4,402 research outputs found

    Improved Iterative Truncated Arithmetic Mean Filter

    Get PDF
    This thesis discusses image processing and filtering techniques with emphasis on Mean filter, Median filter, and different versions of the Iterative Truncated Arithmetic Mean (ITM) filter. Specifically, we review in detail the ITM algorithms (ITM1 and ITM2) proposed by Xudong Jiang. Although filtering is capable of reducing noise in an image, it usually also results in smoothening or some other form of distortion of image edges and file details. Therefore, maintaining a proper trade off between noise reduction and edge/detail distortion is key. In this thesis, an improvement over Xudong Jiang’s ITM filters, namely ITM3, has been proposed and tested for different types of noise and for different images. Each of the two original ITM filters performs better than the other under different conditions. Experimental results demonstrate that the proposed filter, ITM3, provides a better trade off than ITM1 and ITM2 in terms of attenuating different types of noise and preserving fine image details and edges

    A superior edge preserving filter with a systematic analysis

    Get PDF
    A new, adaptive, edge preserving filter for use in image processing is presented. It had superior performance when compared to other filters. Termed the contiguous K-average, it aggregates pixels by examining all pixels contiguous to an existing cluster and adding the pixel closest to the mean of the existing cluster. The process is iterated until K pixels were accumulated. Rather than simply compare the visual results of processing with this operator to other filters, some approaches were developed which allow quantitative evaluation of how well and filter performs. Particular attention is given to the standard deviation of noise within a feature and the stability of imagery under iterative processing. Demonstrations illustrate the performance of several filters to discriminate against noise and retain edges, the effect of filtering as a preprocessing step, and the utility of the contiguous K-average filter when used with remote sensing data

    Performance of an Echo Canceller and Channel Estimator for On-Channel Repeaters in DVB-T/H Networks

    Get PDF
    This paper investigates the design and performance of an FIR echo canceller for on-channel repeaters in DVB-T/H network within the framework of the PLUTO project. The possible approaches for echo cancellation are briefly reviewed and the main guidelines for the design of such systems are presented. The main system parameters are discussed. The performance of an FIR echo canceller based on an open loop feedforward approach for channel estimation is tested for different radio channel conditions and for different number of taps of the FIR filter. It is shown that a minimum number of taps is recommended to achieve a certain mean rejection ratio or isolation depending on the type of channel. The expected degradation in performance due to the use of fixed point rather than floating point arithmetic in hardware implementation is presented for different number of bits. Channel estimation based on training sequences is investigated. The performance of Maximum Length Sequences and Constant Amplitude Zero Autocorrelation (CAZAC) Sequences is compared for different channels. Recommendations are given for training sequence type, length and level for DVB-T/H on-channel repeater deployment

    Inversion of Parahermitian matrices

    Get PDF
    Parahermitian matrices arise in broadband multiple-input multiple-output (MIMO) systems or array processing, and require inversion in some instances. In this paper, we apply a polynomial eigenvalue decomposition obtained by the sequential best rotation algorithm to decompose a parahermitian matrix into a product of two paraunitary, i.e.lossless and easily invertible matrices, and a diagonal polynomial matrix. The inversion of the overall parahermitian matrix therefore reduces to the inversion of auto-correlation sequences in this diagonal matrix. We investigate a number of different approaches to obtain this inversion, and and assessment of the numerical stability and complexity of the inversion process

    Automated Circuit Approximation Method Driven by Data Distribution

    Full text link
    We propose an application-tailored data-driven fully automated method for functional approximation of combinational circuits. We demonstrate how an application-level error metric such as the classification accuracy can be translated to a component-level error metric needed for an efficient and fast search in the space of approximate low-level components that are used in the application. This is possible by employing a weighted mean error distance (WMED) metric for steering the circuit approximation process which is conducted by means of genetic programming. WMED introduces a set of weights (calculated from the data distribution measured on a selected signal in a given application) determining the importance of each input vector for the approximation process. The method is evaluated using synthetic benchmarks and application-specific approximate MAC (multiply-and-accumulate) units that are designed to provide the best trade-offs between the classification accuracy and power consumption of two image classifiers based on neural networks.Comment: Accepted for publication at Design, Automation and Test in Europe (DATE 2019). Florence, Ital
    corecore