144 research outputs found

    Design and implementation of decoders for error correction in high-speed communication systems

    Full text link
    This thesis is focused on the design and implementation of binary low-density parity-check (LDPC) code decoders for high-speed modern communication systems. The basic of LDPC codes and the performance and bottlenecks, in terms of complexity and hardware efficiency, of the main soft-decision and hard-decision decoding algorithms (such as Min-Sum, Optimized 2-bit Min-Sum and Reliability-based iterative Majority-Logic) are analyzed. The complexity and performance of those algorithms are improved to allow efficient hardware architectures. A new decoding algorithm called One-Minimum Min-Sum is proposed. It reduces considerably the complexity of the check node update equations of the Min-Sum algorithm. The second minimum is estimated from the first minimum value by a means of a linear approximation that allows a dynamic adjustment. The Optimized 2-bit Min-Sum algorithm is modified to initialize it with the complete LLR values and to introduce the extrinsic information in the messages sent from the variable nodes. Its variable node equation is reformulated to reduce its complexity. Both algorithms were tested for the (2048,1723) RS-based LDPC code and (16129,15372) LDPC code using an FPGA-based hardware emulator. They exhibit BER performance very close to Min-Sum algorithm and do not introduce early error-floor. In order to show the hardware advantages of the proposed algorithms, hardware decoders were implemented in a 90 nm CMOS process and FPGA devices based on two types of architectures: full-parallel and partial-parallel one with horizontal layered schedule. The results show that the decoders are more area-time efficient than other published decoders and that the low-complexity of the Modified Optimized 2-bit Min-Sum allows the implementation of 10 Gbps decoders in current FPGA devices. Finally, a new hard-decision decoding algorithm, the Historical-Extrinsic Reliability-Based Iterative Decoder, is presented. This algorithm introduces the new idea of considering hard-decision votes as soft-decision to compute the extrinsic information of previous iterations. It is suitable for high-rate codes and improves the BER performance of the previous RBI-MLGD algorithms, with similar complexity.Esta tesis se ha centrado en el diseño e implementación de decodificadores binarios basados en códigos de comprobación de paridad de baja densidad (LDPC) válidos para los sistemas de comunicación modernos de alta velocidad. Los conceptos básicos de códigos LDPC, sus prestaciones y cuellos de botella, en términos de complejidad y eficiencia hardware, fueron analizados para los principales algoritmos de decisión soft y decisión hard (como Min-Sum, Optimized 2-bit Min-Sum y Reliability-based iterative Majority-Logic). La complejidad y prestaciones de estos algoritmos se han mejorado para conseguir arquitecturas hardware eficientes. Se ha propuesto un nuevo algoritmo de decodificación llamado One-Minimum Min-Sum. Éste reduce considerablemente la complejidad de las ecuaciones de actualización del nodo de comprobación del algoritmo Min-Sum. El segundo mínimo se ha estimado a partir del valor del primer mínimo por medio de una aproximación lineal, la cuál permite un ajuste dinámico. El algoritmo Optimized 2-bit Min-Sum se ha modificado para ser inicializado con los valores LLR e introducir la información extrínseca en los mensajes enviados desde los nodos variables. La ecuación del nodo variable de este algoritmo ha sido reformulada para reducir su complejidad. Ambos algoritmos fueron probados para el código (2048,1723) RS-based LDPC y para el código (16129,15372) LDPC utilizando un emulador hardware implementado en un dispositivo FPGA. Éstos han alcanzado unas prestaciones de BER muy cercanas a las del algoritmo Min-Sum evitando, además, la aparición temprana del fenómeno denominado suelo del error. Con el objetivo de mostrar las ventajas hardware de los algoritmos propuestos, los decodificadores se implementaron en hardware utilizando tecnología CMOS de 90 nm y en dispositivos FPGA basados en dos tipos de arquitecturas: completamente paralela y parcialmente paralela utilizando el método de actualización por capas horizontales. Los resultados muestran que los decodificadores propuestos e implementados son más eficientes en área-tiempo que otros decodificadores publicados y que la baja complejidad del algoritmo Modified Optimized 2-bit Min-Sum permite la implementación de decodificadores en los dispositivos FPGA actuales consiguiendo una tasa de 10 Gbps. Finalmente, se ha presentado un nuevo algoritmo de decodificación de decisión hard, el Historical-Extrinsic Reliability-Based Iterative Decoder. Este algoritmo introduce la nueva idea de considerar los votos de decisión hard como decisión soft para calcular la información extrínseca de iteracions anteriores. Este algoritmo es adecuado para códigos de alta velocidad y mejora el rendimiento BER de los algoritmos RBI-MLGD anteriores, con una complejidad similar.Aquesta tesi s'ha centrat en el disseny i implementació de descodificadors binaris basats en codis de comprovació de paritat de baixa densitat (LDPC) vàlids per als sistemes de comunicació moderns d'alta velocitat. Els conceptes bàsics de codis LDPC, les seues prestacions i colls de botella, en termes de complexitat i eficiència hardware, van ser analitzats pels principals algoritmes de decisió soft i decisió hard (com el Min-Sum, Optimized 2-bit Min-Sum y Reliability-based iterative Majority-Logic). La complexitat i prestacions d'aquests algoritmes s'han millorat per aconseguir arquitectures hardware eficients. S'ha proposat un nou algoritme de descodificació anomenat One-Minimum Min-Sum. Aquest redueix considerablement la complexitat de les equacions d'actualització del node de comprovació del algoritme Min-Sum. El segon mínim s'ha estimat a partir del valor del primer mínim per mitjà d'una aproximació lineal, la qual permet un ajust dinàmic. L'algoritme Optimized 2-bit Min-Sum s'ha modificat per ser inicialitzat amb els valors LLR i introduir la informació extrínseca en els missatges enviats des dels nodes variables. L'equació del node variable d'aquest algoritme ha sigut reformulada per reduir la seva complexitat. Tots dos algoritmes van ser provats per al codi (2048,1723) RS-based LDPC i per al codi (16129,15372) LDPC utilitzant un emulador hardware implementat en un dispositiu FPGA. Aquests han aconseguit unes prestacions BER molt properes a les del algoritme Min-Sum evitant, a més, l'aparició primerenca del fenomen denominat sòl de l'error. Per tal de mostrar els avantatges hardware dels algoritmes proposats, els descodificadors es varen implementar en hardware utilitzan una tecnologia CMOS d'uns 90 nm i en dispositius FPGA basats en dos tipus d'arquitectures: completament paral·lela i parcialment paral·lela utilitzant el mètode d'actualització per capes horitzontals. Els resultats mostren que els descodificadors proposats i implementats són més eficients en àrea-temps que altres descodificadors publicats i que la baixa complexitat del algoritme Modified Optimized 2-bit Min-Sum permet la implementació de decodificadors en els dispositius FPGA actuals obtenint una taxa de 10 Gbps. Finalment, s'ha presentat un nou algoritme de descodificació de decisió hard, el Historical-Extrinsic Reliability-Based Iterative Decoder. Aquest algoritme presenta la nova idea de considerar els vots de decisió hard com decisió soft per calcular la informació extrínseca d'iteracions anteriors. Aquest algoritme és adequat per als codis d'alta taxa i millora el rendiment BER dels algoritmes RBI-MLGD anteriors, amb una complexitat similar.Català Pérez, JM. (2017). Design and implementation of decoders for error correction in high-speed communication systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86152TESI

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    CONVERGENCE IMPROVEMENT OF ITERATIVE DECODERS

    Get PDF
    Iterative decoding techniques shaked the waters of the error correction and communications field in general. Their amazing compromise between complexity and performance offered much more freedom in code design and made highly complex codes, that were being considered undecodable until recently, part of almost any communication system. Nevertheless, iterative decoding is a sub-optimum decoding method and as such, it has attracted huge research interest. But the iterative decoder still hides many of its secrets, as it has not been possible yet to fully describe its behaviour and its cost function. This work presents the convergence problem of iterative decoding from various angles and explores methods for reducing any sub-optimalities on its operation. The decoding algorithms for both LDPC and turbo codes were investigated and aspects that contribute to convergence problems were identified. A new algorithm was proposed, capable of providing considerable coding gain in any iterative scheme. Moreover, it was shown that for some codes the proposed algorithm is sufficient to eliminate any sub-optimality and perform maximum likelihood decoding. Its performance and efficiency was compared to that of other convergence improvement schemes. Various conditions that can be considered critical to the outcome of the iterative decoder were also investigated and the decoding algorithm of LDPC codes was followed analytically to verify the experimental results

    A survey of FPGA-based LDPC decoders

    No full text
    Low-Density Parity Check (LDPC) error correction decoders have become popular in communications systems, as a benefit of their strong error correction performance and their suitability to parallel hardware implementation. A great deal of research effort has been invested into LDPC decoder designs that exploit the flexibility, the high processing speed and the parallelism of Field-Programmable Gate Array (FPGA) devices. FPGAs are ideal for design prototyping and for the manufacturing of small-production-run devices, where their in-system programmability makes them far more cost-effective than Application-Specific Integrated Circuits (ASICs). However, the FPGA-based LDPC decoder designs published in the open literature vary greatly in terms of design choices and performance criteria, making them a challenge to compare. This paper explores the key factors involved in FPGA-based LDPC decoder design and presents an extensive review of the current literature. In-depth comparisons are drawn amongst 140 published designs (both academic and industrial) and the associated performance trade-offs are characterised, discussed and illustrated. Seven key performance characteristics are described, namely their processing throughput, latency, hardware resource requirements, error correction capability, processing energy efficiency, bandwidth efficiency and flexibility. We offer recommendations that will facilitate fairer comparisons of future designs, as well as opportunities for improving the design of FPGA-based LDPC decoder

