.

The HEI current has been characterized to be

Iinj ≈ βIsexp

(
Vcd
Vinj

)
(5.7)
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where Is is the source current in the subthreshold range, Vcd is the channel-to-drain

potential, and β and Vinj are fit constants [49]. From this equation, there are two factors

that the designer has control over: Is and Vcd. Referring back to to 5.7, one can apply a

voltage at Vcg to set a subthreshold current (i.e. typically sub-1µA). Focusing on the latter

factor, there is an exponential relation for the HEI current to Vcd, which in practice is set

by one’s applied Vsd. This applied Vsd is outside the normal supply rails between the source

and drain for favorable HEI conditions. This why operating the FG under normal conditions

contributes negligible HEI current. The graphs in Fig. 5.8 show the varying Vsd voltages

needed injection over different technologies.
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Figure 5.8: Comparison of the required Vinj voltage for scaling CMOS technologies. Top
plot shows that Vdd and Vinj scale similarly over the downsizing of technologies. Bottom plot
shows the ratio of Vinj to Vdd. In practice, the supply Vdd should be kept lower than standard
Vdd to prevent unwanted HEI. Taking this into consideration,the ratio stays around 2 over
all technologies [2]

.

In the top plot of Fig. 5.8, Vinj and Vdd follow a similar slope throughout the scaling.

This behavior is somewhat different from Vtun characterization of Fig. 5.6. In Fig. 5.8, the

scaling does not plateau for smaller technologies that use thicker oxide I/O devices. We can

contribute this to injection’s larger dependency upon the source/drain junction depth, which

scales smaller as the technology shrinks [50]. When examining the ratio of Vinj to Vdd in the
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bottom plot shows a relatively constant for smaller technologies who employ I/O devices.

The larger technologies have a smaller ratio with larger supply Vdds. In practice and similar

to Fig. 5.6, the operational Vdd should be lowered for the larger technologies due to the

possibilities of unwanted HEI at the standard supply Vdds.

Overall, HEI has the net effect of adding electrons to the FG and increasing the threshold

voltage from the perspective of the control-gate. This makes sense since this process adds

more negative charge to the FG. As a result, this will require a larger Vcg to offset said charge

to remove the conducting inversion layer if you wanted to turn the device “OFF”. Injection

and the increase of threshold voltage is visually represented in Fig. 5.2 by the red line that

has shifted to the right from the green line.

Of the two processes, FN tunneling is preferred for erasure since its difficult to isolate

specific transistors in an array of FGs. Hot-electron injection is the preferred method to

add charge to a FG because for granular charge modification and the ability to isolate the

specific FGs. Both HEI and FN Tunneling fall under the category of programming operation.

The majority of the time FGs are not being programmed, and they are used under the run

regime where they are used for any of the various applications. This is why it’s viewed

that programming a FGMOS does not structurally compromise the device within the first

hundred of thousands of programs. Programming occurs during a short period of time —

typically in the range of 10’s of milliseconds. In run mode, the FGs utilize the nominal

voltage rail as defined by the CMOS technology. However, under the programming regime,

the large electric field required to perform injection or tunneling is requires a voltage 2-5

times larger than the nominal voltage supply. As a result, there are a number of peripheral

support circuits to assist in programming. This work hopes to serve in improving FG support

circuitry.

5.5 Conclusion

FGs are ubiquitous in contemporary computing systems, but are most well-known in

the digital domain. However, their nascent analog counterparts can be used for computing

as well since they can be programmed to a continuum of values between a logic ‘0’ and

‘1’. Analog FG design has seen a resurgence of interest as there have been developments in

large-scale re-configurable analog systems like field-programmable analog-arrays.

FG programming is typically done in one of two ways: hot-electron injection and Fowler-
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Nordheim tunneling. For the scope of this work, HEI is used to add electrons to the FG, and

FN tunneling is used to remove electrons from the FG. From an analog designer’s perspective,

the programming functions as a process to modify a specific device’s threshold voltage. In

turn, these programmed devices can be used as programmable current sources in circuits.
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Chapter 6

Floating-Gate Injection Programming

With the previous chapter detailing the foundations of hot-electron injection, this chap-

ter is devoted to the circuitry that carries out this phenomenon. One of the largest chal-

lenges is integrating this process in large-scale FG-dense platforms that achieve programming

consistency and accuracy. Furthermore, these goals should be accomplished with reduced

requirements — whether that be circuitry overhead or easing the specifications on inter-

facing circuits — and the ability to perform programming in the field. Towards this goal,

we present traditional, above-ground programming methodology before presenting a novel

below-ground programming methodology.

6.1 Floating-Gate Injection

Floating-gate transistors are form of non-volatile memory that can be programmed and

employed for analog computation (e.g. setting corner frequencies in a band-pass filter). Hot-

Electron Injection (HEI) is one of the primary programming methods for adding charge to

a floating-gate device. HEI occurs when there holes-impact ionization of a pFET drain, and

consequently, the newly generated electron has a chance of being injected on the floating-gate

node. A detailed overview of the device physics of HEI is described in Chapter 5.4.2. While

the aforementioned chapter described the phenomenon and its conditions, it is not clear how

this process is realized in circuitry. This chapter will cover the programmer circuit, which is

responsible for carrying out HEI on an FG.

A programmer is a facilitator circuit responsible for carrying out HEI of FGs. While it’s

possible to program an FG off-chip, it usually provided as an infrastructural element on-
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Figure 6.1: (a) Pulsed programming sequentially cycles program/read modes until desired
programming target is achieved. (b) Continuous programming employs negative feedback to
converge upon programming target.

chip. Generally, designers strive for a programmer circuit to be accurate, have low-overhead,

low-power, and the ability to program quickly, and linearly. The most ideal situation is to

integrate a programmer on-chip especially when there are many FGs on a single chip like

an FPAA that could be used in-the-field [4, 6]. Recalling from equation (5.7), HEI has been

characterized and is controllable from the designers perspective with Vsd, Is, and Vcg:

Iinj ≈ βIsexp

(
Vsd
Vinj

)
(6.1)

Programmer circuits run the gamut in techniques for achieving HEI, but can largely be

categorized in two distinct types: pulsed-mode programming or continuous-time program-

ming. The two structures are juxtaposed in Fig. 6.1. This chapter will review both regimes,

and additionally, various techniques of both including below-ground programming and in-

direct programming. It will also serve as a comparative study of programmers used for

FG-dense structures like FPAAs.
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6.2 Pulsed Programming

Pulsed programming is the most accessible methodology of programming an FG since

it can be implemented as a simple algorithm. As shown in 6.1(a), there are two modes of

operation: read and program. For read mode, the FG is experiencing normal conditions

like it would be operated in a circuit application (i.e. a current source). Its purpose is to

measure the effect of the preceding injection pulse that was applied during program mode.

Program mode creates the conditions favorable for injection by applying a large (i.e. above

the nominal supply voltage) Vsd pulse. The pulse duration and Vsd magnitude are the means

for controlling the rate of injection. After a program pulse, the FG is placed in read mode to

measure the post-injection current. The process repeats if the desired current is not achieved

for a given applied Vcg in read mode.

Pulsed programming is largely a brute force methodology for programming FGs. Fur-

thermore, the total duration of program/read cycles required to program an FG will be a

function of the programming target, pulse duration and Vsd magnitude. In [51], the number

of programming cycles needed to achieve the desired programming target is on the order

of single thousands. If very high programming accuracy is a design constraint, then clearly

this will result in more finer pulses, and consequently a longer programming duration. This

overhead compounds when a design contains many FGs that need programmed many times

like the training of a neural network circuit synthesized on an FPAA.

There has been progress in pulsed programming to limit the total number of pulses

required to program an FG. In fact, [52, 53] can effectively program an FG within eight 20µs

pulses for an optimal Vsd. However, to know the optimal Vsd requires a priori knowledge

of each individual FG on the chip. This is done through FG characterization to extract

FG parameters which can then be mathematically modeled to yield the optimal Vsd. The

required characterization adds an initial overhead for on FG-dense chips like FPAA and will

be required of every respective chip as there is mismatch among chip-to-chip and run-to-run.

Unpredictable programming times lower the desirability uses-case of FGs. However, char-

acterizing and extracting parameters for FG-dense platforms present a large initial overhead

for designers. While accurate, there is a motivation for a solution that is predictable and

does not require apriori knowledge. This technique is referred to as linearized program-

ming [51]. Furthermore, this technique became the basis for continuous-time programming

which is presented in the following section. In Fig. 6.2(b) an op-amp is applied to create
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a negative feedback loop from Vs to Vcg. Modulating Vcg will ensure a constant Vsd is held

constant as well as a constant Vfg to Vs. Therefore, linearization creates the conditions for a

constant (i.e. predictable) rate of injection. This is the exact technique used in [51] except

it followed a pulsed programming methodology to find the programming stopping point.

Finding a continuous-time programming stopping solution will be largely what distinguishes

the design from its discrete-time counterpart.

Knowing the application space that the FG-employed circuit is going to operate in is

another aspect a designer wants should consider before choosing a pulsed programmer. For

example, will a circuit need the ability to program in-the-field once it is deployed to adapt

operational parameters as its environment changes? Alternatively, will the FG-employed

circuit largely inhabit a setting with benchtop equipment accessible? While not having been

explicitly stated, pulsed based programming requires peripheral circuitry and equipment.

The read phase will need some means of measuring the injection of the preceding injection

pulse. Past arts have done this off-chip with a picoammeter, and a combination of on-chip

transimpedance amplifiers with an off-chip 12-bit analog-to-digital converter [51, 53]. The

programmers in [52, 53] will need storage for a look-up table (LUT) which may be in the

form of an FPGA or microprocessor. Furthermore, there needs to be a means for controlling

the highly precise pulse timing widths which can be in the tens of microseconds [52].

However, pulsed programming does have its benefits. If one has the proper equipment

at their disposal, it’s conceptually straight forward to implement injection partially or fully

off-chip. Additionally, the read state utilizes the nominal supply voltage like the run state

(i.e. when the FG is applied to a circuit), so the designer can be assured of very similar

operation in the run state. Furthermore, the biggest benefit of pulsed programming is that it

is supremely accurate given there is no limit on programming time because one could pulse

with thin programming pulses for the finest control. [53] reported 9.5 bits of accuracy and

[51] reported > 13 bits of accuracy.

6.3 Continuous-Time Programming

Continuous time programming is accomplished in a single operation as opposed to N pre-

cisely timed discrete programming pulses. This is shown qualitatively in Fig. 6.1(b). The

means for achieving programming in a single operation is through negative feedback. Nega-

tive feedback can be used to (1) linearize the injection process (i.e. hold Vfg constant during
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Figure 6.2: Continuous programmers. (a) Self-converging injection configuration. Lacks
feedback for linearization, however, inherent feedback of the configuration stops injection
once programming target is reached. (b) Operational amplifier holds Vs (and consequently
Vsd) at a known value via Vcg which allows for a constant rate of injection. (c) Current-
controlled current conveyor structure that allows for independent control of Vs and conse-
quently Vsd via negative feedback through Vx and I2.

injection) and (2) stop the injection process when the programming target is reached. These

two operations are not always accomplished with a single feedback loop, and usually require

at least two loops. Continuous-time programming will be type of injection implemented

in this work. This work will serve as a comparative analysis of two different continuous

typologies.

One of the most basic continuous-time programmers is simply a single FG configuration

pictured in Fig. 6.2(a) [49]. With a favorable injection Vsd applied to an FG, electrons inject

onto the floating-gate node, effectively lowering its potential. Referring back to (6.1), the net

effect of reducing Vfg will lower Is, and consequently lower Iinj. This configuration displays

an inherent feedback to stop injection as the FG is programmed to its target. However,

this process does not exhibit linearized injection (because Vfg changes) which would need an

additional of a negative feedback loop.

The operation of 6.2(a) exhibits nonlinear changes in injection, which can lead to long

convergence times since Iinj changes during programming. This lowers the desirability for

using FGs since there can be wide ranging programming times. Recall from the discrete-time

linearization technique using a closed-loop op-amp configuration [51] became the basis for

continuous-time programming. This configuration is shown in 6.2(b), but lacks the ability
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to stop programming once a target has been reached. In this state, it’s not much different

from [51]. This circuit will be explored and compared against Fig. 6.2(c).

