9 research outputs found

    Vers l’anti-criminalistique en images numériques via la restauration d’images

    Get PDF
    Image forensics enjoys its increasing popularity as a powerful image authentication tool, working in a blind passive way without the aid of any a priori embedded information compared to fragile image watermarking. On its opponent side, image anti-forensics attacks forensic algorithms for the future development of more trustworthy forensics. When image coding or processing is involved, we notice that image anti-forensics to some extent shares a similar goal with image restoration. Both of them aim to recover the information lost during the image degradation, yet image anti-forensics has one additional indispensable forensic undetectability requirement. In this thesis, we form a new research line for image anti-forensics, by leveraging on advanced concepts/methods from image restoration meanwhile with integrations of anti-forensic strategies/terms. Under this context, this thesis contributes on the following four aspects for JPEG compression and median filtering anti-forensics: (i) JPEG anti-forensics using Total Variation based deblocking, (ii) improved Total Variation based JPEG anti-forensics with assignment problem based perceptual DCT histogram smoothing, (iii) JPEG anti-forensics using JPEG image quality enhancement based on a sophisticated image prior model and non-parametric DCT histogram smoothing based on calibration, and (iv) median filtered image quality enhancement and anti-forensics via variational deconvolution. Experimental results demonstrate the effectiveness of the proposed anti-forensic methods with a better forensic undetectability against existing forensic detectors as well as a higher visual quality of the processed image, by comparisons with the state-of-the-art methods.La criminalistique en images numériques se développe comme un outil puissant pour l'authentification d'image, en travaillant de manière passive et aveugle sans l'aide d'informations d'authentification pré-intégrées dans l'image (contrairement au tatouage fragile d'image). En parallèle, l'anti-criminalistique se propose d'attaquer les algorithmes de criminalistique afin de maintenir une saine émulation susceptible d'aider à leur amélioration. En images numériques, l'anti-criminalistique partage quelques similitudes avec la restauration d'image : dans les deux cas, l'on souhaite approcher au mieux les informations perdues pendant un processus de dégradation d'image. Cependant, l'anti-criminalistique se doit de remplir au mieux un objectif supplémentaire, extit{i.e.} : être non détectable par la criminalistique actuelle. Dans cette thèse, nous proposons une nouvelle piste de recherche pour la criminalistique en images numériques, en tirant profit des concepts/méthodes avancés de la restauration d'image mais en intégrant des stratégies/termes spécifiquement anti-criminalistiques. Dans ce contexte, cette thèse apporte des contributions sur quatre aspects concernant, en criminalistique JPEG, (i) l'introduction du déblocage basé sur la variation totale pour contrer les méthodes de criminalistique JPEG et (ii) l'amélioration apportée par l'adjonction d'un lissage perceptuel de l'histogramme DCT, (iii) l'utilisation d'un modèle d'image sophistiqué et d'un lissage non paramétrique de l'histogramme DCT visant l'amélioration de la qualité de l'image falsifiée; et, en criminalistique du filtrage médian, (iv) l'introduction d'une méthode fondée sur la déconvolution variationnelle. Les résultats expérimentaux démontrent l'efficacité des méthodes anti-criminalistiques proposées, avec notamment une meilleure indétectabilité face aux détecteurs criminalistiques actuels ainsi qu'une meilleure qualité visuelle de l'image falsifiée par rapport aux méthodes anti-criminalistiques de l'état de l'art

    APPLYING PLENTY WEIGHTING OR ARBITRARY PHASE UPDATING REDUCTION OF APR

    Get PDF
    Mixture of different amplitude weighting factors (including Rectangular, Bartlett, Gaussian, Elevated cosine, Half-crime, Shannon, and subcarrier masking) with phasing of every OFDM subcarrier using random phase updating algorithm is analyzed. The outcome of complex weighting of OFDM signal around the PAPR reduction is investigated by means of simulation and it is in comparison for that above pointed out weighting factors. Results reveal that by either amplitude weighting or random phase upgrading the PAPR could be reduced. Within this paper we've addressed the novel approach to PAPR reduction for OFDM signal by using both amplitude weighting and phasing of OFDM subcarriers.  Applying both techniques together will further lessen the PAPR. For an OFDM system with 32 subcarriers by Gaussian weighting combined with random phase upgrading, a PAPR reduction gain of 3.2 dB could be accomplished. To be able to lessen the complexity, grouping of amplitude weighting and/or phasing is used. Outcomes reveal that grouping of amplitudes weighting and phases reduces the hardware complexity whilst not much impacting the PAPR reduction gain from the method. Within this paper the novel approach to complex weighting for optimum-to-average power (PAPR) decrease in OFDM signal is addressed

    Fundamental Limits in Multimedia Forensics and Anti-forensics

    Get PDF
    As the use of multimedia editing tools increases, people become questioning the authenticity of multimedia content. This is specially a big concern for authorities, such as law enforcement, news reporter and government, who constantly use multimedia evidence to make critical decisions. To verify the authenticity of multimedia content, many forensic techniques have been proposed to identify the processing history of multimedia content under question. However, as new technologies emerge and more complicated scenarios are considered, the limitation of multimedia forensics has been gradually realized by forensic researchers. It is the inevitable trend in multimedia forensics to explore the fundamental limits. In this dissertation, we propose several theoretical frameworks to study the fundamental limits in various forensic problems. Specifically, we begin by developing empirical forensic techniques to deal with the limitation of existing techniques due to the emergence of new technology, compressive sensing. Then, we go one step further to explore the fundamental limit of forensic performance. Two types of forensic problems have been examined. In operation forensics, we propose an information theoretical framework and define forensicability as the maximum information features contain about hypotheses of processing histories. Based on this framework, we have found the maximum number of JPEG compressions one can detect. In order forensics, an information theoretical criterion is proposed to determine when we can and cannot detect the order of manipulation operations that have been applied on multimedia content. Additionally, we have examined the fundamental tradeoffs in multimedia antiforensics, where attacking techniques are developed by forgers to conceal manipulation fingerprints and confuse forensic investigations. In this field, we have defined concealability as the effectiveness of anti-forensics concealing manipulation fingerprints. Then, a tradeoff between concealability, rate and distortion is proposed and characterized for compression anti-forensics, which provides us valuable insights of how forgers may behave under their best strategy

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    JPEG anti-forensics with improved tradeoff between forensic undetectability and image quality

    No full text
    International audienceThis paper proposes a JPEG anti-forensic method, which aims at removing from a given image the footprints left by JPEG compression, in both the spatial domain and DCT domain. With reasonable loss of image quality, the proposed method can defeat existing forensic detectors that attempt to identify traces of the image JPEG compression history or JPEG anti-forensic processing. In our framework, first because of a total variation-based deblocking operation, the partly recovered DCT information is thereafter used to build an adaptive local dithering signal model, which is able to bring the DCT histogram of the processed image close to that of the original one. Then, a perceptual DCT histogram smoothing is carried out by solving a simplified assignment problem, where the cost function is established as the total perceptual quality loss due to the DCT coefficient modification. The second-round deblocking and de-calibration operations successfully bring the image statistics that are used by the JPEG forensic detectors to the normal status. Experimental results show that the proposed method outperforms the state-of-the-art methods in a better tradeoff between the JPEG forensic undetectability and the visual quality of processed images. Moreover, the application of the proposed anti-forensic method in disguising double JPEG compression artifacts is proven to be feasible by experiments

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore