4 research outputs found

    Mean-Field Theory of Meta-Learning

    Full text link
    We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.Comment: 23 page

    Application of Neurocomputing for Data Approximation and Classification in Wireless Sensor Networks

    Get PDF
    A new application of neurocomputing for data approximation and classification is introduced to process data in a wireless sensor network. For this purpose, a simplified dynamic sliding backpropagation algorithm is implemented on a wireless sensor network for transportation applications. It is able to approximate temperature and humidity in sensor nodes. In addition, two architectures of “radial basis function” (RBF) classifiers are introduced with probabilistic features for data classification in sensor nodes. The applied approximation and classification algorithms could be used in similar applications for data processing in embedded systems

    CLASSIFIERS BASED ON A NEW APPROACH TO ESTIMATE THE FISHER SUBSPACE AND THEIR APPLICATIONS

    Get PDF
    In this thesis we propose a novel classifier, and its extensions, based on a novel estimation of the Fisher Subspace. The proposed classifiers have been developed to deal with high dimensional and highly unbalanced datasets whose cardinality is low. The efficacy of the proposed techniques has been proved by the results achieved on real and synthetic datasets, and by the comparison with state of the art predictors
    corecore