Lastly, Fig. 6.2(c) is another linear injection programming cell that creates similar condi-

tions like that of Fig. 6.2(b) in a more compact size to be used in FG-dense structures like an

FPAA. This particular configuration is referred to as a “current-controlled current conveyor”

structure whose origins were originally described in [54], but first applied in programmer ap-

plications in [27]. Vcg is set by I1 via common-source amplifier M1, which is where its gets

the “current-controlled” namesake. The current I2 is “conveyed” to Vx. As a programmer

circuit, this gives the designer the ability to set I1 to an appropriate current that is favorable

for injection to occur while appropriately adjusting Vcg to keep Vfg constant. At the same

time, Vfg to Vs forms a source follower during programming. With Vfg constant, the source

follower configuration allows for a constant Vsd during injection. All transistors operate in

the subthreshold regime during injection, and therefore are subject to their subthreshold

single transistor amplifier expressions.

Fig. 6.2(b) and Fig. 6.2(c) will be the two typologies explored in this work. The benefits

of the topology in Fig. 6.2(b) promise to be more accurate and consistent in programming

because 1) the op-amp can be designed with a much larger open-loop gain of than that of a

common source amplifier and 2) Vs can be chosen via Vref in a closed-loop configuration. In

6.2(c), the common source amplifier does not give the designer the ability to set a specific

voltage at Vs; its capabilities are limited to setting the appropriate programming conditions

allowing for linear injection.

The current-controlled current conveyor structure offers a more compact design and has

been the traditional method of programming for past FPAA designs [4, 8]. Both FPAA

designs contain hundreds of FG cells, and contained within each cell is the current-controlled

conveyor. This is possible because it’s a single transistor. However, this configuration would

not be tenable for a full op-amp because of the amount of silicon space it would consume.

The overhead of the the past designs of [4, 8] have not allowed for a single, all-encompassing

linear injection programmer with a configuration of 6.2(b). Future programmer designs

will be focused towards the integration of the op-amp for the benefit of removing the FG

cell-to-cell mismatch stemming from the common-source amplifier.
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Figure 6.3: Continuous-time programmers with target converging circuitry that consists of
an OTA and current mirror M2/M3. Target converging circuitry operates the same for both
topologies of (a) and (b). During injection, Vcg increases linearly from Vss. OTA compares
Vcg to user-provided Vtarg. When Vcg reaches Vtarg trip-point, the OTA cutoffs I1 drain
current to effectively end the injection of electrons onto the FG.

6.3.1 Programming Target Convergence Structure

Additional support circuitry is needed for Fig. 6.2(b) and Fig. 6.2(c) to converge upon

a desired programming target. This target will be in the form of a voltage and will be

accessible to the designer. To realize this functionality, the circuit would need the ability

to compare the programming target voltage to an additional node to monitor the injection

progress of the FG. Once the target has been reached, the circuit would then need to end the

injection process. These needs are addressed with the circuitry of Fig. 6.3 which includes

the original continuous-time linear injection programmer of 6.2(b) and (c), and an operation

transconductor feedback configuration.

The convergent circuitry of Fig. 6.3 is a feedback loop consisting of M2, M3, and the

operational transconductance amplifier (OTA) for both linear injection programmers config-

urations. The OTA functions as the voltage comparator of programming target Vtarg and

Vcg. Vcg will increase linearly during injection and was discussed in the previous section. As
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Vcg increases, the OTA will compare it against Vtarg which will serve as the trip-point for

when programming should end. As long as Vtarg > Vcg, the OTA will set I1, via the M2-M3

current mirror, to the OTA’s tail current. When Vtarg reaches the programming target Vcg,

the OTA will set the M2-M3 current mirror in cutoff and I1 will reduce to zero. This ends

the injection programming of the FG since there is not any current that could impact ionize

at the drain of the FG.

The described injection sequence is visually demonstrated in Fig. 6.4. The top plot

displays Vtarg and Vcg that are compared at the OTA. The bottom plot displays the FG

drain current I1. The initial conditions for this simulation assume that the the FG does

not have any charge on it (i.e. all charge has been tunneled off). At the beginning of this

sequence, the FG has not been enabled for injection, and consequently, the signals have the

following conditions: Vcg is at ground (i.e logic LOW), Vtarg is set by the designer at 1.5V,

and I1 is zero. The programming is commenced at 0.035 seconds, at which point we see the

I1 increase towards the tail current bias of the OTA at 900nA. It takes another millisecond to

discern any changes in Vcg as the addition of electrons on the FG have not made a significant

effect.

For the time directly after 0.036 seconds, Vcg rises linearly and I1 is completely saturated

to the OTA tail current. At about 0.039 seconds, Vcg becomes approximately Vtarg. At

that point, Vcg is immediately pulled high to Vdd (i.e. logic HIGH) and arrests the injection

programming. At the same time of Vcg being pulled HIGH, there is a precipitous drop in I1
′s

current to zero. This response is due to the OTA feedback loop which operates as follows.

When Vtarg < Vcg, the OTA output is pulled HIGH and places M2, M3 in cutoff. Common

source amplifier M1 no longer has a proper voltage bias for operating in the saturation region,

and consequently, cannot operate as an amplifier to offset the recently injected negative

charge on the FG node (i.e. by holding Vfg constant). This forces Vs to be pulled LOW via

the FG. As a result, M1 is set in the triode region and pulls Vcg HIGH. Vcg is held HIGH for

the remainder of the time that the FG is enabled for programming.

A short time after 0.04 seconds, there is a cessation of the injection programming process

as Vcg is pulled LOW; the FG has been de-selected and there is no longer a Vsd favorable

for injection applied to the FG. At this point and for the rest of the graph, the signals are

restored to the original conditions before injection programming commenced. This concludes

the injection programming process for a single FG. In a FG-dense design like FPAAs, this

process is typically serialized as only one FG can be programmed at a time. The designer can
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Figure 6.4: Transient simulation of the injection process utilizing the continuous-time linear
injection programmer with target converging circuitry of Fig. 6.3(b). The plots demonstrate
that during injection, FG drain current I1 is saturated to an appropriate current conducive
to injecting electrons. In the above case I1 = 900nA. Once Vcg reaches Vtarg, FG drain
current I1 drops precipitously to end the injection programming process.

then subsequently choose to inject a different FG which may have a different programming

target voltage from the preceding FG.

The continuous-time programmer with target converging circuitry of Fig. 6.3(a) operates

the same as Fig. 6.3(b) since the underlying circuitry is fundamentally the same structure.

The only difference is that the op-amp has differential input while the common-source am-

plifier has a single input. In fact, the graph of Fig. 6.4 could have been generated from

either circuit. Just like Fig. 6.3(b), the OTA of Fig. 6.3(a) places M2, M3 in cutoff when Vcg

reaches Vtarg. Vs is then pulled LOW by the FG, and consequently, the op-amp then operates

as a comparator and pulls Vcg HIGH. This shows that the programming target convergent

circuitry operates independently of amplifier choice and allows for a comparative study on
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the two programmer topologies. The outcome is to determine which programmer programs

FGs more consistently and accurately. Before the two topologies can be directly compared,

an additional aspect needs to be explored: above-ground and below-ground programming.

6.4 Vsd Voltage for Injection

Up to this point, Vsd favorable for injection has been characterized in Section 5.4.2 as

a voltage applied across the FG source-to-drain that is typically larger than the nominal

voltage supply of the process, but less than the junction breakdown voltage. At that point

in the discussion, it was unnecessary to detail the specifications of a favorable Vsd for injec-

tion. However, it is germane to this section regarding FG injection circuitry and it will be

elaborated on here.

As described in section 5.4.2, for injection programming occur, one of the conditions is

to have a large Vsd (i.e. Vsd > Vdd) potential; this potential may be positive or negative

voltage. A positive Vsd pulls the source above Vdd and has been the primary choice in many

past works focused on FG-dense structures [2, 4, 27, 55, 56, 57, 58].

A negative Vsd is created by pulling Vs of the FG below-ground. This is less intuitive

since all other on-chip circuits utilize a single, positive supply voltage. There are a number

of benefits that could be gained if the injection voltage was implemented below-ground

compared to above-ground. Some of the major benefits include less overhead infrastructure,

and the promise of better injection accuracy. The main issue for employing below-ground

injection programming has been implementing it in a standard, single-well CMOS process

because of the potential of forward biasing diffusion areas. Above-ground and below-ground

injection programming are compared in this section.

6.4.1 Above-Ground Injection Voltage and Associated Program-

ming Circuitry

Applying a positive Vsd voltage is the most conventional way of injecting an FG. These

duties are typically performed by a charge-pump and the signal is applied in the form of a

pulse whose duration is long enough to complete the injection programming. The signal is

not sustained indefinitely because of the long-term stress of a voltage drop exceeding voltage

supply rail of the process. Furthermore, for above-ground programming, FGVdd will refer to
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a separate supply voltage used by all programming-associated circuitry, including the FGs.

In run-mode/circuit-mode, FGVdd = Vdd. During programming, FGVdd will be equal to the

charge-pump output voltage. It will become clear why this distinction is needed.

In previous contexts, the discussion regarding injection was based solely from the per-

spective of the quantum mechanical concept. In this context, the discussion is concerned

with how injection is carried out with circuit infrastructure for the application of FG-dense

structures like FPAAs. Furthermore, it should be determined what circuitry is involved be-

yond the programmer and what circuitry should be isolated from this process. The amount

of circuitry that experiences the large Vsd pulse should be minimized.

Any circuitry that interfaces with the programmer or FG needs its voltage supply to be

level shifted to FGVdd. In fact, their voltage supply should be connected to a separate supply

from Vdd referred to as FGVdd. This includes all digital control signalling and bias circuitry

needs of both the programmer and the FG. But, before examining the interconnection of

these circuits, the FGVdd signal should be characterized. In Fig. 6.5(a), the charge pump

signal used to generate FGVdd is shown. This signal poses a number of challenges for circuits

that will rely on it as a voltage supply.

One of the first issues that the charge pump is not in operation when there is no program-

ming needed (i.e. run-mode or circuit-mode). The output of the charge pump when not en-

abled will be 0V. Therefore, the circuits would need another source to supply FGVdd = 2.5V

for run-mode operation. For this problem, there is a need for a facilitator circuit to choose its

supply and be capable to switch between a programming voltage supply (charge-pump) and

a typical supply voltage (Vdd = 2.5V). This circuit must be able to handle seamlessly switch-

ing between the two sources and not be affected by the charge pump’s long time-constant

when decaying from 6.5V. This long time-constant is showing in Fig. 6.5(a).

The proposed circuit would have functionality like that shown in Fig. 6.5(b), where

FGVdd would be the supply voltage seen by the level-shifted circuits. Beginning at 0 seconds,

when the charge-pump is not enabled and outputting 0V, FGVdd = 2.5V. This would be

typical of run-mode operation. When programming is commenced at 1.25 seconds, control

signal Vselect changes state to set FGVdd = Vcharge−pump = 6.5V. Once programming has

finished, control signal Vselect changes back to its original state to select FGVdd = 2.5V at

2.75 seconds. FGVdd = 2.5V regardless of Vcharge−pump‘s state. These measurements were

completed using the on-chip high-side switch of Chapter 3 and on-chip charge-pump. The

time span shown in Fig. 6.5 is not typical of the programming sequence for a FG as it’s
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Figure 6.5: Functionality of a supply-voltage selecting circuit. (a) Typical charge-pump
signal used for programming FGs. The ramp-up time is on the order of microseconds and
the discharge time is on the order of milliseconds to seconds. (b) Shows the functionality
of a voltage supply selecting circuit. The dashed maroon signal FGVdd selects and outputs
higher voltages when programming (i.e. charge-pump is enabled). While run-mode, it is
outputting the nominal supply voltage Vdd regardless of Vcharge−pump

′s state.

usually occurs in tens to low one-hundreds of milliseconds. The time span of the figures are

for conceptual demonstrative purposes.

A circuit that could implement the functionality Fig. 6.5 is a high-side load switch whose

design is fully elaborated in Chapter 3. A block diagram that demonstrates the voltage source

switching functionality is shown in Fig. 6.6. Its design incorporates pFET switches that allow

it to operate without a secondary charge-pump, which is typical of nFET-based high side

switches. Additionally, it meets a criterion of FG programming in its ability to switch to

supply voltages larger than the nominal supply voltage. The output of the high-side load

switch would be connected to the supply of the aforementioned circuits.
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Figure 6.7: Block diagram of all the circuits in our FPAA design which rely on the high-side
load switch and their relation among each other.

The circuits that rely upon the high-side switch’s FGVdd are shown in Fig. 6.7. The

analog circuits include FG programmer (FG Prog), the selected FG (FGx), and FG program-

mer bias (Prog bias). The digital control signals need to be translated from 2.5V to FGVdd.

There is a level-shifter for each digital control signal. When taken together, implementing

an above-ground programming scheme has some overhead associated with it in terms of

circuitry and control (e.g Vselect of the high-side switch).

In summary, above-ground injection programming is the most conventional methodology

of programming FGs. Recently developed circuit high-side switch circuit has reduced the

overhead associated with above-ground injection by integrating it on-chip. There are addi-

tional overheads of above-ground programming to account for including voltage level shifters
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and pad frame repercussions.

Above-Ground FG Cell Operational Modes

Figure 6.8(a) shows the schematic of an individual FG cell of an FG array like the one of

[4]. Fig. 6.8(b) is a table of the various operational modes and their respective connections

for a FG cell. The first two rows refer to injection programming configurations. The first row

is the selected FG when connected in the programmer (in gray) feedback loop, while all other

FGs of the array are disconnected. The unselected FG configuration shown in the second

row does not experience the large Vsd voltage as M1 is OFF such that Vsd = 0V. Therefore,

this is the selection process in which only the selected FG is injected. “RUN-mode” and “FG

Measure” rows refer to configurations in which FGs are connected internally or externally,

respectively. These three configurations feature external control of the Vcg node and are

user-accessible. The RUN-mode configuration allows all FGs to be connected internally on-

chip to circuits, while the FG measure configurations refer to a single FG being connected

off-chip. The FG measured selected configuration is utilized for test purposes and debugging.

Both Vcg and Sw4 position 3 are global connections to their own respective pins.

6.4.2 Below-Ground Injection Voltage

As its name implies, below-ground programming achieves a large Vsd conducive for injec-

tion by pulsing Vd below 0V. This is not a purely academic proof-of-concept. Implementing

below-ground programming on-chip for FG-dense structures has a number of impediments,

however, there are many benefits to be gained by choosing this course. The most obvi-

ous benefit of below-ground programming is obviating the infrastructure associated with

handling FGVdd circuits like level-shifters and a high-side load switch. For this case, every

circuit shares one and the same Vdd. Less infrastructural overhead also results in lower power

consumption.

There are larger and more consequential benefits that impact the programming process

when compared to above-ground programming. Recall that in above-ground injection, the

source voltage of the FG is ramped up above Vdd. Raising Vs obviously affects the Vsg

voltage which is one of the mechanisms that controls the channel current. Not only is it an

inconvenience that Vg must be modified and ramped up proportionally with Vs, but more

importantly, Vs must be a stable voltage for accurate programming. Vs is generated by a
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charge-pump and any ripple on Vs modulates the Vsg voltage which harms the accuracy of

the programming. Choosing below-ground pulsed injection is also beneficial to the common-

source amplifier Fig. 6.3 (b) since it has a relatively low open-loop gain and will theoretically

have less ripple on the source to compensate for during programming.

Since above-ground injection programming pulses the source, this means below-ground

pulses the drain. A Vd transient does not affect the Vsg voltage and its affect on the channel

current is much less pronounced in sub-threshold saturation than a Vs transient. Overall,

choosing a below-ground programming regime can further reduce performance requirements

of the charge-pump for injection. Any voltage ripple from the charge-pump’s output now

occurs at a node with a much larger impedance and is therefore less coupled to the drain

current. A direct result of this is the charge-pump voltage-ripple tolerance can be lowered.

Another benefit is that the below-ground charge-pump does not need to generate as large of

a voltage magnitude to achieve injection. For example if a charge-pump pulses a FG Vd to

−4V, the net Vsd from a Vdd = 2.5V is 6.5V. For an above-ground charge-pump to achieve

the same Vsg, it does not get the benefit of Vdd = 2.5V contributing to the overall Vsd, and

must generate a full 6.5V.

FG Selection and Isolation for Below-Ground Injection Programming

The benefits of below-ground programming are very apparent, but there have been imped-

iments for implementing the circuit infrastructure to accomplish it in a standard single-well

CMOS process. Specifically, the largest issue has been carrying out below-ground injection

programming on a single, selected FG cell among a full array of FGs. This section will

examine the why traditional selection methods that worked for above-ground, do not work

for below-ground programming. Finally, a solution will be presented to solve this problem.

On an FG array, there is a single charge-pump shared among all FGs via a global source

(drain) connection for above-ground (below-ground) programming. In order to isolate the

selected FG cell for programming from the others, the traditional methodology (i.e. used

in above-ground) is to employ transmission gates or simply a FET switch for this purpose.

This is shown in Fig. 6.8(a) where Sw3 chooses the source voltage. However, employing a

complementary technique at the global drain for below-ground injection becomes an issue.

The n-type diffusion regions of the transmission gate forms a parasitic pn-junction to the

p-type substrate. And when the charge-pump output goes negative, a forward bias occurs.
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Furthermore, utilizing just pFETs as transistor switches could not accomplish passing a

negative voltage without additional circuitry to operate the transistor in the triode region.

Therefore a new selection/isolation process for below-ground programming is in required.

The solution to achieve this FG selection functionality is to utilize a matched, secondary

pFET that interfaces with and shares the FG node. This is pictured in Fig. 6.9(a) and was

originally demonstrated in [59]. In effect, this configuration obviates transmission gates, and

instead, each pFET of the FG is delegated to one of the two separate tasks: programming

and circuit-mode operation. When in injection programming mode, the ‘Circuit pFET’ is

put in a dormant state by holding the source and drain at the same potential – in this

case ground. This does not permit the flow of current through Mcircuit and does not affect

injection operations.

When configured in an injection programming mode, the selected (unselected) FG in the

array has a potential from Vdd (Vss) to the below-ground charge-pump output voltage. This

configuration is accomplished by the ‘Injection pFET’ multiplexer which selects position 2

(position 3) via Sw4. For the selected FG in the array, the charge-pump is still able to create

a favorable source-to-drain voltage for injection to occur. All the other deselected FGs of

the array do not experience injection since the potential from ground to the negative charge-

pump output voltage is not large enough for this phenomenon to occur. Furthermore, the

unselected FG cells are taken out of the programmer’s feedback loop via switch Sw3. These

two injection configurations are shown in the first two rows of Fig. 6.9(b).

Below-ground FG cells operate similarly to above-ground FG cells during circuit modes

(i.e. RUN-mode and FG measure). The external, user-controlled voltage is passed into

Vcg, and the drain of Mcircuit is permitted to be connected either internally or externally

– depending upon the code-word. The internal connection is used to connect all the FG

cells to their respective circuits which are used to synthesize sensing circuits on the FPAA.

The external configuration is used primarily to testing and debugging. For all circuit-mode

configurations, Minj has to be set in such a way that it does not affect the circuit-mode

operation of the FG cell. Since the charge-pump is not in use during this operation and

it’s output is pulled HIGH to 2.5V, the source is pulled to HIGH. This does not permit the

flow of channel current through Minj and does not circuit-mode operations. All the various

programming and circuit-mode configurations are shown in Fig. 6.9.
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6.5 Programming Accuracy

A comparison of the various programming configurations needs to be made in order to

determine the most accurate configurations. However, before this may occur, a methodology

is needed to compare the results in a fair, one-to-one way. The most ideal situation would

be to measure the amount of charge placed on a floating-gate after injection. Unfortunately,

there is not a way to probe the floating-gate, and it’s too sensitive of a node to probe.

An alternative method of accomplishing the same outcome would be attaching a buffer

to the floating-gate, much like the same way a circuit transistor was simply added to the

below-ground programming cell. However, this would take up a lot of silicon space, and

furthermore, from FG-to-FG and chip-to-chip there is associated mismatch with transistor

that could lead to inaccurate comparisons.

Another problem in carrying out a comparison is that each programming configuration

will achieve a different outcome. Even between the below-ground cases of Fig. 6.3, having

the same bias current for the OTA and selecting the same Vtarg will not achieve the same out-

comes because of the fundamental differences within the topology. While the gate-to-source

amplifier with the smaller gain could lead to less accurate results but not fundamentally

different IV curves, the different Vs’s will lead to different IV curves. In Fig. 6.3(b), there is

no way of setting Vs, and no way of knowing Vs unless simulated or buffered out to pin. Fig.

6.3(a), however, keeps Vs constant at a user-provided value. Both of these Vsd voltages are

set in different ways and will lead to differences in programming FGs. The issue is further

compounded when comparing a below-ground result with an above-ground result.

The solution to comparing the different programming topologies cases is actually quite

simple. Instead of comparing in terms of charge change on a floating-gate buffered out as

a voltage, the comparison should take place in the current-domain. This especially makes

sense considering our target application of FGs will be in the form of programmable current

sources. More specifically, this methodology should show the variation in current among

n experiments and should show the equivalent variation in terms of Vcg. In other words,

to achieve our desired current at a likely percent-error, how much variance in Vcg can be

expected? Knowing the variance in Vcg is useful because all FGs on an array will operate

with a single Vcg, therefore it’s advantageous to know how precise a Vcg should be in order

to achieve an equivalent output currents – especially for currents biasing sensitive circuits.

The manner in which this solution is carried out can be done by mapping all results back
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to a “reference curve”. The reference curve is an arbitrary current-versus-Vcg plot that was

measured from a programmed FG. The output current from the FG needs to span multiple

magnitudes of ten in order to capture the whole range of currents that could possibly be

mapped. The only constraint to this is that the range of currents can only be achieved within

the supply rails 0V < Vcg < Vdd. Because an arbitrary reference curve can be created by

any FG injection topology, and in fact, one cannot discern from which topology the FG was

programmed, we can map all data points back onto the reference curve to have a one-to-one

comparison.

Fig. 6.10(b) gives a visual example on how this methodology is carried out. The full,

blue IV-curve is the reference curve and the left three dots are the measurements from

three repeated programming experiments under the same conditions. In this context, a

programming experiment is defined as a completely tunneled FG, injected to a specific Vtarg

under the conditions of a known Vsd, and programmer OTA bias current. Each programming

trial is repeated exactly the same. After injection, a specific Vcg is applied and the injected

FG’s output current is measured. This Vcg voltage has been characterized and determined

before the experiment. As shown in the Fig. 6.10(a), the three trials are measured at the

characterized Vcg voltage, which under ideal conditions should give a known (i.e. anticipated)

output current.

In this example of Fig. 6.10(a), the current should be about 110nA, but the three different

measurements shows that there is some variance in the programming. At the known Vcg

voltage, all three corresponding current measurements are mapped back to the equivalent

current value on the reference curve. Once the values are mapped to the reference curve,

the points are projected on both the y-axis and x-axis. This is shown in Fig. 6.10(b). From

the y-axis, the standard deviation and mean of the currents can be calculated. From the

projected data on the x-axis, the standard deviation of Vcg can be calculated. The overall

percent error of current can be calculated from the y-axis measurements as Iσ/Iµ. With

these three statistical metrics, a user can know the overall percent error of the expected

target current. This can then correspond to an equivalent millivolt deviation from the ideal

Vcg in order to obtain the expected current.

Not only is this methodology useful in comparing inter-programmer results (i.e. below-

ground programmer with op-amp versus above-ground), but also intra-programmer results.

For example, the below-ground programmer with a common-source feedback amplifier might

operate most accurately with an OTA bias current of 800nA compared to a bias at 2µA. An
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intra-programmer comparison can determine such cases as well.

A table of measurements utilizing this methodology are shown in Table 6.1. The ta-

ble displays data from the common-source amplifier configuration and operational amplifier

configurations, as well as above-ground and below-ground topologies. Each row represents

the experimental conditions and each statistical category was based on 100 experiments. An

explanation of the column headers are outlined in the following.

