1,721 research outputs found

    A constrained pressure-temperature residual (CPTR) method for non-isothermal multiphase flow in porous media

    Full text link
    For both isothermal and thermal petroleum reservoir simulation, the Constrained Pressure Residual (CPR) method is the industry-standard preconditioner. This method is a two-stage process involving the solution of a restricted pressure system. While initially designed for the isothermal case, CPR is also the standard for thermal cases. However, its treatment of the energy conservation equation does not incorporate heat diffusion, which is often dominant in thermal cases. In this paper, we present an extension of CPR: the Constrained Pressure-Temperature Residual (CPTR) method, where a restricted pressure-temperature system is solved in the first stage. In previous work, we introduced a block preconditioner with an efficient Schur complement approximation for a pressure-temperature system. Here, we extend this method for multiphase flow as the first stage of CPTR. The algorithmic performance of different two-stage preconditioners is evaluated for reservoir simulation test cases.Comment: 28 pages, 2 figures. Sources/sinks description in arXiv:1902.0009

    Numerical treatment of two-phase flow in porous media including specific interfacial area

    Get PDF
    In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as p(c) - S-w - a(wn) surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling
    corecore