    Compound codes based on irregular graphs and their iterative decoding.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2004.Low-density parity-check (LDPC) codes form a Shannon limit approaching class of linear block codes. With iterative decoding based on their Tanner graphs, they can achieve outstanding performance. Since their rediscovery in late 1990's, the design, construction, and decoding of LDPC codes as well as their generalization have become one of the focal research points. This thesis takes a few more steps in these directions. The first significant contribution of this thesis is the introduction of a new class of codes called Generalized Irregular Low-Density (GILD) parity-check codes, which are adapted from the previously known class of Generalized Low-Density (GLD) codes. GILD codes are generalization of irregular LDPC codes, and are shown to outperform GLD codes. In addition, GILD codes have a significant advantage over GLD codes in terms of encoding and decoding complexity. They are also able to match and even beat LDPC codes for small block lengths. The second significant contribution of this thesis is the proposition of several decoding algorithms. Two new decoding algolithms for LDPC codes are introduced. In principle and complexity these algorithms can be grouped with bit flipping algorithms. Two soft-input soft-output (SISO) decoding algorithms for linear block codes are also proposed. The first algorithm is based on Maximum a Posteriori Probability (MAP) decoding of low-weight subtrellis centered around a generated candidate codeword. The second algorithm modifies and utilizes the improved Kaneko's decoding algorithm for soft-input hard-output decoding. These hard outputs are converted to soft-decisions using reliability calculations. Simulation results indicate that the proposed algorithms provide a significant improvement in error performance over Chase-based algorithm and achieve practically optimal performance with a significant reduction in decoding complexity. An analytical expression for the union bound on the bit error probability of linear codes on the Gilbert-Elliott (GE) channel model is also derived. This analytical result is shown to be accurate in establishing the decoder performance in the range where obtaining sufficient data from simulation is impractical

    Architectures for soft-decision decoding of non-binary codes

    Full text link
    En esta tesis se estudia el dise¿no de decodificadores no-binarios para la correcci'on de errores en sistemas de comunicaci'on modernos de alta velocidad. El objetivo es proponer soluciones de baja complejidad para los algoritmos de decodificaci'on basados en los c'odigos de comprobaci'on de paridad de baja densidad no-binarios (NB-LDPC) y en los c'odigos Reed-Solomon, con la finalidad de implementar arquitecturas hardware eficientes. En la primera parte de la tesis se analizan los cuellos de botella existentes en los algoritmos y en las arquitecturas de decodificadores NB-LDPC y se proponen soluciones de baja complejidad y de alta velocidad basadas en el volteo de s'¿mbolos. En primer lugar, se estudian las soluciones basadas en actualizaci'on por inundaci 'on con el objetivo de obtener la mayor velocidad posible sin tener en cuenta la ganancia de codificaci'on. Se proponen dos decodificadores diferentes basados en clipping y t'ecnicas de bloqueo, sin embargo, la frecuencia m'axima est'a limitada debido a un exceso de cableado. Por este motivo, se exploran algunos m'etodos para reducir los problemas de rutado en c'odigos NB-LDPC. Como soluci'on se propone una arquitectura basada en difusi'on parcial para algoritmos de volteo de s'¿mbolos que mitiga la congesti'on por rutado. Como las soluciones de actualizaci 'on por inundaci'on de mayor velocidad son sub-'optimas desde el punto de vista de capacidad de correci'on, decidimos dise¿nar soluciones para la actualizaci'on serie, con el objetivo de alcanzar una mayor velocidad manteniendo la ganancia de codificaci'on de los algoritmos originales de volteo de s'¿mbolo. Se presentan dos algoritmos y arquitecturas de actualizaci'on serie, reduciendo el 'area y aumentando de la velocidad m'axima alcanzable. Por 'ultimo, se generalizan los algoritmos de volteo de s'¿mbolo y se muestra como algunos casos particulares puede lograr una ganancia de codificaci'on cercana a los algoritmos Min-sum y Min-max con una menor complejidad. Tambi'en se propone una arquitectura eficiente, que muestra que el 'area se reduce a la mitad en comparaci'on con una soluci'on de mapeo directo. En la segunda parte de la tesis, se comparan algoritmos de decodificaci'on Reed- Solomon basados en decisi'on blanda, concluyendo que el algoritmo de baja complejidad Chase (LCC) es la soluci'on m'as eficiente si la alta velocidad es el objetivo principal. Sin embargo, los esquemas LCC se basan en la interpolaci'on, que introduce algunas limitaciones hardware debido a su complejidad. Con el fin de reducir la complejidad sin modificar la capacidad de correcci'on, se propone un esquema de decisi'on blanda para LCC basado en algoritmos de decisi'on dura. Por 'ultimo se dise¿na una arquitectura eficiente para este nuevo esquemaGarcía Herrero, FM. (2013). Architectures for soft-decision decoding of non-binary codes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33753TESISPremiad
    corecore