OTA bias (µA) The bias current provided to to the programmer OTA. Re-

fer to Fig. 6.3 OTA programmer;

Vinj (V) Above-ground or below-ground voltage used for injection;

Vtarg (V) The user-supplied target voltage for injection. This is an

input to the programmer OTA and can be referenced at

Fig; 6.3

Feedback Amplifier Type Common-source amplifier (CS-amp.) or operational am-

plifier (op-amp) along with a specified Vs voltage. Refer to

Fig. 6.3 for both configurations;

Imeasurment % Error The measured current percent error from 100 mapped ex-

periment iterations for the specified target current at the

preceding conditions;

Vcg standard deviation (mV) The calculated Vcg voltage standard deviation calculated

from 100 mapped experiment iterations for the specified

target current at the preceding conditions;

10µA - 1nA These represent the five target currents that span multiple

magnitudes of ten. After the FG has been programmed,

five known Vcgs are applied that correspond to these specific

currents. The corresponding currents measured out from

the FG are the values that are mapped to the reference

curve which are then used for the statistical metrics

One of the more general patterns gleaned from the measurements is the error increases

as the target current decreases. This trend makes sense given that the change in target

current is an exponential change and the operation at the sub-1µA are in the subthreshold

region. This is not the result of less preciseness in the programming because the Vcg standard

deviation stays relatively constant throughout all the experiments under all target current
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Table 6.1: Re-programmability measurements from a below-ground and above-ground
topologies. Both utilize either common-source amplifier (CS-amp) configuration and op-
erational amplifier (op-amp) for closed-loop linear output. Each row of data represents an
experimental case that was repeated 100 times.

Case Conditions
Imeasurement % Error,

Vcg standard deviation (mV)

OTA

bias

(µA)

Vinj

(V)

Vtarg

(V)

Feedback

Amplifier

Type

10µA 1µA 100nA 10nA 1nA

0.8 -3.5 0.60 CS-amp.
0.193%,

0.839

0.574%,

0.869

1.16%,

0.838

1.59%,

0.816

1.72%,

0.826

0.8 -3.5 0.85 CS-amp.
0.193%,

.840

0.578%,

0.873

1.16%,

0.838

1.61%,

0.825

1.72%,

0.830

0.8 -4.0 0.60 CS-amp.
0.190%,

0.818

0.548%,

0.831

1.10%,

0.803

1.53%,

0.791

1.65%,

0.807

0.8 -4.0 0.85 CS-amp.
0.158%,

0.684

0.477%,

0.715

0.964%,

0.700

1.35%,

0.699

1.44%,

0.697

0.25 -3.4 0.80
op-amp,

Vs=2.0V

0.217%,

0.939

0.651%,

0.942

1.30%,

0.949

1.79%,

0.916

1.95%,

0.901

0.25 -3.4 1.4
op-amp,

Vs=2.0V

0.245%,

1.03

0.764%,

1.11

1.51%,

1.10

2.10%,

1.07

2.34%,

1.08

0.25 -4.0 0.80
op-amp,

Vs=2.0V

0.227%,

0.957

0.696%,

1.01

1.40%,

1.01

1.97%,

1.00

2.15%,

0.996

0.25 -4.0 1.4
op-amp,

Vs=2.0V

0.253%,

1.06

0.786%,

1.13

1.56%,

1.12

2.16%,

1.10

2.37%,

1.10

2.0 +5.5 3.75 CS-amp
0.087%,

0.385

0.244%,

0.342

0.485%,

0.351

0.632%,

0.330

0.813%,

0.362

2.0 +5.5 4.75 CS-amp
0.100%,

0.431

0.279%,

0.397

0.548%,

0.385

0.708%,

0.355

0.926%,

0.374

2.0 +6.5 3.75 CS-amp
0.134%,

0.586

0.353%,

0.498

0.375%,

0.484

0.845%,

0.436

0.971%,

0.472

2.0 +6.5 4.75 CS-amp
0.087%,

0.376

0.255%,

0.364

0.513%,

0.358

0.666%,

0.333

0.884%,

0.349
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cases. 1nA is simply 10,000 times smaller current than 10µA and is further compounded

from this current being in the subthreshold region. That is, for a small linear change (i.e.

δ <10mV) in the applied Vcg, there is an exponential change in the output current in this

region. Stated a different way, for a smaller percent error deviation from the programming

target with exactly the same applied Vcg, there is an exponential change in the output

current. On the other hand, 10µA is an above-threshold current which is in the above-

threshold saturation region. Therefore, for a small linear change in Vcg results in relatively

unchanged output current.

A discernible difference between the data sets is the op-amp style programmer effectively

has double the Imeasurement percent error and Vcg standard deviation; both sets are <4%

and <2mV, respectively. I posit that the increased error/standard deviation is due to the

relatively low open-loop gain in the source-to-gate op-amp. The structure of the op-amp is a

two-stage type with about the same gain (≈40) as the common-source amplifier. It is further

constrained in that it must maintain Vs=2.0V for all test conditions during operation. The

op-amp programmer does not have the benefit of utilizing the full Vsd range from Vdd down

to the VBlwGnd voltage like the common-source amplifier. Through testing and schematic

simulation, it was found that for Vs<2.0V, one or more of the transistors would fall out of

saturation region. Vs=2.0V represented a good balance between a high Vs so that a charge-

pump was not required to below -4.0V. For a future design, I postulate that increasing the

gain of the op-amp significantly higher and sizing the transistors internally that would allow

for Vs>2.0V would lead to better or the same results as the common-source amplifier. Overall

this configuration is preferred because the Vsd can be known to the designer which will lead

to better FG programming characterization.

Other factors to consider that are not apparent in the table is injection programming

duration, which can contribute to an unwanted second-order effect called reverse-tunneling.

The OTA bias current is the current that gets mirrored into the FG during injection. From

eq. (6.1), it is clear that the channel current affects the rate of injection. Therefore, the

smaller channel currents, the longer it will take to meet the programming target with all

other factors being the same. For smaller currents like 250nA and under, this is on the

order of 120-300ms. For larger currents like 800nA and above, this on the order of 30-85ms.

Its possible to see reverse-tunneling effects after long periods (on the order of seconds) of

injection programming, which could be possible if one is programming multiple FGs on a

FPAA-like structure. The pronounced effect is seen as unwanted injection of non-selected
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FGs; when a large Vsd is present for long periods of time, this can tunnel electrons onto

all of the unselected FGs. Hence, this is an aspect to consider when choosing the best

programming conditions.

An alternative and more graphical method of analyzing the re-programmability data is

to create a linearization plot like the one shown in Fig. 6.11. For this particular plot, an

above-ground programmer programs a FG 100 times at each Vtarg voltage within a range; the

range shown here is the complete operational Vtarg range for this above-ground programmer.

Once programmed, a Vcg voltage is modulated on the control gate until a desired output

current is measured — in this case, 10nA is the desired current. For the top plot of Fig.

6.11, each circle represents the mean applied Vcg from 100 experiments that achieved an

output current of 10nA.

The bottom plot of Fig. 6.11 shows the deviation of each the mean Vcg (i.e. blue circles)

from the linear regression of the top plot’s line. The linear regression has a slope of 0.995.

The line being linear with nearly a gain of 1 confirms our earlier discussion regarding the

closed-loop operation of the continuous time programmer. The candlesticks shows standard

deviation for each 100 programming experiments.

Finally, the motivation for characterizing an FG programmer is not to analyze metrics,

but is to consistently and accurately program FGs for their end-use applications. And the

best way to demonstrate this is utilizing them in a typical application. Pictured in Fig. 6.12,

are the frequency responses of eight bandpass filters at octave, half-octave, and third-octave

spacings, respectively. Each filter has its -3dB corner frequencies set by FG biases. In total,

there are 16 FGs biases built within an array, and because they are re-programmable, the

end-user has the option to choose the octave spacing among each filter. The filters shown in

Fig. 6.12 were created via Capacitance Coupled Current Conveyor whose corner frequencies

are a function of their internal transconductances, which are set by the programmed FGs.

6.6 Conclusion

Hot-electron injection programming is the preferred method of adding charge to FGs over

Fowler-Nordheim tunneling for FG-dense structures like FPAAs. This is due to the ability to

selectively program single FGs without disturbing the charge states of other FGs on the same

chip. There are two conventional methods of carrying out injection programming: pulsed

programming and continuous programming. For this work, continuous programmers were
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explored because these designs are conducive to a completely on-chip solution that would

benefit IoT applications and in-the-field changes.

Below-ground and above-ground continuous-time programmers were described for com-

parative study on accurately repeatable programming. The comparative study method-

ology was created such that different programmers could be analyzed on the same basis.

Two below-ground continuous-time programmers were characterized and measured. The

common-source amplifier type had slightly better results compared to the op-amp type below-

ground programmer, but this can be attributed to a sub-optimal op-amp design. Their utility

was demonstrated in programming various octave spacing bandpass filters with an array of

16 floating gates. The above-ground continuous-time programmer has been characterized

and measured for this work as well.
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Chapter 7

Reconfigurable Analog Preprocessing

for Efficient Asynchronous

Analog-to-Digital Conversion

Much of the previous chapters that have dealt with infrastructure-specific FG designs and

not necessarily application development. On the other hand, the non-reconfigurable designs

such as the work done in the DOE project were more system-level. This chapter bridges these

fractured elements to present a unique end-user application for FPAA designs interfaced with

an ADC. The reconfigurable analog-front-end design is employed to asynchronously sample

information-specific waveforms.

7.1 Introduction

Whether the application is bio-signal monitoring with wearable devices, voice-activity de-

tection by an Internet-of-Things device, or data logging with wireless-sensor-network nodes,

modern electronics require application-specific data capture with as low a power budget as

possible. The means that are used to sample and preprocess (usually compress) a signal

comprise a major part of this power budget. Traditional analog-to-digital converters have

made great strides in power efficiency, but their sampling rate is constrained by the Nyquist–

Shannon sampling theorem. This rigid sampling-rate criteria can create a large amount of

sample overhead in signals with varying frequency content, which manifests as extraneous

power expenditure in the quantization, processing, and transmission stages.
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Figure 7.1: Asynchronous analog-to-digital conversion system. A reconfigurable analog front-
end reduces information to only the relevant data points and also triggers the subsequent
blocks, which produce digital words for the corresponding voltages and time intervals.

This work offers an alternative path to lower energy expenditure in the quantization

stage—content-dependent sampling of a signal. Instead of sampling at a constant rate,

the demonstrated system asynchronously produces two digital signals—one proportional to

the sample amplitude and the other proportional to the intersample time period, as shown

in Figure 7.1. The trigger mechanism for these data-driven asynchronous measurements is

controlled by an analog front-end implemented in our reconfigurable analog/mixed-signal

platform (RAMP) system [4]. The use of a reconfigurable front-end allows us to create a

sample triggering mechanism tuned to the minimal amount of required data for a given ap-

plication. The well-tuned analog front-end, combined with asynchronous data conversion,

allows for highly efficient data extraction. This work is an extension of our earlier work

presented in [60], which demonstrated the promise of an asynchronous ADC coupled with

analog preprocessing. Here, we provide further circuit details, a discussion on a sampling

method that works in conjunction with asynchronous conversion, and additional example ap-

plications.

This work demonstrates the use of a fabricated RAMP and an asynchronous ADC to

convert the minimal number of samples required to either recreate a signal or optimally

extract specific data from a signal. An overview of asynchronous conversion is presented

in Section 7.2. Section 7.3 establishes the overall system architecture that we use to imple-

ment our adaptive sampling technique, including a discussion of our reconfigurable analog

front-end and the data conversion circuits. Section 7.4 describes the asynchronous trig-

gering process in this conversion system that allows for only the local maxima/minima to

be sampled. Section 7.5 demonstrates example uses of the system in voice, electromyogra-

phy (EMG), and electrocardiogram (ECG) monitoring environments, before concluding in

Section 7.6.
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7.2 Asynchronous Quantization

The most traditional path to achieving a reduction in energy expenditure of electronic

devices is through the scaling of the minimum feature size of the transistors, which primarily

benefits digital systems. Unfortunately, the conversion of an analog signal into a digital one

is an inherently mixed-signal process. The analog portions of this process tend to suffer

as transistor dimensions scale, due to the increased device mismatch and the lower voltage

overhead (from reduced supply voltages). While there are techniques meant to mitigate

these issues [61], process-scaling is usually not the simplest or most cost-effective means of

reducing energy expenditure in the quantization stage.

The next direct path toward reducing the power expended on sampling a signal is to

reduce the number of samples taken. The Walden figure of merit for analog-to-digital con-

verters (ADCs) suggests that, for ADCs of comparable resolution, a reduction in power can

be achieved through an equal reduction in sampling rate [62]. Unfortunately, traditional

Nyquist–Shannon sampling sets the sampling rate at a hard minimum of twice the high-

est frequency content of a signal. While fixed-rate sampling has the advantage of being

very-well understood and characterized, it does not provide an efficient means of sampling

sparse or ‘bursty’ signals—signals characterized by relatively short periods of high activity

and potentially long periods of inactivity (e.g., voice-control systems).

The extraneous quantization of signals creates increased energy overhead outside of the

quantization stage as well. For these quantized signals to be useful, they must normally be

processed by a microcontroller and/or transmitted to some other device by a transceiver.

Logically, the more samples that are taken, the more samples that must be processed and

transmitted by the microcontroller/transceiver. This has a compounding effect on the power

consumption, as these activities reduce the amount of time it may stay in a low-power ‘sleep’

state, which operates at orders-of-magnitude lower power expenditure than the active state.

For context, the active states of two low-power industry-standard components, the MSP430

microcontroller and the CC110L transceiver, consume over 200 times and 80,000 times more

current than their respective sleep states [11]. It is, therefore, very desirable to leave these

devices in a sleep-state as much as possible by reducing the sample overhead.

The desire to vary a data converter’s sampling rate so that it may adapt to the changing

frequency characteristics of a signal has given rise to data converters that rely on asyn-

chronous sampling methods. Instead of wasting a significant amount of energy converting
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parts of the signal that contain relatively little data, asynchronous sampling methods base

their rate on the signal itself. The trigger for these methods can be a number of different

signal-characterization or classification circuits, but many asynchronous sampling solutions

struggle with a robustness/resolution trade-off.

Level-crossing ADCs are possibly the most popular type of asynchronous ADCs [63, 64,

65, 66]. The basic concept is that a sample is only converted when the measured signal

passes through a bound that would represent a new digital word. By only recording these

transitions, periods of relative inactivity are ignored. Ignoring these inactive periods allows

energy to be saved through reducing the number of conversions [67]. While this method

avoids extraneous conversions during periods of low-activity, level-crossing ADCs have a

severe resolution–bandwidth trade-off—the higher the resolution of the ADC, the longer it

takes for large-amplitude high-frequency content to traverse through the many quantiza-

tion levels.

Alternative triggering schemes can be made from analog front-ends designed for dif-

ferent signal-conditioning and classification schemes. For example, one could imagine an

ADC triggered upon the detection of a certain frequency within a signal [56] or upon the

detection of vocal characteristics of a signal [58]. Indeed, many energy-efficient analog front-

ends [68] could provide a trigger for an asynchronous data converter. Unfortunately, these

analog circuits are very application-specific, requiring new circuits to be designed on a per-

application basis.

The desire to enable reconfigurability in analog electronics has led to the development

of a relatively new class of devices called field-programmable analog arrays (FPAAs) [4, 69,

70, 71]. FPAAs are similar to digital field-programmable gate arrays (FPGAs) in that they

allow for a system architect to program arbitrary connections of primitives to form larger

systems. Allowing circuit designers to reconfigure and retune analog elements and biases

allow these FPAAs to function across a myriad of applications. In this work, we leverage

our reconfigurable analog front-end—the RAMP—to provide user-defined triggers to enable

conversion based upon the characteristics of the signal, thereby minimizing the number of

conversions to significantly save power.
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7.3 System Overview

When sampling signals with sparse information, constant-rate sampling unavoidably cre-

ates extraneous samples during periods of low activity. These extraneous samples create

waste in the quantization stage as well as further down the signal-processing chain in the

microcontroller and transceiver stages. The use of analog preprocessing has been shown to be

computationally efficient to find the data points needing to be converted [68]. While a fully

custom front-end would yield the highest energy savings, the use of a field-programmable

analog array allows us to adapt the front-end for a variety of applications.

Once the FPAA-synthesized analog front-end detects some predefined characteristic of

the signal, it calls for the immediate quantization of the signal. Due to the asynchronous

nature of the quantization, not only must the amplitude be recorded, but the time interval

since the last sampling event must also be recorded, as shown in Figure 7.1.

The amplitude conversion within the demonstrated system occurs with a simple successive-

approximation analog-to-digital converter. From a system perspective, the unique aspect of

this ADC is that it must be triggered to initiate conversion. This trigger signal also activates

a time-to-digital converter (TDC). A TDC is essentially an oscillator with a digital counter

attached to the output that counts the number of oscillations between extrema occurrences.

By pausing/resetting the TDC after every sample, the total number of counted oscillations

will be proportional to the elapsed time since the previous sample, thus enabling intersample

time measurement. The constant oscillation of the TDC may seem inefficient, but a unique

feature of this system is that the ADC uses the TDC as its required clock signal. By replacing

the system clock, the TDC offsets some of its own power budget within the system.

7.3.1 Reconfigurable Analog Mixed-Signal Platform

The reconfigurable analog/mixed-signal platform (RAMP) refers to our FPAA, which is

capable of synthesizing large and complex circuits for event-driven and signal-processing de-

signs. Coupled with a custom netlist-based language and place-and-route routines, the RAMP

enables users without circuit-level expertise to quickly develop applications in silicon [4].

As shown in Figure 7.2, the RAMP contains 80 computational analog blocks (CABs)

that are interconnected via ten stages with eight channels. The ten stages are organized by

processing type, such as basic circuit elements (e.g., transistors and capacitors), transcon-

ductors, continuous-time filters, mixed-signal operations, etc. The eight identical channels
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Figure 7.2: Architecture of the reconfigurable analog/mixed-signal platform (RAMP) inte-
grated circuit.

provide the ability to create parallelized designs, as needed. Moreover, many of the synthe-

sizable elements are tunable to set desired performance parameters (e.g., gain, filter corner

frequency, etc.) and to tailor the respective circuit to the input signal characteristics. This

tunable functionality is provided by floating-gate transistors, which are described in more

detail in [27].

7.3.2 Asynchronous Data Converter Design

The voltage amplitude conversion of the asynchronously sampled values is performed by

a successive-approximation ADC (SA-ADC). The successive-approximation architecture was

chosen for its demonstrated power efficiency [72]. It also has the advantage of being appropri-

ate for a relatively large range of frequencies and amplitudes, thus making it an appropriate

choice for a variety of different systems with varying signal characteristics. The follow-

ing discussion is devoted to the specific circuits shown in Figure 7.3 that give this ADC

its functionality including the successive-approximation register, comparator, and time-to-

digital converter.
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Figure 7.3: System diagram of the successive-approximation ADC (SA-ADC)/time-to-digital
converter (TDC). A trigger from the RAMP analog preprocessing stage acts as the ‘Start
Signal’ to initiate conversion and record the time.

Successive-Approximation Register

The successive-approximation register (SAR), which is shown in Figure 7.4, is the control

circuitry used to run the binary-search-like process within an SA-ADC. The basic principle

of this search is to test each bit from the MSB to the LSB and save the result. The boxed

top half of Figure 7.4 is simply a shift register. This portion of the SAR passes a logic high

down the chain of flip-flops upon each clock cycle, which is provided by the ‘Comparator

Done’ signal, as shown in Figure 7.3. When a flip-flop in the shift register outputs a logic

high, a corresponding flip-flop below it is also set high. This bottom row of flip-flops applies

the digital word to the digital-to-analog converter (DAC) that provides the voltage to which

the input is compared. When the next shift occurs, but before the DAC or comparator is

updated, the previous bit is changed to reflect the output of the comparator. Logically, this

is the equivalent of the flip-flop updating its output to reflect whether the guess was accurate

or not. This process proceeds in a sequential manner until the last flip-flop outside of the

dashed box on the top row receives the logic high—this event signifies that the SAR has

finished all of its cycles, and thus the analog-to-digital conversion is complete. The SAR

implemented in this work is 10 bits.
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Comparator

Maximizing resources within energy-constrained systems is a high priority, but it can be

difficult, for example, to convert voltages along the entire full-scale range. The comparator

shown in Figure 7.5 was based on the design in [73] and was modified to maximize system

resources by enabling rail-to-rail conversion. Normally, a comparator is implemented with

either a pFET-based differential pair, which suffers at higher voltages; or an nFET-based

differential pair, which suffers at lower voltages. Ours uses both complimentary versions of

the pFET-based and nFET-based comparators and selects which one to use based upon the

result of the first successive approximation.

During the first successive approximation, it is already known that one of the compara-

tor inputs will be at the mid-rail voltage because the DAC output will be selected to be

midrail by the SAR. Therefore, either a pFET-based or nFET-based comparator would be

able to perform the comparison. We chose the nFET-based version to perform the first

conversion. The result of this conversion signifies whether the input is in the top-half or

bottom-half of the full-scale range. If it is found to be in the top-half, we perform the re-

maining conversions using the nFET-based comparator. Conversely, if the input is found to

be in the bottom-half, the remainder of the conversion is performed using the pFET-based

comparator. The appropriate comparator is chosen by the MSB of the SAR (shown as En
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in Figure 7.5), thus ensuring that the comparator never operates in a region where it cannot

make an accurate comparison. By intelligently selecting which comparator is used, we are

able to convert values along the entire full-scale range.

Our clocked comparator is designed to use negligible static energy by breaking the con-

nection between VDD and ground when the clock is low, and also very little dynamic energy

by utilizing minimally sized transistors. Prior to comparison, the clock signal is low, which

precharges the Vlatch nodes. When the clock signal goes high, the Vlatch nodes are discharged

at rates proportional to the voltages at Vin+ and Vin−. These Vlatch nodes control the sub-

sequent voltage latch stage. The end result is that the output node that corresponds to the

higher input voltage will be pulled high. Figure 7.5b shows the interaction of the nFET- and

pFET-based comparators. Their outputs are combined through logic OR gates to provide

the final output as well as to create a comparator done signal that serves as the clock signal

for the subsequent SAR block.

The drawback to using two symmetric comparators is that two different input-referred

offsets must be accounted for in postprocessing. For this implementation, no layout match-

ing techniques were used to address this unequal offset, but it would be a viable technique

for helping to mitigate the issue. Another method would be to use programmable floating-

gate devices in place of the input pairs. The floating gates could then be programmed

with the appropriate charge so that the offsets between the two halves of the comparator

are matched [74]. Alternately, by using floating-gate transistors as the input transistors,

the comparator could be reduced to a single, non-symmetric version (i.e., as shown in Fig-

ure 7.5a) by programming the common-mode charge of the two floating-gate transistors to

remove offset as well as to cover rail-to-rail input voltages.

Time-to-Digital Converter

The intersample times are recorded using a time-to-digital converter (TDC). A TDC is

simply a device that takes some periodic signal and uses it to estimate the time interval

between signal pulses [75]. Our TDC implementation, which is shown in Figure 7.6, was

designed to take a small amount of physical area and digital support circuitry. The peri-

odic signal is created by current-starved inverters arranged in a voltage-controlled oscillator

topology. The current starving inverter, which is shown in Figure 7.7a, ensures that we

can both mitigate the power wasted by short-circuit current and that we can control the
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frequency of oscillation of the overall device. The voltage bias is held at a DC value and

the output oscillations are recorded using a digital counter. The output of this counter is

then a binary word that is proportional to the length of time since the last restart pulse.

The restart/event pulse is provided by the RAMP system and is used to reset the counter

values to zero when a new sample is detected. The current version of this system does not

account for overflow conditions of the counter, but future iterations would trigger a conver-

sion by the ADC when the TDC reaches a state of all ones in order to maintain accurate

representation of very-low-frequency signals.
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7.4 Asynchronous Sampling Implementation

7.4.1 Extrema Sampling

The first task in implementing this system is to determine what signal quality will serve

as the ‘trigger’ for conversion. In conventional data-conversion systems, a fixed sampling rate

that is greater than the Nyquist sampling rate is used to acquire the samples—therefore,

the system clock is the only external trigger needed for acquiring new sample values for

conventional ADCs. On the other hand, asynchronous sampling methods adapt the sampling

rate to the changing frequency content of the signal, so triggers within the signal itself must

be used to determine when to take a new sample.

The RAMP device could be used to implement a variety circuits capable of finding

triggers embedded within the signal that can be used to initiate conversion. We have chosen

to focus on the detection of local extrema (i.e., local maxima and minima) to implement

an ’extrema sampling’ system [66, 76]. In extrema sampling, the local minimum/maximum

voltages are converted when the first derivative of the input is zero. Because the sampling

is asynchronous, the time between each sample must also be recorded.

It is also worth reiterating that adaptive-sampling techniques, such as extrema sampling,

are a good opportunity for power savings in converting ‘bursty’ signals—ones that have

short segments of high-frequency events followed by large segments of relative inactivity. No

energy is wasted on digitizing the input signal if it is not changing.

Figure 7.8 illustrates the reduction in the number of samples that can be obtained over

traditional fixed-rate sampling techniques. The highest-frequency spectral component de-

fines the Nyquist sampling rate for fixed-rate sampling systems—for this example waveform,

27 samples would be required over this time period when sampling at the Nyquist rate.

In extrema sampling, only the local maxima and minima are sampled. In this way, ex-

trema sampling adapts itself to the changing frequency content of a signal. When applied to

this example waveform, only 9 sample values are required to accurately represent the same

waveform. The reduction in the number of sampling points when using extrema sampling

becomes more pronounced during periods of inactivity and/or only low-frequency content.

As a result, significant energy can be saved through the conversion process, and superfluous

data points are never converted.

The original signal can be reconstructed from the extrema samples by employing a simple

method used for constructing complex lines in computer graphics called Bézier curves [77].
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Figure 7.8: Comparison of constant-rate Nyquist sampling versus an adaptive-sampling
method using extrema sampling.

The Bézier curve is a cubic polynomial capable of providing a smooth curve between two

points when given well-defined inflection points. The cubic formula has four parameters:

Two end points (P0 at x = 0 and P3 at x = 1) and two concavity points (P1 and P2).

The Bézier polynomial is given by the following expression:

B(t) = (1− x)3P0 + 3(1− x)2xP1 + 3(1− x)x2P2 + x3P3, x ∈ [0, 1]. (7.1)

We use this formula as a point-to-point operation between every pair of adjacent extrema.

In doing so, N extrema samples are used to create N-1 segments that approximate the

complete signal. For each N-1 segment, Equation (7.1) must be applied to the voltages

(V ) and times (T ) of the samples separately. Figure 7.9a illustrates how Equation (7.1)

is applied to create a smooth interpolation between extrema values, and, in this particular

example, the waveform goes from a local maximum to a local minimum. We let P0 and P3 be

represented by the voltage–time pairs of the two extrema locations, given by P0=(Vmax,Tmax)

and P3=(Vmin,Tmin).

Concavity points P1 and P2 define the smooth transition between the endpoints. They

maintain the corresponding voltage values of the endpoints (i.e., Vmax and Vmin) to ensure

that the derivative at the local maxima/minima is zero, but their time values are set exactly

halfway between them in time at Tave=(Tmax + Tmin)/2. Accordingly, Equation (7.1) is
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modified to two equations for the voltage and time expressions.

V (x) = (1− x)3Vmax + 3(1− x)2xVmax + 3(1− x)x2Vmin + x3Vmin, (7.2)

T (x) = (1− x)3Tmax +
3

2
(1− x)2x(Tmax− Tmin) +

3

2
(1− x)x2(Tmax− Tmin) + x3Tmin. (7.3)

These expressions create vectors of voltage and time values, providing a smooth curve

that is nearly sinusoidal in nature between the two extrema locations.

This process is demonstrated in Figure 7.9b, which shows a composite Bézier-reconstructed

signal created in a piecewise fashion following the pattern of a maximum to a minimum to

a maximum to the remaining extrema. We have found that the utilization of the Bézier

equation is an apt method for reconstructing a signal using local extrema values, and what

we have shown here is the simplest application of it. In Section 7.5, we demonstrate that this

technique can reconstruct complex waveforms with very small mean-squared error between

the original waveform and the reconstructed version.

7.4.2 RAMP Triggering Implementation

Using the reconfigurability available from the RAMP system, we are able to synthesize

a circuit capable of locating and sampling extrema values. Figure 7.10 shows the circuit we

synthesized for finding local maxima; the local minima detector circuit is a symmetrically

equivalent circuit (not shown). Figure 7.11 shows the measured output of the maxima and

minima detectors that were synthesized on the RAMP, along with timing diagrams showing

the outputs of the various stages of these circuits.

Operation of the maxima detector circuit is as follows. Locating the maximum extrema

of the signal is performed by first taking the envelope of the signal. This envelope is set to

track the input aggressively on the rising edges and to lag behind when the signal begins to

decline. Accordingly, the transconductance Gm,A is set to be larger than Gm,B to achieve this

asymmetry in tracking the input signal that results in envelope detection. The comparator

then produces a logic high signal when the envelope lags behind the input—signaling a local

maximum. This logic high value is used to trigger a pulse generator which provides the

‘event pulse’ signal shown in the bottom plot of the Figure 7.11.

An event pulse is triggered to logic high at every extrema occurrence and corresponds to

the start pulse signals in Figures 7.1 and 7.3. This signal commences the digitization process

in the ADC and TDC and also activates the sample-and-hold to sample the value of the
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Figure 7.9: (a) A Bézier interpolated segment constructed via endpoints P0 and P3 with
concavity points P1 and P2 defining the directional path. Tave is the center point between
endpoints P0 and P3. (b) A continuous piecewise Bézier reconstruction that was generated
from local maxima/minima and overlaid on the input signal.
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Figure 7.10: The maxima detector circuit, which makes up one half of the analog front-end
synthesized in the RAMP system. The minima detector circuit is the symmetric equivalent.

signal. The ADC takes the sampled value from the sample-and-hold circuit and converts the

voltage into its corresponding digital codeword. The TDC utilizes the event pulse to halt its

operation, allowing readout of the digital codeword representing the time duration since the

previous extrema occurrence. The TDC is then reset, allowing it to begin counting up until

the next extrema occurrence.

7.5 System Implementation and Example Applications

In this Section, we present the complete fabricated system and its application to three

biorelated application examples including voice, electromyography (EMG), and electrocar-

diogram (ECG).

The designs presented for these applications were measured from fabricated chips. The

RAMP was fabricated in a standard 0.35 µm CMOS process, while the ADC/TDC was

fabricated in a 0.5 µm CMOS process. Both die photographs are shown in Figure 7.12.

Future implementations would combine both the RAMP and the asynchronous ADC/TDC

on the same die to improve overall performance. Additionally, scaling the ADC down to

a newer technology node would also significantly improve power consumption, particularly

since the SA-ADC and TDC are mainly comprised of digital circuits.
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output of an envelope detector with the input signal. The measured timing diagrams indicate
when an event (local maximum/minimum) has been detected.
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Figure 7.12: (a) Die photograph of the reconfigurable analog/mixed-signal platform (RAMP)
fabricated in a 0.35 µm standard CMOS process. (b) Die photograph of the asynchronous
ADC/TDC fabricated in a 0.5 µm standard CMOS process.

7.5.1 Power Consumption

In general, the RAMP power consumption is dependent upon the circuit that is syn-

thesized for the front-end application. In the examples of this Section, the signals can be

characterized as biorelated signals with low frequency components (i.e., f < 10kHz). By per-

forming this extrema location preprocessing in the analog domain for these biorelated signals,

we were able to detect extrema at a measured static power consumption of 4.95 µW [8].

The ADC has an extremely low static current draw, measured with an overall static

power consumption of 14.75 nW. The low static power consumption means that the ADC

can remain powered on between samples without worry of draining the power budget. Energy

per conversion was too low to be measured experimentally, so the energy per conversion was

obtained from simulation as 47.4 nJ.

The TDC can operate with frequencies ranging up to tens of kilohertz, but, for the

example applications shown here, the TDC was operated at a frequency of 1.15 kHz with

a measured power consumption of 1.01 µW. It should be noted that this component will

greatly benefit from smaller CMOS technology nodes and lower power supplies.

A summary of the performance of the fabricated RAMP, SA-ADC, and TDC is provided

in Table 7.1.
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Table 7.1: Summary of ADC and TDC specifications.

Extrema Sampling

Ramp Implementation
4.95 µW

SAR ADC Static

Power Consumption
14.75 nW

SAR ADC Energy/Conversion 47.4 nJ

SAR ADC Resolution 10 bits

TDC Power Consumption 1.01 µW @ 1.15 kHz

TDC Resolution 10 bits

7.5.2 Voice Recording

The first application demonstrated is the capture and quantization of extrema values

within a speech recording. Low-power speech sampling and reconstruction is useful in IoT

devices which actively listen for predefined commands. In these applications, perfect recon-

struction is not necessary. Instead, only a certain mean-squared error threshold must be

respected so the system can identify known commands.

Figure 7.13 shows the successful capture of 1436 extrema values in a 1.45 s speech wave-

form. The fastest captured component of the signal is 5333 Hz, thus dictating a minimum of

15,528 samples to be taken in a traditional Nyquist-rate sampling system. Extrema sampling

results in a nearly eleven-times reduction in sample values and maintains a 0.0483 mean-

squared error rate when reconstructed using the Bzier interpolation technique of Section 7.4.

The reduced number of samples provided by the asynchronous sampling can significantly

reduce the overall power consumption of the system, both at the conversion stage and at the

subsequent digital processing stage when the data are analyzed. To provide a comparison

in the power consumption of only the data-conversion stage, we can use the power and

energy values provided in Table 7.1 to determine the power savings of the asynchronous

ADC over an identical ADC continuously converting all data at a fixed rate. The average

power consumption of the data converter is given by

P = PRAMP + PADC + PTDC +
nEconv
t

, (7.4)

where the P values are the static power consumption of the associated stages (with PRAMP =

0 for a fixed-rate converter), n is the number of samples taken over a time interval (t),



CHAPTER 7. RECONFIGURABLE ADC PREPROCESSOR 111

Time(s)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time(s)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(b)(a)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

V
o
lt
s
 (

V
)

V
o
lt
s
 (

V
)

Figure 7.13: (a) The original vocal waveform with successfully detected peaks. (b) The
recreated vocal waveform using Bzier reconstruction.

and Econv is the energy required by the ADC to convert one sample. As a simplification,

we let PTDC also represent the power consumed by a fixed-rate clock for a traditional ADC.

Note, however, that a fixed-rate ADC would need a faster clock than the asynchronous case,

thereby meaning that the fixed-rate ADC would likely consume even more power.

Based upon the values in Table 7.1 and Equation (7.4), our asynchronous converter

would consume an average of 52.9 µW, while a fixed-rate ADC (without any analog pre-

processing) would consume an average of 509 µW for this voice-recording application. As a

result, the asynchronous ADC consumes 9.6-times less power than a fixed-rate converter.

While these specific numbers depend on the exact characteristics of the ADC that is used,

the fundamental principle holds that reducing the number of samples that are converted can

significantly decrease the overall power consumed by an ADC, as is clearly seen by the last

term in Equation (7.4). As a result, using even-more power-efficient ADCs along with ana-

log preprocessing would result in even further savings. Furthermore, in this voice-recording

example, the speech is continuous throughout the 1.45 s waveform. For many real-world

applications, pauses in the speech would be present, which would further reduce the power

consumed by the asynchronous ADC, but not the fixed-rate ADC.

7.5.3 Electromyography

The next application involves the quantization of an electromyography (EMG) signal.

EMG signals are traditionally used to diagnose muscle and nerve health. In addition to
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Figure 7.14: (a) The original electromyography (EMG) waveform with successfully detected
peaks. (b) The recreated EMG waveform using Bzier reconstruction.

measuring neuro-muscular health, EMGs are gaining popularity in measuring muscular ex-

ertion in physical therapy and sport-science applications [78]. As these applications become

more advanced, increasingly power- and sample-efficient devices will be required.

Figure 7.14 demonstrates the results of our presented system on an EMG waveform

taken from the example EMG database found at [79]. Over the 12.7 s signal, 3035 extrema

values were successfully detected. Given that the highest frequency within the sample was

approximately 2 kHz, then 50,796 samples would be required for an equivalent Nyquist-rate

sampling system. Therefore, our extrema sampling quantizer represents a greater than 16-

times sample reduction over standard techniques, while maintaining a mean-squared error

in reconstruction (using Bzier reconstruction) of less than 0.0036. Applying Equation (7.4),

the asynchronous ADC has a factor of 11-times less average power consumed than the fixed-

rate ADC for this EMG example.

7.5.4 Electrocardiogram

Finally, we present an application where the goal is not reconstruction, but instead

the capture of specific points of data. Electrocardiogram (ECG) waveforms are very well

understood signals that have a limited number of medically relevant data points. Our exam-

ple will focus on QRS-complex capture, disregarding the other portions of the ECG wave.

QRS-complexes are useful for a variety of medical purposes, ranging from monitoring for

hyperkalemia or cardiac hypertrophy to simply extracting heart-beat to estimate perceived

exertion [80]. For the purpose of demonstrating this system, an extrema sampling approach
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Figure 7.15: (a) The original ECG waveform taken from the MIT arrhythmia database
with the detected extrema values shown as dots. (b) QRS-complex reconstruction using a
simplistic quasi-linear model based on QRS waveform shapes (line) with the detected QRS
values (dots) as well as a single false positive.

is a natural fit for reducing an ECG waveform to its QRS-complex—which can be viewed as

a distinct local maximum between two local minima. By extracting only the QRS-complex

and avoiding sampling extraneous data, this device would allow a wearable health or fitness

system to be a more viable long-term option.

Figure 7.15 shows the operation of the system and the resultant approximations of the

amplitudes and time intervals between the QRS peaks. The QRS waveform of Figure 7.15b

was not reconstructed using Bzier reconstruction—a simplistic interpolation technique based

upon QRS shapes is adequate to glean the medically-relevant information from the QRS-

complex for this particular case. The device was tested with real world data taken from the

MIT arrhythmia database [79].

Figure 7.15 shows the system effectively capturing a QRS-complex. The highest frequency

component, which is the change between Q and R, would determine the minimum sampling

rate in a traditional Nyquist sampling scheme. For the demonstrated waveform, the 57 Hz

change would necessitate a sampling rate of 114 Hz from a conventional Nyquist-rate ADC.
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This sampling rate would yield approximately 485 samples over the 4.228 s that the signal is

demonstrated over. That amount of superfluous samples is greater than 25 times the number

of samples taken in our system, even including the single false-positive. Since the frequency of

sampling is much lower than for the voice and EMG cases, the amount of power savings using

Equation (7.4) is not nearly as significant. However, two points should be noted. First, most

ADCs that are designed for heart-rate monitoring use faster sampling rates than the absolute

minimum from this example. For example, [81, 82, 83, 84] use sampling rates from 300 Hz

to 600 kHz, and using these larger sampling rates would significantly increase the average

power consumption in an equivalent ADC. Second, the purpose of many heart-monitoring

systems is to determine the features of the QRS complex—while our asynchronous ADC has

minimal power savings strictly at the conversion stage for this application, our asynchronous

ADC is performing many of the operations that would be reserved for a subsequent digital

processing system when using a traditional ADC, which would also have a substantial power

consumption. Some application-specific QRS detector systems have been shown to acquire

and process heart-rate data at very low power; for example, the system of [84] is able

to operate at 220 nW under a 300 mV power supply. However, such a system lacks the

flexibility afforded by our reconfigurable analog preprocessing. Additionally, scaling both

the technology node and power supply of our ADC (to levels similar to [84]) would also help

to significantly further reduce the overall power consumption.

7.6 Conclusions

To reduce the power consumption of an analog-to-digital conversion system, we have

introduced an analog preprocessing stage prior to an asynchronous converter to find the data

values that are most important to be converted for a given application. Since the timing of

the data values is not known a priori, the analog preprocessing triggers the asynchronous

converter to acquire a sample, and a time-to-digital converter measures the intersample time

period. By converting only the data values that are needed, a significant amount of power

can be saved by the system, both at the conversion stage, as well as further down the signal-

processing and/or transmission chain. We also demonstrated a sampling technique based

upon finding local maxima/minima, and a variety of other triggering operations are also

possible due to the reconfigurable nature of the analog front-end.
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Chapter 8

Reconfigurable Analog Mixed-Signal

Processor

This chapter will be wholly dedicated to the RAMP. Many of its applications have touched

the past chapters of this work including the high-side load switch of Chapter 3, FG tempera-

ture compensation of Chapter 4, and asynchronous front-end for analog-to-digital conversion

in Chapter 7. The contents presented in this chapter were not germane to previous topics,

but justify its own chapter. It will include miscellaneous application circuitry, hardware and

software infrastructure, and enhancements from past versions of FPAAs developed in this

research lab.

8.1 Software Infrastructure

The software infrastructure is critical for facilitating usability for new users of the RAMP

– whether it be for undergraduate students in an electronics laboratory or seasoned analog

designers in industry. The software toolchain can largely be divided into two categories:

front-end and back-end. The front-end is the human-interfacing aspect of the software that

codifies the user-defined design in code and passes the information to the back-end applica-

tion. The back-end realizes the hardware design on the RAMP from the user-defined source

code, and additionally is used to establish a means for a communication link between the

RAMP and the computer.

A large aspect of the front-end design consists of a simplistic netlist-based language.

This design was chosen since it fits nicely within the context of signal-flow design wherein
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Figure 8.1: Architecture of the reconfigurable analog/mixed-signal platform (RAMP) inte-
grated circuit.

the user defines in code the various circuit elements for the signal to ’flow’ through before

reaching its output. As shown in Figure 8.1, the signal can pass through one or more of

the 80 computation analog blocks (CABs) that are interconnected via ten stages in eight

channels, and is organized by the processing type — transconductors, band-pass filters, data

conversion, etc. This provides flexibility and parallel processing that can then be fed to a

microprocessor further down the signal chain. Moreover, many of the synthesizable elements

are tunable to set desired performance parameters and can be specified within the netlisting

language.

The netlisting language enumerates the electrical connectivity among the circuit elements

of a design. An example of the netlisting language is shown below in 8.1, and also happens

to be the source code for generating the reconfigurable analog-to-digital preprocessor signals

of Figure 7.11 — placed below for ease of viewing. The two demonstrate the aforementioned

signal-flow design.

Listing 8.1: Example netlisting code

%==============Input D e f i n i t i o n================

% Def ine the the input s i g n a l pin (A0) and |
% d e c l a r e an a l i a s f o r the s i g n a l name ( InS ig ) |
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%==============================================

A0 InS ig

%=========PeakDetector Parameter L i s t=========

% PeakDetector In Out Chan Stage Atk Dec |
%=============================================

PeakDetector InS ig PkEnvMax 0 1 20e 9 .30 e 9

PeakDetector InS ig PkEnvMin 3 1 .35 e 9 5e 9

%=========Comparator Parameter L i s t===========

% Comparator Plus Neg Out Chan Bias |
%=============================================

Comparator PkEnvMax InS ig MaxFound 0 250e 9

Comparator InS ig PkEnvMin MinFound 3 500e 9

%=======Pulse Generator Parameter L i s t========

% PulseGenerator In Out Bias Time Chan |
%=============================================

PulseGenerator MaxFound MaxPulse 1000e 9 . 6 e 9 1

PulseGenerator MinFound MinPulse 100e 9 .35 e 9 3

%============Combinational Logic==============

% Map input and output s i g n a l s f o r d i g i t a l |
% l o g i c gate s with in Look Up Table |
%=============================================

LUTx S8C2 MaxPulse MinPulse Gnd Gnd Gnd Gnd ConvNow Gnd

LUT S8C2 Y0=X0 |X1

%=============Output D e f i n i t i o n================

% Map output s i g n a l (Y0) i s output pin (ADC0) |
%==============================================
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ADC0 Y0

Beginning with the input, we must define which pin to receive the input signal. In the

case of 8.1, pin A0 was chosen receive the sinusoidal input shown in the top plot of Fig. 8.2.

This input will flow into two separate Peak Detector components sharing the same stage 0,

but splitting into two channels 0 and 3, respectively. Each of their respective component

parameters are enumerated after the component name including: input signal alias, output

signal alias, channel number, stage number, followed finally by attack and decay currents.

The attack and decay currents are tuneable via floating-gate transistors. Of note is the

complementary attack and decay current parameters of the respective the min and max

peak detectors that contribute to their functionality.

The signal-flow design of this example continues through a set of comparators, pulse

generators, and combinational logic gates, where it terminates its output at pin ADC0. As

the pin name suggests, it can be wired a microcontroller ADC. While the code example of

8.1 demonstrates the relationship of electrical connectivity among the components, it also

demonstrates macro-level abstraction of the netlisting language that promotes code re-use.

Each one-line macro represents a component must be fully defined in the netlist document

for the compiler. For example, the macro definition for the comparator is as follows.

Listing 8.2: Example netlisting Modular Macro code

%======Comparator Macro D e f i n i t i o n========

begin Comparator Plus Neg Out Chan Bias

Cmp2 S6C<Chan> <Plus> <Neg> <Out>

FG S6C<Chan> Cmp2 Bia I t a r=<Bias>

end

The macro is composed of primitive components that can be interpreted by the compiler

and translated to bytecode for RAMP programming. The designer should be cognizant

of the overall design when choosing from available components to reduce loading effects

on the circuit. Synthesizing components among a number of different stages/channels is

unavoidable due to the nature of the RAMP, but there are component choices that best

optimize the design or should dictate the priority because their performance is the most

sensitive to loading effects.

In the netlist example of 8.1, the peak detector outputs feed into the same respective
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Figure 8.2: The maxima and minima locator circuits find local extrema by comparing the
output of an envelope detector with the input signal. Each output signal shown corresponds
to an output of a synthesized RAMP component (e.g. pulse generator) that flows into
another component or the final output.
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channels of their paired comparators. However, note that the comparator macros do not

explicitly define their stages as an input parameter. Instead, they are defined as a primitive

component in their macro definition shown in 8.2. The signals are now being processed in

stage 6, which is more than halfway through the chips towards its terminating output pin.

All associated back-end software design — sometimes referred to as physical design flow

— is compatible with Matlab, and it’s free and open-source alternative, Octave. The back-

end software emphasizes processes that renders a synthesized electronic design on the RAMP

without human intervention. Without the ability to batch process the rendering of the netlist

to a ready-for-deployment state greatly reduces the RAMP’s utility in a number of ways.

The first, is that this process would be too tedious and error-prone for a human to arrive

at an optimum placing and routing signal-flow design — each of which have their own set

of challenges. Furthermore, back-end software greatly reduces the barriers to in-the-field

programming. Both attribute to the end-user to focus solely on the electronic design and to

rapidly prototype it in silicon.

The back-end software accepts the user’s netlist file as an input parameter and checks

it against a set of syntax rules. Once this check has been passed inspection, the design

may be passed to a place routine whose output is then passed to a route routine. A place

routine optimizes the placement of the user-specified component list within the constraints

of available components within the active chip area. Its objective is to arrive at a placement

solution that will permit the best electronic performance and allow for a viable routing

solution. The wire routing which is handled by the routing procedure iteratively optimizes

the physical connections among the placed components as defined in the netlist. Both

procedures utilize heuristic algorithms to arrive at their optimum solutions.

8.2 RAMP Version 1.1 Enhancements

As the version name suggests, RAMP version 1.1 encompasses iterative enhancements as

opposed to a complete overhaul of predecessor’s version. The largest architectural change

to the latest version is the inclusion of an eleventh stage referred to as the ’Unique Stage’.

It’s a departure from the original stages in that each CAB contains a different application-

specific circuit. This exists all while maintaining a backwards-compatible infrastructure that

preserves the ability to interface and program the CAB elements.

The philosophy of the original RAMP v.1.0 design was the ability to process signals in
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Channel Circuit

0 Temperature Compensation

1 Subthreshold Neurons

2 BiQuad Filter

3 Automatic Gain Control

4
Bandgap Reference with

Temperature Compensation

5 Wheatstone Bridge

6 Ring Oscillator

7 Neural Amplifier

a re-configurable, parallel manner. The parallel-aspect is realized by having 8 channels of

repeated CABs for each stage. Much like the example of netlist 8.1, this architecture-choice

allowed us to design two parallel, but complementary signals to determine maximum and

minimum amplitudes of a voltage signal. However, there are a number of cases in which

synthesized circuitry has no benefit from parallelization and should be a standalone element.

One reason is that there are common infrastructural elements that do not benefit the

overall design from a piecemealed synthesis. For example, it could potentially take away

resources greatly needed by the design like routing options and be consuming other valuable

circuit elements. A second is some circuits rarely need/utilize a duplicate of itself. Having

multiples of the same CAB elements along each channel would be wasteful use of silicon

space. And finally, the unique stage allows for evaluating contemporary circuit alternatives

and exploratory elements. This would allow an evaluation of said CAB elements within the

same infrastructure for performance comparisons. For these reasons became the motivation

for a unique, eleventh stage in the RAMP v.1.1 whose CAB elements are enumerated below

by channel.

The temperature compensation CAB provides the temperature compensation for all pro-

grammable current sources and is fully elaborated upon in Chapter 4. The neuron circuitry

contains two complete neuron circuits. These circuits have subthreshold, current-mode oper-

ation like the ones of [85]. These neurons can leverage our previously developed programming

infrastructure which is needed for neural-network development. When neurons are typically

rendered in CMOS, they’re in the form of nonvolatile analog (via current) memory, but need
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the ability to ”learn.” Each neuron’s memory allows one to improve the feedback network’s

performance in solving a problem which is done by re-programming the neuron (i.e. floating-

gate transistor). These neurons become the basis for future neural-network development on

the RAMP. Similarly, CAB element of channel 7 consists of a neural amplifier which will

permit real-time neural recording activity. The amplifier is specifically designed to meet the

needs of this application-specific requirements.

The BiQuad Filter is a programmable band-pass filter like ones employed in the filtering

stage which utilize C4 filters. The the unique stage BiQuad filter fulfills the third aforemen-

tioned rationale in evaluating their performance within our current infrastructure. Similarly,

channel 4 CAB element consists of a bandgap reference with temperature compensation and

will allow us to evaluate its performance against our current bandgap reference.

The ring oscillator is a common circuit used as a clock source. The one of channel 6

is current-controlled by a floating-gate current source which allows re-programmability and

low-power consumption. The inclusion of this circuit in the unique stage met the criterion

for the first rationale.

The last two elements of the unique stage are common sensor-interfacing circuitry with

unique input signaling requirements, but whose post-processing could benefit from the col-

lection of circuits offered by the RAMP’s ten previous stages. For example, the wheatstone

bridge circuit requires a two-terminal resistive element input, which does not fit the typical

single-ended voltage inputs of the RAMP. The automatic gain control circuit of channel 3

was designed for a MEMs microphone input. It’s transfer function characteristics include a

small-signal amplification and large-signal compression due to the inherent nature of micro-

phone usage. It’s design consists eleven programmable biases, four OTAs, and two opamps.

If it were to be synthesized in the RAMP rather than its own CAB element, it would have

occupied a lot CAB elements and routing lines. While not necessarily efficient, it would take

a lot of planning to implement additional processing circuits within the synthesized design.

Overall auditory processing remains a large application of the RAMP.

8.3 Conclusion

The RAMP is unique, rapid-prototyping device that can provide re-programmable, in-

silicon circuitry for front-ends and sensor interfacing. It is more generally categorized as a

Field-Programmable Analog Array that additionally provides common digital and mixed-
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signal circuitry. There are two versions of the RAMP, where the successor offers incremental

improvements over the original in the form of improved circuit selection, infrastructure, and

the inclusion of experimental circuitry for future iterations.

The software toolchain permits end-users to rapidly prototype designs with a process

very closely follows the typical FPGA design synthesis. The software permits a low barrier-

to-entry with software interfaces such as well-known Matlab programming along with its

free counterpart, Octave. Furthermore, the place-and-route procedures allow a designer to

concentrate on the electronic circuit design from a schematic point-of-view allowing for more

usability among novice designers without the physical knowledge of electronic design.
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Chapter 9

Conclusions and Future Work

The push for big data and sensing the world around us will be realized by networking

traditionally offline and bringing resource-constrained devices online. The viability of these

devices will depend on extremely power-efficient devices whose battery dependent designs

have a lifespan of months and years as opposed to weeks. This constraint is not unrealistic

for environmental-sensing that could be placed in difficult-to-reach locations.

Prior electronic sensing efficiency gains were largely owed to shrinking feature sizes which

greatly benefit the digital domain. The shrinking transistor sizes could operate on lower

supply voltages, and for applications like digital signal processing and mixed-signal circuitry,

operations became more and more efficient with each generation of downsizing. However, the

rates of downsizing into sub-10nm has been limited in recent years, as well as their impact

on power savings from lower power supplies. For example, the nominal supply voltage drop

from a typical 65nm node (first released circa 2005) to a 7nm node (first released by TSMC

circa 2018) was about 500mV to 0.75V [86].

An alternative low-power sensing strategy presented in this work is to keep much of the

desired signal’s computation in its native domain. Therefore, when sensing the natural world,

the signals should processed in the analog domain for as long as possible to achieve low-power

computation as opposed to immediately digitizing the signal at the front end. Many of the

hindrances with analog signal processing is that the underlying IC designs are application-

specific and not flexible in their post-fabrication form. These are two contributing factors for

why most designs are conversely kept in the digital domain in the form of microcontrollers

and FPGAs.

This work’s contributions are towards lowering the barrier to entry for general-purpose



Alexander T. DiLello Proposed Research 125

and reconfigurable analog signal processing in the form of FPAAs. Because FPAAs are

system-level chips, there were many infrastructural elements in need of improvement or

were completely lacking. Much of the infrastructural developments was in service to analog

memories employed as programmable biases. Floating-gates for analog applications have

traditionally not been deployed in commercial applications, and as a result, is not well-

understood among IC designers and is under-represented in literature. Furthermore, larger

challenges are presented when there are a large arrays of analog floating-gates.

One of the first challenges we undertook towards the objective of having an in-the-field-

capable FPAA was a high-side load switch for FG programming. The two supply voltages

represent the two modes of operation for floating-gates: programming and run-mode. The

high-side switch allowed seamless switching between the two even though the programming

voltage is almost three times larger than the run-mode voltage. This on-chip device obviated

the need for external bench-top equipment to carry out FG programming, and as result allows

allows for in-the-field changes.

Another contemporary issue with FG current sources addressed in this work is temper-

ature compensation. When an FPAA is placed in-the-field, it will likely not experience

a constant room temperature. Unfortunately, an operational FG current sources have an

exponential dependence their ambient temperature. This work presented a temperature

compensation scheme for FPAA-like environment that will likely have multiple and differ-

ent current biases for each design. Furthermore, the temperature compensation scheme was

characterized such that the most optimized conditions for each design could be chosen with

a low design overhead.

Further improvements for low-overhead and accurate FG programming was detailed in

this dissertation. While various methodologies of FG programming have been published,

there had not been an in-depth discussion in comparing results among various different

works. Specifically for the sake of future FPAA designs like the RAMP, there was a need for

a methodology to compare above-ground and nascent below-ground programming. Below-

ground programming accuracy and analysis had not been published before this work.

Combining all the infrastructural elements together on top of prior work done to the

RAMP, we have a fully working reconfigurable analog system. In demonstrating the full

system and the wake-on event processing, the final work presented an asynchronous ADC

sampling paradigm which leverages the advantages of analog signal processing for power

savings in data conversion.
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9.1 Future Work

There are areas in this work that are unexplored and elements that need to be taken

further to bring their promise to complete fruition. The work that deserves the largest

attention is the development of a system-level below-ground programmable RAMP. The

work done in Chapter 6 successfully demonstrated its viability as a reconfigurable platform.

But this proof-of-concept only had 16 FGs that biased C4 filters. However, the infrastructure

used in the proof-of-concept was designed in such a way that it could be successfully scaled

up to the system-level without any issues. An additional improvement that was explored in

Chapter 6 and could be implemented in the next iteration RAMP was the single, high-gain

feedback programmer. Integrating this design will provide more consistent programming

results among all FGs in the array.

Probably the larger challenge for developing a below-ground programmable RAMP is a

tedious task of redesigning it for a smaller process node. The RAMP 2.0 that was discussed

in Chapter 8 was developed in a 0.35µm technology, which is increasingly being taken out

of production at the time of this writing. And most importantly, FG characterization needs

to take place to determine proper programming procedures and operation before a RAMP

design can be sent out to fabrication. Recall that FGs are not a typical circuit element

supplied in a process design kit. While this is a mild hindrance, it is undoubtedly a large

time investment.

Chapter 4’s temperature compensation performance analyzed how diverse biasing led

to a larger percent error in output current performance. A refinement of the temperature

compensation scheme could be expanded to multiple temperature compensation reference

lines. This is a viable approach because of the low overhead in the temperature compen-

sation scheme design. Moreover, additional schemes could be explored and developed like

a constant Gm compensation. And finally, the largest omission in this work is the lack of

a temperature-independent current-source, where the original design utilized an external

source to demonstrate the proof-of-concept.

Finally, the RAMP is a mixed-signal platform that could have even more opportunities to

off-load MCU computation and consequently keep the MCU in a sleep state longer if it had

some digital processing capabilities. The first step towards this goal would be to integrate

an ADC like the one presented in Chapter 7 which has the ability to operate with periodic

sampling and asynchronous sampling. The second step would be to integrate an ALU and
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control logic to handle integer math. Some basic instructions could give the end designer

even more possibilities with a more balanced analog and digital interface.
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Appendix A

Wheatstone Bridge Resistive Sensing

Circuit

The output voltage expression for Fig. A.1 (shown here for clarity) was freely given in

Chapter 2, but is derived here. Additional helper variables are included in Fig. A.1 for

ease in explanation and will be referenced in the equations. The first assumption in this

derivation is that the open-loop gain of the operational amplifiers (op-amps) is very high

(i.e. aov = 100, 000) such that the ideal op-amp characteristics can be applied for closed-loop

configurations. The op-amps employed on the physical circuit for application were MCP6001

series, which meets this criteria and have a typical open-loop gain of 112dB [87].

Beginning at the output, we have the following basic expression where I2 will need to be

expressed in terms of the reference voltages and the thermistor resistance.

Vout = Vref2 + I2R2 (A.1)

I2 = I3 − I1 =
Vref2 − Vx

R
− Vref1 − Vref2

R1

(A.2)

Then substituting A.2 into A.1 yields

Vout = Vref2 +R2

[
Vref2 − Vx

R
− Vref1 − Vref2

R1

]
(A.3)

An additional I1 expression can be written from the left branch of the Wheatstone bridge

from Vref2 to Vx.

I1 =
Vref2 − Vx

R
(A.4)
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Figure A.1: Thermistor sensing circuit that utilizes two operational amplifiers and Wheat-
stone bridge. This designs is also capable of operating on a single supply rail like a battery
source.

Then, re-arranging Eq. A.4 in terms of Vx yeilds the following.

Vx = Vref2 − I1[R(1 + δ)] (A.5)

Substituting A.4 into the previous expression gives the following.

Vx = Vref2 −
Vref1 − Vref2

R1

[R(1 + δ)] (A.6)

Then, substituting the expression for Vx back into A.7.

Vout = Vref2 +R2

[
Vref2
R
−
Vref2 −R[1 + δ]

Vref1−Vref2
R1

R
− Vref1 − Vref2

R1

]
(A.7)

Rearranging the terms inside the brackets reveal that some terms can be cancelled.

Vout = Vref2 +R2

[
@
@
@

Vref2
R
−

@
@
@

Vref2
R

+
@@R[1 + δ]

Vref1−Vref2
R1

@@R
− Vref1 − Vref2

R1

]
(A.8)

The [1 + δ] term can be expanded allowing for additional terms to be cancelled.

Vout = Vref2 +R2

[
XXXXXXX

Vref1 − Vref2
R1

+ δ
Vref1 − Vref2

R1

−
XXXXXXX

Vref1 − Vref2
R1

]
(A.9)
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This yields the final output equation expressing Vout.

Vout = Vref2 +
R2

R1

δ(Vref1 − Vref2) (A.10)
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